Lineare Algebra I (WS 13/14)
|
|
|
- Hajo Kopp
- vor 7 Jahren
- Abrufe
Transkript
1 Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke Alexander Lytchak 1 / 16
2 Wiederholung des Beispiels 3x 6 + x 7 = 2 2x 2 + 4x 4 + 6x 5 + 5x 7 = 3 2x 2 + x 3 + 7x 4 + 8x 5 + x 6 + 5x 7 = 4 2x 2 + 4x 4 + 6x 5 + 3x 6 + 6x 7 = 5 Die erweiterte Koeffizientenmarix ist eine 4 8 = 4 (7 + 1)-Matrix: (A b) := Es gilt j 1 = 2. Wir vertauschen die erste und die zweite Zeile. Anschließend ziehen wir die erste Zeile von der dritten und dann von der vierten Zeile ab. Alexander Lytchak 2 / 16
3 Wir erhalten die Matrix: (A b ) := Es gilt j 2 = 3. Wir vertauschen die zweite und die dritte Zeile. Diesmal müssen wir die zweite Zeile von keiner Zeile abziehen. Wir sehen j 3 = 6. Wir ziehen die neue dritte Zeile von der vierten ab und erhalten die Matrix (A b ) := Die Matrix (A b ) ist durch elementare Zeilenumformungen aus (A b) hervorgegangen. Die Matrix (A b ) hat Zeilenstufenform. Mit den früheren Bezeichnungen gilt r = 3, j 1 = 2, j 2 = 3, j 3 = 6. Die Pivotelemente sind 2, 1, 3. Alexander Lytchak 3 / 16
4 Ein 7-Tupel (x 1,..., x 7 ) ist Lösung von Ax = b genau dann, wenn es eine Lösung von A x = b ist. Wir müssen also nur das folgende Gleichungssystem lösen: 2x 2 + 0x 3 + 4x 4 + 6x 5 + 0x 6 + 5x 7 = 3 x 3 + 3x 4 + 2x 5 2x 6 + x 7 = 1 3x 6 + x 7 = 2 0 = 0 Wir können das 4-Tupel (x 1, x 4, x 5, x 7 ) beliebig wählen und daraus auf eindeutige Weise eine Lösung (x 1,..., x 7 ) bestimmen. Wir setzen x 1 = λ 1, x 4 = λ 2, x 5 = λ 3, x 7 = λ 4 und erhalten die Lösungsmenge L in Parameterform: Alexander Lytchak 4 / 16
5 L = x 1 = λ 1 x 2 = 3 2 2λ 2 3λ λ 4 x 3 = 1 3 3λ 2 2λ λ 4 x 4 = λ 2 x 5 = λ 3 x 6 = λ 4 x 7 = λ 4 λ 1, λ 2, λ 3, λ 4 R R 7 Alexander Lytchak 5 / 16
6 Ist ein lineares Gleichungssystem Ax = b in Zeilenstufenform gegeben, so lässt sich dieses sehr einfach lösen. Seien r die Anzahl der von Null verschiedenen Zeilen der (nicht erweiterten) Koeffizienten Matrix A. Seien j 1,..., j r die Indizes der speziellen Spalten aus der Definition der Zeilenstufenform. Angenommen es existiert ein b i 0 mit i > r. Dann ist die Lösungsmenge leer. Andernfalls gilt: Für jede beliebige Wahl der n r Zahlen x j R für 1 j n, j j 1, j 2,..., j r, genannt freie Parameter, existiert genau eine Wahl der verbleibenden Komponenten x j1,..., x jr, so dass (x 1,..., x n ) das Gleichungssystem löst. Alexander Lytchak 6 / 16
7 Zusammengefasst erhalten wir also: Satz Es sei wie oben ein lineares Gleichungssystem über R in Zeilenstufenform gegeben. Es sei L R n die Lösungsmenge. Entweder ist L leer oder es existiert eine eineindeutige Beziehung zwischen Elementen von R n r und von L: Zu jedem (n r)-tupel (λ 1,..., λ n r ) R n r können wir die durch diese Elemente eindeutig bestimmte Lösung (x 1,..., x n ) des Gleichungssystems berechnen, bei der die freien Parameter x j, j j 1,..., j r gleich λ 1,..., λ n r gesetzt wurden. Umgekehrt bestimmt jedes n-tupel (x 1,..., x n ) L eindeutig die Komponenten x j, j j 1,..., j r. Alexander Lytchak 7 / 16
8 Dieser Satz und die beiden Propositionen aus der letzten Vorlesung erlauben es, die Lösungsmenge eines linearen Gleichungssystems in der sogenannten Parameterform anzugeben, wobei die Parameter λ 1,..., λ n r R frei gewält werden können. Proposition Es sei ein lineares Gleichungssystem mit m Gleichungen und n Unbestimmten gegeben. Sei m < n. Entweder gibt es keine oder mehr als eine Lösung. In Wirklichkeit gibt es im zweiten Fall so viele Lösungen wie Elemente in R n r, mit einem r m, also unendlich viele. Folgerung Es sei ein homogenes lineares Gleichungssystem mit m Gleichungen und n Unbestimmten gegeben. Sei m < n. Dann besitzt dieses Gleichungssystem mindestens eine Lösung ungleich (0,..., 0) R n. Alexander Lytchak 8 / 16
9 Wir stellen uns folgende Fragen: Ist die Zahl n r der freien Parameter (d.h. die Anzahl r der Pivotelemente) durch das Gleichungssystem eindeutig festgelegt? Die Menge der Lösungen hat so viele Elemente wie R n r. Nach einem erstaunlichen Satz von Cantor (Vorkurs?), bestimmt es r nicht eindeutig. Kann man obige Zuordnung, die ein (n r)-tupel von freien Parametern (λ 1,..., λ n r ) auf die entsprechende Lösung des linearen Gleichungssystems abbildet, besser verstehen? Alexander Lytchak 9 / 16
10 Um die Fragen zu beantworten werden wir nun eine algebraische Sprache entwickeln. Als Motivation für spätere Abstraktionen machen wir zwei Bemerkungen: Für den Gaußschen Algorithmus ist es ganz wesentlich, dass wir Zeilen einer Matrix addieren und mit Zahlen multiplizieren konnten. Sei Ax = 0 ein homogenes lineares Gleichungssystem. Sind x = (x 1,..., x n ) und x = (x 1,..., x n) zwei Lösungen, so ist auch x + x = (x 1 + x 1,..., x n + x n) eine Lösung. Ferner ist für jede reelle Zahl λ, auch λx = (λx 1,..., λx n ) eine Lösung. Was wir verstehen möchten, sind genau solche Strukturen, in denen man gut addieren und mit Zahlen multiplizieren kann. Alexander Lytchak 10 / 16
11 Alexander Lytchak 11 / 16
12 Cartesisches Produkt Definition Seien X und Y Mengen. Das cartesische Produkt X Y der Mengen X und Y ist die Menge aller Paare {(x, y) x X, y Y }. Definition Allgemeiner seien X 1,..., X n Mengen. Das cartesische Produkt X 1 X 2... X n ist die Menge aller n-tupel {(x 1,..., x n ) x i X i }. Beispiel Ist jede der Mengen X i dieselbe Menge X, so schreiben wir X n statt X X... X. Dies ist die Menge der (geordneten!) n-tupel von Elementen aus X. Wir haben bereits mit dem Beispiel R n gearbeitet. Alexander Lytchak 12 / 16
13 Relationen Definition Es seien X und Y Mengen. Eine Relation zwischen X und Y ist eine Teilmenge R X Y. Ist hier X = Y, so sprechen wir auch von einer Relation X. Beispiel X := Menge der Hörer Lineare Algebra I, Y := Menge der Matrikelnummern an der Universität Köln, Z := Menge der Tutorgruppen zur Linearen Algebra 1. R 1 := {(x, y) X Y x hat Matrikelnummer y} X Y. R 2 := {(x, z) X Z x ist in Tutorgruppe z} X Z. auf N definiert als {(x, y) N N x y} N N Alexander Lytchak 13 / 16
14 Abbildungen Definition Eine Relation R X Y zwischen X und Y heißt Abbildung oder Funktion von X nach Y, falls für jedes Element x X genau ein Element y Y existiert, so dass (x, y) R. In diesem Fall heißt X Definitionsbereich (oder Quelle) und Y der Wertebereich (oder Ziel) von R. Man stellt sich eine Abbildungen von X nach Y als eine Vorschrift vor, die jedem Element aus X (genau) ein Element aus Y zuordnet. Ist R X Y eine Abbildung, so nennt man R auch den Graph dieser Abbildung. Diesen kann man übersichtlich in einem X -Y -Diagramm darstellen. Alexander Lytchak 14 / 16
15 Abbildungen bezeichnet in der Regel mit Kleinbuchstaben. Ist die Relation f X Y eine Abbildung von X nach Y, so schreiben wir f : X Y oder X f Y und ist in dieser Situation (x, y) f, so schreiben wir f (x) = y oder f : x y oder x f y. Nach Definition sind zwei Abbildungen f, g : X Y genau dann gleich (d.h. f und g sind durch die gleiche Teilmenge von X Y gegeben), falls f (x) = g(x) für alle x X gilt. Alexander Lytchak 15 / 16
16 Beispiel Betrachten wir die Relationen {(x, y) {1} N y = 1} {1} N {(x, y) N N x = 1} N N {(x, y) N N y = 1} N N ist die erste eine Abbildung {1} N, die dritte eine Abbildung N N, aber die zweite keine Abbildung. Die Relation definiert keine Abbildung N N. Von obigen Relationen R 1 und R 2 ist die erste eine Abbildung, aber die zweite nur dann, wenn sich jeder Hörer zu genau einer Tutorgruppe angemeldet hat. Alexander Lytchak 16 / 16
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
Lineare Gleichungssysteme
Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare
Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.
Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische
( ) Lineare Gleichungssysteme
102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt
LINEARE GLEICHUNGSSYSTEME. Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie. x + y + z = 1
LINEARE GLEICHUNGSSYSTEME 1. Ein kurzes Vorwort Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie 2 x 1 + 2 x 2 = 3 6 a + 4 b = 3 (a) (b) 4 x 1 + 3 x 2 = 8 3 a + 2
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
6. Übungsblatt zur Mathematik I für Maschinenbau
Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe
Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,
Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren
Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(
Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok
Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html [email protected]
Technische Universität München Zentrum Mathematik. Übungsblatt 7
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion
Lineare Algebra I. - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Monday 12 September 16
Lineare Algebra I - 1.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß 1. Mengen und Abbildungen: Mengen gehören zu den Grundlegendsten Objekten in der Mathematik Kurze Einführung in die (naive) Mengelehre
A2.3 Lineare Gleichungssysteme
A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen
Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund
Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer
Aufgaben zu Kapitel 14
Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
Lineare Gleichungssysteme - Grundlagen
Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente
Lösungen zum 5. Aufgabenblatt
SS 2012, Lineare Algebra 1 Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com
Lineare Gleichungssysteme (Teschl/Teschl 11.1)
Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
2 Die Dimension eines Vektorraums
2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1
Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7
Mathematik für Wirtschaftswissenschaftler im WS 203/4 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Aufgabe 27 Sei eine lineare Abbildung f : R 4 R 3 gegeben durch f(x, x 2, x 3 ) = (2 x 3 x 2
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
1 Geometrie - Lösungen von linearen Gleichungen
Übungsmaterial Geometrie - Lösungen von linearen Gleichungen Lineare Gleichungen sind von der Form y = f(x) = 3x + oder y = g(x) = x + 3. Zwei oder mehr Gleichungen bilden ein Gleichungssystem. Ein Gleichungssystem
4. Vektorräume und Gleichungssysteme
technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume
Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich
Lineare Algebra U Stammbach Professor an der ETH-Zürich I Vektorräume Kapitel I Vektorräume 1 I1 Lineare Gleichungssysteme 1 I2 Beispiele von Vektorräumen 7 I3 Definition eines Vektorraumes 8 I4 Linearkombinationen,
3.4 Der Gaußsche Algorithmus
94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,
Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.
1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild
Lineare Gleichungssysteme
Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. November 2011 Definition Beispiel: Wassermengen und Konzentrationen in einem Fluss Beispiel Zeilenstufenform Beispiel (Fortsetzung) Anhang
LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow
LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Lineare Gleichungssysteme und Determinanten. Lineare Gleichungssysteme.2 Determinanten 3 iii 2 LINEARE GLEIHUNGSSYSTEME UND DETERMINANTEN KAPITEL
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein
Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K
Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra:
Mathematik für Ökonomen 1
Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen
Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A
133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des
1 Funktionen. 1.1 Definitionen und Bezeichnungen
1 1 Funktionen 1.1 Definitionen und Bezeichnungen Eine Funktion f ist eine eindeutige Abbildung einer Menge X in eine andere Y. Ist x X, dann ist f(x) y Y das Bild des Elementes x. x heißt das Urbild des
Lineare Gleichungssysteme
Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg Spezialfälle und Rechenregeln Spezialfälle der Matrimultiplikation A = (m
Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)
Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.
Mengen, Funktionen und Logik
Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,
Lineare Gleichungssysteme
Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum
Lösen linearer Gleichungssysteme
Lösen linearer Gleichungssysteme Eine Aufgabe aus einem alten chinesischen Rechenbuch (600 v. Chr.) In einem Käfig sind Hasen und Hühner eingesperrt. Die Tiere haben zusammen 5 Köpfe und 94 Füße. Wie viele
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen.
1 Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 2008 Kapitel 16 Determinanten und inverse Matrizen
Rückblick auf die letzte Vorlesung. Bemerkung
Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D
Mathematik für Naturwissenschaftler I WS 2009/2010
Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 8 10. November 2009 Kapitel 2. Konvergenz von Folgen und Reihen Definition 27. Eine (reelle bzw. komplexe) Zahlenfolge ist eine R- bzw. C-wertige
Outline. 1 Vektoren im Raum. 2 Komponenten und Koordinaten. 3 Skalarprodukt. 4 Vektorprodukt. 5 Analytische Geometrie. 6 Lineare Räume, Gruppentheorie
Outline 1 Vektoren im Raum 2 Komponenten und Koordinaten 3 Skalarprodukt 4 Vektorprodukt 5 Analytische Geometrie 6 Lineare Räume, Gruppentheorie Roman Wienands (Universität zu Köln) Mathematik II für Studierende
7 Lineare Gleichungssysteme
118 7 Lineare Gleichungssysteme Lineare Gleichungssysteme treten in vielen mathematischen, aber auch naturwissenschaftlichen Problemen auf; zum Beispiel beim Lösen von Differentialgleichungen, bei Optimierungsaufgaben,
Analytische Geometrie I
Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend
Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya
Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.
Brückenkurs Elementarmathematik
Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3
2. Spezielle anwendungsrelevante Funktionen
2. Spezielle anwendungsrelevante Funktionen (1) Affin-lineare Funktionen Eine Funktion f : R R heißt konstant, wenn ein c R mit f (x) = c für alle x R existiert linear, wenn es ein a R mit f (x) = ax für
1 0 1, V 3 = M, und λ A = λa
Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a
Minimale Anzahl von Hinweisen bei Sudoku
Minimale Anzahl von Hinweisen bei Sudoku Sascha Kurz [email protected] (basierend auf Arbeiten von Ariane Papke und Gary McGuire et al.) Oberseminar Effizienz dezentraler Strukturen, Bayreuth,
2.2 Kern und Bild; Basiswechsel
22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter
6. Rechnen mit Matrizen.
6. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt und dem
3.6 Eigenwerte und Eigenvektoren
3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse
4 Lineare Algebra (Teil 2): Quadratische Matrizen
4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,
Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1
Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Kapitel 3 Lineare Gleichungssysteme 3.1. Einleitung Beispiel 1 3 Kinder haben eingekauft. Franz hat 4 Lakritzen, 2 Schokoriegel und 5 Kaugummis
Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:
Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es
Corinne Schenka Vorkurs Mathematik WiSe 2012/13
4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:
(Allgemeine) Vektorräume (Teschl/Teschl 9)
(Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:
Zahlen und elementares Rechnen
und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3
Mathematischer Vorkurs Lösungen zum Übungsblatt 5
Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 [email protected] Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und
Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren
Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
Mathematischer Vorbereitungskurs für Ökonomen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Ungleichungen Inhalt: 1. Grundlegendes 2. Lineare Ungleichungen 3. Ungleichungen mit
Lineare Algebra 1 WS 2016/2017. Christian Sevenheck. Fakultät für Mathematik. TU Chemnitz
Lineare Algebra 1 WS 2016/2017 Christian Sevenheck Fakultät für Mathematik TU Chemnitz vorläufige Fassung, 9 Januar 2017 Fehler und Bemerkungen bitte an : christiansevenheck@mathematiktu-chemnitzde 2 Inhaltsverzeichnis
Quadratische Matrizen
Quadratische Matrizen (n n)-matrizen heißen quadratische Die entsprechenden linearen Abbildungen sind laut Definition Endomorphismen des R n (weil f A : R n R n ) Das Produkt von (n n)- Matrizen ist auch
6 Eigenwerte und Eigenvektoren
6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,
Lineare Gleichungssysteme
Lineare Gleichungssysteme Wenn Sie Maple noch nicht kennen, klicken sie auf "Help" oder "Hilfe". Zunächst fangen wir ganz naiv an. die Aufgabe sei: Löse das lineare Gleichungssystem: x-y+z=0 x+2y=1 x+2z=0
Mathematische Erfrischungen III - Vektoren und Matrizen
Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen
:= 1. Der affine Unterraum Γ heißt Punkt, Gerade, Ebene oder Hyperebene, wenn dim K dim K
apitel II Lineare Algebra und analytische Geometrie 4 Punkte, Geraden, Ebenen, affine Unterräume in einem Vektorraum. Wie bisher ist V ein endlichdimensionaler Vektorraum über dem örper, oft ist V = n
Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A.
Lineare Hülle Def A sei eine nichtleere Teilmenge des Vektorraums (V,+, ) Die lineare Hülle von A (Bezeichung: span(a)) ist die Menge aller Linearkombinationen der Elemente aus A { k } span(a) := λ i v
Aufgabe 1: Bestimmen Sie Zahlen a b. ,, für die. = b. und gleichzeitig a + b + 1 = 0 gilt. Lösung zu Aufgabe 1:
WS 99/99 Aufgabe : Bestimmen Sie Zahlen a b,, für die 6 b a und gleichzeitig a + b + gilt. Lösung zu Aufgabe : WS 99/99 Aufgabe : Ein Unernehmen stellt aus ohstoffen (,,, ) Zwischenprodukte ( Z, Z, Z )
1.9 Ungleichungen (Thema aus dem Gebiet Algebra)
1.9 Ungleichungen (Thema aus dem Gebiet Algebra) Inhaltsverzeichnis 1 Ungleichungen 2 2 Intervalle 2 3 Äquivalenzumformungen bei Ungleichungen 3 4 Doppelungleichungen 5 4.1 Verfahren, um Doppelungleichungen
Vektor und Matrixnormen Vorlesung vom
Vektor und Matrixnormen Vorlesung vom 18.12.15 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse
Serie 10: Inverse Matrix und Determinante
D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die
00. Einiges zum Vektorraum R n
00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen
Zahlen und metrische Räume
Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,
Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN
Schule Thema Bundesgymnasium für Berufstätige Salzburg Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN Unterlagen LehrerInnenteam Sehr oft treten in der Mathematik
Lineare Gleichungssysteme
Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder
Mathematik 1, Teil B. Inhalt:
FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten
Elemente der Analysis II
Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel
Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%
Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen
Lineare Algebra I Klausur. Klausur - Musterlösung
Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra I Klausur Klausur - Musterlösung 20. Februar 203 Aufgabe - Lösung Aussage wahr falsch (Z, +, 0) ist eine abelsche Gruppe. Der Ring Z/24Z ist nullteilerfrei.
FUNKTIONEN. ein Leitprogramm für die Berufsmaturität
FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm
Quadratische Funktion
Quadratische Funktion sind Funktionen die nur eine Variable enthalten, deren Exponent 2 ist und keine Variable die einen Exponenten enthält, der größer ist als 2. Zum Beispiel die quadratische Funktion
Lineare Algebra I Zusammenfassung
Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition
