1.5.4 Quantile und Modi. Bem [Quantil, Modus]
|
|
|
- Wilhelmine Fromm
- vor 7 Jahren
- Abrufe
Transkript
1 1.5.4 Quantile und Modi 1.5 Erwartungswert und Varianz Bem [Quantil, Modus] und Vertei- Analog zu Statistik I kann man auch Quantile und Modi definieren. Gegeben sei eine Zufallsvariable X mit Wahrscheinlichkeitsverteilung P X lungsfunktion F X. a) Für α (0, 1) heißt x α zugehöriges α-quantil genau dann, wenn F (x α ) = α. Insbesondere ergeben sich für α=0.5 der Median und für α=0.25 bzw das 25% bzw. 75% Quantil. b) Ist X diskret, so heißt jedes x mod mit Modus von P X. P (X = x mod ) P (X = x), für alle x X 1 Wahrscheinlichkeitsrechnung 198
2 1.5 Erwartungswert und Varianz Ist X stetig mit Dichtefunktion f X, so heißt jedes x mod mit f X (x mod ) f X (x), für alle x X Modus von P X (bezüglich der Dichte f X ). Bem [Modalbereiche] Ist der Modus x mod eindeutig und X diskret, so ist dies derjenige Punkt, der die höchste Wahrscheinlichkeit besitzt, einzutreten. Dies kann man auf zusammenhängende Bereiche mit vorgegebener Sicherheit ausweiten: Sei γ (0, 1). Ein Intervall A γ R, A γ = [a, b], heiße Modalintervall zum Niveau γ, wenn gilt P (X A γ ) γ und P (X C) < γ für alle Intervalle C R, C = [c, d] mit d c < b a. Dann ist A γ X kleinster ( präzisester ) zusammengehöriger Bereich, der mindestens Wahrscheinlichkeit γ besitzt. Ist X diskret, so ist A γ X ein Bereich benachbarter Punkte, bei stetigem X mit Träger R ist A γ ein Intervall. 1 Wahrscheinlichkeitsrechnung 199
3 Wir behandeln hier nur die Binomial-, die Poisson- und die Normalverteilung. Einige weitere Verteilungsmodelle werden direkt dort eingeführt, wo sie benötigt werden Binomialverteilung Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder nicht. X = absolute Häufigkeit, mit der Ereignis A bei n unabhängigen Versuchen eintritt. Träger von X: X = {0, 1, 2,..., n}. 1 Wahrscheinlichkeitsrechnung 200
4 Herleitung der Wahrscheinlichkeitsfunktion: Bezeichne π = P (A) die Wahrscheinlichkeit für A in einem Experiment. Das Ereignis {X = x} tritt z.b. auf, wenn in den ersten x Versuchen A eintritt und anschließend nicht mehr. Die Wahrscheinlichkeit dafür ist P (A 1... A x Āx+1... Ān) = π }.{{.. π} (1 π)... (1 π) }{{} x mal n x mal = π x (1 π) n x. Diese Überlegung gilt analog für jede Auswahl von x Plätzen. Insgesamt gibt es ( n ) x Möglichkeiten für die Verteilung der x Erfolge (Auftreten von A) auf n Plätze. Damit gilt: P (X = x) = ( ) n π x (1 π) n x. x 1 Wahrscheinlichkeitsrechnung 201
5 Definition Eine Zufallsvariable heißt binomialverteilt mit dem Parameter π bei n Versuchen, kurz X B(n, π), wenn sie die Wahrscheinlichkeitsfunktion besitzt. f(x) = ( ) n π x (1 π) n x, x = 0, 1,..., n x 0, sonst Die B(1, π)-verteilung heißt auch Bernoulliverteilung. 1 Wahrscheinlichkeitsrechnung 202
6 Zum Begiff Parameter: Dies ist eine Größe, die die Wahrscheinlichkeitsverteilung steuert. Ist der Parameter bekannt, so kennt man wenn man die Modellklasse als bekannt voraussetzt die Wahrscheinlichkeitsverteilung. Später, in der induktiven Statistik, spricht man dann von parametrischen Modellen, d.h. der Verteilungstyp wird als bekannt/gegeben ( Verteilungsannahme ) vorausgesetzt (z.b. dadurch, dass man durch die Versuchsanordnung mit n unabhängigen Versuchen ein Binomialmodell erzeugt), der konkrete Wert des Parameters bzw. allgemeine Aussagen über seinen Wert sind dann anhand der Stichprobe zu bestimmen. 1 Wahrscheinlichkeitsrechnung 203
7 Wahrscheinlichkeitshistogramme von Binomialverteilungen mit n = 10: (graphische Darstellung der Wahrscheinlichkeitsfunktion) 1 Wahrscheinlichkeitsrechnung 204
8 π =0.1 π = π =0.5 π = Wahrscheinlichkeitsrechnung 205
9 Erwartungswert und Varianz: Zur Berechnung von Erwartungswert und Varianz der Binomialverteilung ist folgende Darstellung hilfreich: X = X X n mit den binären Variablen X i = { 1 falls A beim i-ten Versuch eintritt, 0 sonst. Die X i sind stochastisch unabhängig mit E(X i ) = 0 P (X i = 0) + 1 P (X i = 1) = π Var(X i ) = E(X 2 i ) (E(X i )) 2 = 1 P (X i = 1) π 2 = π π 2 = π(1 π). 1 Wahrscheinlichkeitsrechnung 206
10 Erwartungswert der Binomialverteilung: E(X) = E(X X n ) = E(X 1 ) E(X n ) = nπ Die direkte Berechnung über E(X) = n i P ({X = i}) = i=1 n ( ) n i π i (1 π) n i =... = nπ i i=1 ist deutlich komplizierter! Varianz der Binomialverteilung: Var(X) = Var(X X n ) = Var(X 1 ) Var(X n ) = nπ(1 π) 1 Wahrscheinlichkeitsrechnung 207
11 Bsp Risikobereite Slolalomfahrer stürzen mit Wahrscheinlichkeit 10%, vorsichtigere mit 2%. a) Schlagen Sie ein Modell für diese Situation vor und diskutieren Sie kurz die zugrunde gelegten Annahmen. b) Wie groß sind jeweils die Wahrscheinlichkeiten, dass von 20 Fahrern mindestens einer stürzt? c) Vergleichen Sie die durchschnittlich zu erwartende Anzahl von Stürzen von je 100 Rennläufern! 1 Wahrscheinlichkeitsrechnung 208
12 Exkurs: Zur Problematik der Argumentation mittels natürlicher Häufigkeiten (vgl. v.a. Kap 1.2 und Kap 1.3): Es wurde wiederholt vorgeschlagen, Wahrscheinlichkeiten anschaulich über natürliche Häufigkeiten zu kommunizieren, also z. B. P (A) = darstellen als von Personen haben 3753 die Eigenschaft A. Man würde demgemäß die Wahrscheinlichkeit π r = 0.1 kommunizieren als von 100 stürzen 10 Rennläufer. Diese Darstellung läuft Gefahr, die beträchtliche Variabilität zufälliger Prozesse zu verschleiern. In der Tat ist hier die Wahrscheinlichkeit, dass genau 10 von 100 Läufern stürzen, ( ) 100 P (X = 10) = , 10 also lediglich etwa 13%. Natürliche Häufigkeiten müssen also unbedingt als Durchschnittswerte bzw. Erwartungswerte begriffen und kommuniziert werden. 1 Wahrscheinlichkeitsrechnung 209
13 Eigenschaften der Binomialverteilung: Symmetrieeigenschaft (vertausche Rolle von A und Ā): Summeneigenschaft: Seien X B(n, π) und Y B(m, π). Sind X und Y unabhängig, so gilt X + Y Tabellierung der Binomialverteilung: Tabelliert ist oft P (X x) π = 0.3 n =11 n =12... x Wahrscheinlichkeitsrechnung 210
14 Daraus lassen sich die interessierenden Wahrscheinlichkeiten ablesen: P (X = x) = P (X x) P (X x 1), x N 0 Zum Beispiel: P (X = 2) = P (X 2) P (X 1) = ( = ( ) 11 ) = Wegen der Symmetrieeigenschaft gibt es meist nur Tabellen für π 0.5. Für großes n verwendet man Approximationen durch die Normalverteilung (vgl. Abschnitt??). 1 Wahrscheinlichkeitsrechnung 211
1.5.4 Quantile und Modi
1.5.4 Quantile und Modi 1.5 Erwartungswert und Varianz Bem. 1.70. [Quantil, Modus] Analog zu Statistik I kann man auch Quantile und Modi definieren. Gegeben sei eine Zufallsvariable X mit Wahrscheinlichkeitsverteilung
Wahrscheinlichkeitsfunktion. Binomialverteilung. Binomialverteilung. Wahrscheinlichkeitshistogramme
Binomialverteilung Wahrscheinlichkeitsfunktion Konstruktionsprinzip: Ein Zufallsexperiment wird n mal unabhängig durchgeführt. Wir interessieren uns jeweils nur, ob ein bestimmtes Ereignis A eintritt oder
2.3 Intervallschätzung
2.3.1 Motivation und Hinführung Bsp. 2.15. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler unter allen Wählern war 2009 auf eine Nachkommastelle gerundet genau 33.7%. Wie groß ist die Wahrscheinlichkeit,
Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung
Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus
Fit for Abi & Study Stochastik
Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen
Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential
Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:
Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik. PD Dr. U. Ludwig. Vorlesung 7 1 / 19
Wahrscheinlichkeitsrechnung und Statistik für Studierende der Informatik PD Dr. U. Ludwig Vorlesung 7 1 / 19 2.2 Erwartungswert, Varianz und Standardabweichung (Fortsetzung) 2 / 19 Bedingter Erwartungswert
Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler
Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung
7.5 Erwartungswert, Varianz
7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k
7.2 Moment und Varianz
7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p
SozialwissenschaftlerInnen II
Statistik für SozialwissenschaftlerInnen II Henning Best [email protected] Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen
2.3 Intervallschätzung
2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau
Zufallsvariablen [random variable]
Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden
Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential
Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:
Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung
Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n
6.6 Poisson-Verteilung
6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt
7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen
7.7 Spezielle diskrete Wahrscheinlichkeitsverteilungen 7.7.1 Die Laplace-Verteilung Sei X eine gleich verteilte Zufallsvariable mit den Werten in der Menge Ω X = {x i R : i = 1,...,n}, d.h. f (x i = 1
Biostatistik, Winter 2011/12
Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung
1.5 Erwartungswert und Varianz
Ziel: Charakterisiere Verteilungen von Zufallsvariablen (Bildbereich also reelle Zahlen, metrische Skala) durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere:
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften
P (X = 2) = 1/36, P (X = 3) = 2/36,...
2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung
Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann
4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)
Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation
Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit
Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen
Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind
1.5 Erwartungswert und Varianz
Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.
Wichtige Definitionen und Aussagen
Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge
Veranstaltung: Statistik für das Lehramt Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm.
Veranstaltung: Statistik für das Lehramt 16.12.2016 Dozent: Martin Tautenhahn Referenten: Belinda Höher, Thomas Holub, Maria Böhm Erwartungswert Varianz Standardabweichung Die Wahrscheinlichkeitsverteilung
Grundlegende Eigenschaften von Punktschätzern
Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur
Kapitel VI - Lage- und Streuungsparameter
Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie
Wahrscheinlichkeitsverteilungen
Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet
Modelle diskreter Zufallsvariablen
Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst
Stochastik I. Vorlesungsmitschrift
Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................
13 Mehrdimensionale Zufallsvariablen Zufallsvektoren
3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem
Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec
Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch
2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung
2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von
Psychologische Methodenlehre und Statistik I
Psychologische Methodenlehre und Statistik I Pantelis Christodoulides & Karin Waldherr SS 2013 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik I 1/61 Zufallsexperiment
5. Stichproben und Statistiken
5. Stichproben und Statistiken Problem: Es sei X eine ZV, die einen interessierenden Zufallsvorgang repräsentiere Man möchte die tatsächliche Verteilung von X kennenlernen (z.b. mittels der VF F X (x)
Stochastik und Statistik für Ingenieure Vorlesung 4
Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl
1.3 Stochastische Unabhängigkeit und bedingte
1.3 Stochastische Unabhängigkeit und bedingte Wahrscheinlichkeiten Ziel: komplexere Modelle aus Verkettung ( Koppelung ) von Zufallsexperimenten bauen, insbesondere Ziehung von n-personen aus n-maliger
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:
I. Deskriptive Statistik 1
I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................
Wahrscheinlichkeit und Statistik: Zusammenfassung
HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1
2 Aufgaben aus [Teschl, Band 2]
20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:
Eindimensionale Zufallsvariablen
Eindimensionale Grundbegriffe Verteilungstypen Diskrete Stetige Spezielle Maßzahlen für eindimensionale Erwartungswert Varianz Standardabweichung Schwankungsintervalle Bibliografie Bleymüller / Gehlert
Kapitel VII - Funktion und Transformation von Zufallsvariablen
Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl
Inhaltsverzeichnis DESKRIPTIVE STATISTIK. 1 Grundlagen Grundbegriffe Skalen... 15
Inhaltsverzeichnis 1 Grundlagen... 13 1.1 Grundbegriffe...13 1.2 Skalen... 15 DESKRIPTIVE STATISTIK 2 Eindimensionale Häufigkeitsverteilungen...16 2.1 Häufigkeiten... 16 2.1.1 Grundbegriffe... 16 2.1.2
70 Wichtige kontinuierliche Verteilungen
70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche
Klassifikation von Signifikanztests
Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen
Übungsaufgaben, Statistik 1
Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama
Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung
R. Brinkmann http://brinkmann-du.de Seite 5.05.0 Erwartungswert, Umgebungswahrscheinlichkeiten und die Normalverteilung Erwartungswert binomialverteilter Zufallsgrößen Wird ein Bernoulli- Versuch, bei
1 GRUNDLAGEN Grundbegriffe Skalen...15
Inhaltsverzeichnis 1 GRUNDLAGEN...13 1.1 Grundbegriffe...13 1.2 Skalen...15 DESKRIPTIVE STATISTIK 2 EINDIMENSIONALE HÄUFIGKEITSVERTEILUNGEN...16 2.1 Häufigkeiten...16 2.1.1 Grundbegriffe...16 2.1.2 Klassieren
Inhalt. I. Deskriptive Statistik Einführung Die Grundgesamtheit Merkmale und Verteilungen Tabellen und Grafiken...
I. Deskriptive Statistik 1 1. Einführung 3 1.1. Die Grundgesamtheit......................... 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................ 10
Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)
STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet
Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen
Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5
Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung
Kapitel VII. Einige spezielle stetige Verteilungen
Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,
Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit
Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung
ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)
ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels
Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.
Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment
Modellanpassung und Parameterschätzung. A: Übungsaufgaben
7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit
1. Was ist eine Wahrscheinlichkeit P(A)?
1. Was ist eine Wahrscheinlichkeit P(A)? Als Wahrscheinlichkeit verwenden wir ein Maß, welches die gleichen Eigenschaften wie die relative Häufigkeit h n () besitzt, aber nicht zufallsbehaftet ist. Jan
4. Verteilungen von Funktionen von Zufallsvariablen
4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten
Kapitel 9. Verteilungsmodelle. 9.1 Diskrete Verteilungsmodelle Die Gleichverteilung
Kapitel 9 Verteilungsmodelle Es gibt eine Reihe von Verteilungsmodellen für univariate diskrete und stetige Zufallsvariablen, die sich in der Praxis bewährt haben. Wir wollen uns von diesen einige anschauen.
Mathematische und statistische Methoden II
Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+
7.2 Theoretische Kennwerte
7.2 Theoretische Kennwerte Theoretische Varianz und Standardabweichung Definition und Notation Verschiebungsformel für die theoretische Varianz 391 7.2 Theoretische Kennwerte Interpretation der theoretischen
1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6
Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere
5. Spezielle stetige Verteilungen
5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für
5 Erwartungswerte, Varianzen und Kovarianzen
47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,
Wahrscheinlichkeitsrechnung Übung Aufgabe 2.b und 3
Wahrscheinlichkeitsrechnung Übung Aufgabe 2.b und 3 B I N O M I A L V E R T E I L U N G, B I N O M I A L T A B E L L E, U N A B H Ä N G I G E E R E I G N I S S E Zentrale Methodenlehre, Europa Universität
Grundgesamtheit, Merkmale, Stichprobe. Eigenschaften der Stichprobe. Klasseneinteilung, Histogramm. Arithmetisches Mittel, empirische Varianz
- 1 - Grundgesamtheit, Merkmale, Stichprobe Dimension, Umfang Skalierung Eigenschaften der Stichprobe kennzeichnende Größen Eigenschaften der Stichprobe kennzeichnende Größen Punktediagramm, Regressionsgerade,
Statistik II. Statistische Tests. Statistik II
Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen
Grundbegriffe der Wahrscheinlichkeitsrechnung
Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.
Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt, dann erwarten wir im Mittel 8 Treffer.
R. Brinkmann http://brinkmann-du.de Seite 1 06.1008 Erwartungswert binomialverteilter Zufallsgrößen. Wird ein Bernoulli- Versuch, bei dem die Trefferwahrscheinlichkeit p = 0,2 ist, n = 40 mal durchgeführt,
Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten
Kapitel 2 Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten 2.1 Stochastische Unabhängigkeit von Ereignissen Gegeben sei ein W-Raum (Ω, C, P. Der Begriff der stochastischen Unabhängigkeit von
Mathematische und statistische Methoden II
Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike [email protected]
1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung
0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau
Erwartungswert und Varianz von Zufallsvariablen
Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis
Statistik II für Wirtschaftswissenschaftler
Fachbereich Mathematik 20.04.2017 Dr. Hefter & Dr. Herzwurm Übungsblatt 0 Keine Abgabe. Gegeben seien die Mengen A 1 =, A 2 = {1}, A 3 = {1, 1}, A 4 = {1, 3}, A 5 = {1, 2, 4}, A 6 = {1, 2, 3, 4}. a) Bestimmen
DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr
1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir
Institut für Biometrie und klinische Forschung. WiSe 2012/2013
Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive
Statistische Methoden in den Umweltwissenschaften
Statistische Methoden in den Umweltwissenschaften Stetige und diskrete Wahrscheinlichkeitsverteilungen Lageparameter Streuungsparameter Diskrete und stetige Zufallsvariablen Eine Variable (oder Merkmal
Zuverlässigkeitstheorie
3. Grundbegriffe der Wahrscheinlichkeitsrechnung Prof. Jochen Seitz Fachgebiet Kommunikationsnetze 20. November 2008 Übersicht Gesetz der großen Zahlen von Bernoulli 1 Gesetz der großen Zahlen von Bernoulli
Definition 4.1 Die Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung ist gegeben durch
Kapitel 4 Diskrete Verteilungen 4.1 Bernoulli-Verteilung Definition 4.1 Die Wahrscheinlichkeitsfunktion der Bernoulli-Verteilung ist gegeben durch È Üµ ½ für Ü ¼ für Ü ½ ¼ sonst Die Bernoulli-Verteilung
15.5 Stetige Zufallsvariablen
5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven
Teil / Ein paar statistische Grundlagen 25. Kapitel 1 Was Statistik ist und Warum sie benötigt Wird 2 7
Inhaltsverzeichnis Einführung 21 Über dieses Buch 21 Törichte Annahmen über den Leser 22 Wie dieses Buch aufgebaut ist 23 Teil I: Ein paar statistische Grundlagen 23 Teil II: Die beschreibende Statistik
Lösungen zu Übungsblatt 9 Höhere Mathematik2/Stochastik 2 Master KI/PI
Lösungen zu Übungsblatt 9 Höhere Mathematik/Stochastik Anpassung von Verteilungen Zu Aufgabe ) a) Zeichnen des Histogranmmes: Um das Histogramm zu zeichnen, benötigen wir die Höhe der Balken. Die Höhe
Übungen zur Vorlesung Statistische Methoden Kapitel 1-2
TECHNISCHE UNIVERSITÄT DORTMUND Sommersemester 2011 FAKULTÄT STATISTIK Dr. M. Arnold Dipl.-Stat. R. Walter Übungen zur Vorlesung Statistische Methoden Kapitel 1-2 Aufgabe 1: Gegeben ist eine diskrete Zufallsvariable
Woche 2: Zufallsvariablen
Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit
Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass
Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck
Übungsblatt 9 (25. bis 29. Juni)
Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell
Wie groß ist die Wahrscheinlichkeit Pr[X > y + x X > x]? Da bei den ersten x Versuchen kein Erfolg eintrat, stellen wir uns vor, dass das
Sei X geometrisch verteilt mit Erfolgswahrscheinlichkeit p. Dann ist Pr[X = k] die Wahrscheinlichkeit, dass wir bei einem binären Experiment mit Erfolgswahrscheinlichkeit p genau in der k-ten unabhängigen
Beispiel: Zufallsvariable
Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder Zahl zeigen. Man ist nur an der Zahl der Köpfe interessiert. Anzahl Kopf Elementarereignis
Exponentialverteilung
Exponentialverteilung Dauer von kontinuierlichen Vorgängen (Wartezeiten; Funktionszeiten technischer Geräte) Grenzübergang von der geometrischen Verteilung Pro Zeiteinheit sei die Eintrittswahrscheinlichkeit
Statistik III. Walter Zucchini Fred Böker Andreas Stadie
Statistik III Walter Zucchini Fred Böker Andreas Stadie Inhaltsverzeichnis 1 Zufallsvariablen und ihre Verteilung 1 1.1 Diskrete Zufallsvariablen........................... 1 1.2 Stetige Zufallsvariablen............................
6. Schätzverfahren für Parameter
6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen
