Exponentialverteilung
|
|
|
- Caroline Sachs
- vor 9 Jahren
- Abrufe
Transkript
1 Exponentialverteilung Dauer von kontinuierlichen Vorgängen (Wartezeiten; Funktionszeiten technischer Geräte) Grenzübergang von der geometrischen Verteilung Pro Zeiteinheit sei die Eintrittswahrscheinlichkeit p P(X=k)=p(1-p) k bzw. P(X k)=(1-p) k Bei Verkleinerung der Zeiteinheiten muss sich die Eintrittswahrscheinlichkeit proportional ändern, damit die Wahl der Zeiteinheit das Ergebnis nicht beeinflusst: 1/2 Zeiteinheit ==> p/2 1/3 Zeiteinheit ==> p/3 Statistik für SoziologInnen 1 Exponentialverteilung
2 Exponentialverteilung P(X k)=(1-p) k P(X k)=(1-p/2) 2k P(X k)=(1-p/3) 3k... P(X k)=(1-p/n) nk bei 1 Zeiteinheit bei 1/2 Zeiteinheit bei 1/3 Zeiteinheit bei 1/n Zeiteinheit Die kontinuierliche Betrachtung ergibt sich durch n : P(X k) = (1-p) k diskretes Modell ~ Geometrische V. P(X k) = exp(-pk) stetiges Modell~ Exponential V. P(X x) = 1 - exp(- x) Verteilungsfunkt. (x 0) Statistik für SoziologInnen 2 Exponentialverteilung
3 Exponentialverteilung Dichtefunktion f(x)=.exp(- x) Verteilungsfunkt. (x 0) P(X x) = 1 - exp(- x) y lambda = 1 lambda = 0.25 y lambda = 1 lambda = Statistik für SoziologInnen 3 Exponentialverteilung
4 Exponentialverteilung Sei X eine exponentialverteilte Zufallsvariable mit Parameter, d.h. X~EX( ), so gilt E(X) = 1/ V(X) = 1/ ² Std.Abw(X) = 1/ Beachte: Bei der Exponentialverteilung gilt, dass der Erwartungswert identisch mit der Standardabweichung ist Die Exponentialverteilung hat eine no memory oder no ageing Eigenschaft: h(x) = f(x)/(1-f(x)) = const. h(x)... Hazardfunktion (instantaneous risk of mortality) Statistik für SoziologInnen 4 Exponentialverteilung
5 Exponentialverteilung Ist die "Anzahl der Vorkommnisse eines bestimmten Phänomens" poissonverteilt (Poisson- Prozess) Anzahlen des Eintreten in nicht-überlappenden Zeiteinheiten sind unabhängig Wahrscheinlichkeit für das Auftreten in einem (kleinen) Intervall der Länge dt sei dt Mit dt 0 geht die Wahrscheinlichkeit für das mehrfache Auftreten in einem Intervall gegen Null dann ist der zeitliche Abstand zwischen dem Auftreten von zwei Beobachtungen des interessierenden Phänomens exponentialverteilt. Statistik für SoziologInnen 5 Exponentialverteilung
6 Beispiel: Im Durchschnitt beträgt die Zeit zwischen den Ankünften zweier Kunden an einem Bedienungsschalter 2,5 Minuten. Unter der Modellannahme, dass die Zeit zwischen den Ankünften von zwei Kunden exponentialverteilt sei, ergibt sich für den Parameter =0,4 (E(X) = 1/ = 2,5) Man bestimme die Wahrscheinlichkeit, dafür, dass zwischen dem Eintreffen zweier Kunden mehr als 2 Minuten verstreichen. P(X k) = exp(-pk) P(X>2)=1-P(X 2) =1-(1-exp(-0.4*2)) = exp(-0.8) = Statistik für SoziologInnen 6 Exponentialverteilung
7 Beispiel: Es wird die Lebensdauer von 100 Glühbirnen in h beobachtet: mean(x)= ==> = var(x)= Std.Abw.(x)= Statistische Schätzung Statistik für SoziologInnen 7 Exponentialverteilung
8 Histogramm und Exponentialverteilung Empirische Verteilung (rot) Theoretisches Verteilungsmodell auf Basis des aus den empirischen Daten geschätzten Parameters (schwarze Linie) x Statistik für SoziologInnen 8 Exponentialverteilung
9 Beispiel: Wie groß ist die Wahrscheinlichkeit, dass 1 Glühbirne länger als 1 Jahr (=8760 h) brennt? P(X>8760)=1-P(X<8760)= 1-(1-exp( *8760)=exp(-3.919)= ~ 2% Wie groß ist die Wahrscheinlichkeit, dass 1 Glühbirne länger als 1000 h brennt? P(X>1000)=1-P(X<1000)= 1-(1-exp( *1000)=exp( )= ~ 64% Statistik für SoziologInnen 9 Exponentialverteilung
10 Beispiel: Wie ist die Summe der Brenndauern von n Glühbirnen verteilt? Im Beispiel wurde wiederholt die Funktionsdauer von n=10 zufällig ausgewählten Glühbirnen addiert: Wie schaut die Verteilung der Summenwerte aus? ==> zentr. Grenzwertsatz Statistik für SoziologInnen 10 Exponentialverteilung
11 Verteilung der Summen von n=10 Glühbirnen Statistik für SoziologInnen 11 Exponentialverteilung
12 Beispiel Nach Angaben des Produzenten beträgt die mittlere Lebensdauer einer in den Verkauf gebrachten 100- Watt Glühbirne 5000 Stunden. Wie groß ist die Wahrscheinlichkeit, dass eine Glühbirne, (a) weniger als die Hälfte (b) mehr als das Doppelte der durchschnittlichen Lebensdauer erreicht? Modellannahme: X exponentialverteilt P(X<x)=1-exp(- x) =1/5000 P(X<2500)=1-exp(-2500/5000)=1-exp(-1/2)=0.394 P(X>10.000)=1-(1-exp(-10000/5000))=exp(-2)=0.135 Statistik für SoziologInnen 12 Exponentialverteilung
13 Beispiel Wie groß ist die Wahrscheinlichkeit, dass die Lebensaduer einer Glühbirne um mehr als 100 Stunden von der durchschnittlichen Lebensdauer abweicht? X~Exp(1/5000) P(4900<X<5100)=0,015 Wie groß ist die Wahrscheinlichkeit, dass der Mittelwert von 1000 Glühbirnen um mehr als 100 Stunden von der durchschnittlichen Lebensdauer abweicht? Modellannahme: Mittelwert normalverteilt N(5.000; 5.000²/1000) P(4900<MW<5100)=0,473 Statistik für SoziologInnen 13 Exponentialverteilung
Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch
6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6
6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen
6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,
ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)
ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels
Stochastik und Statistik für Ingenieure Vorlesung 4
Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 4 30. Oktober 2012 Quantile einer stetigen Zufallsgröße Die reelle Zahl
Die Varianz (Streuung) Definition
Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ
Kapitel VI - Lage- und Streuungsparameter
Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie
Hypergeometrische Verteilung
Hypergeometrische Verteilung Typischer Anwendungsfall: Ziehen ohne Zurücklegen Durch den Ziehungsprozess wird die Wahrscheinlichkeit des auch hier zu Grunde liegenden Bernoulli-Experimentes verändert.
Spezielle stetige Verteilungen
Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für
Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern.
Aufgabe 1 (2 + 1 + 2 + 2 Punkte) Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. a) Wieviele Möglichkeiten hat
Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne
4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)
4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte
1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...
Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............
I. Deskriptive Statistik 1
I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................
Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012
Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält
Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten
Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests
Übungsblatt 9. f(x) = e x, für 0 x
Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable
b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!
Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies
Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie
Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.
Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen
Kapitel 11 Stichprobenfunktionen Um eine Aussage über den Wert eines unbekannten Parameters θ zu machen, zieht man eine Zufallsstichprobe vom Umfang n aus der Grundgesamtheit. Das Merkmal wird in diesem
Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5
Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung
Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion
Summe von Zufallsvariablen
Summe von Zufallsvariablen Gegeben sind die unabhängigen, gleichverteilten Zufallsvariablen X und Y mit den Wahrscheinlichkeitsdichten f() und g(). { für f() = g() = sonst Wir interessieren uns für die
Grundlegende Eigenschaften von Punktschätzern
Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur
Mathematische und statistische Methoden II
Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike [email protected] lordsofthebortz.de lordsofthebortz.de/g+
Statistische Thermodynamik I Lösungen zur Serie 1
Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen
Kenngrößen von Zufallsvariablen
Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert
8. Stetige Zufallsvariablen
8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse
Wahrscheinlichkeitsrechnung und schließende Statistik
Springer-Lehrbuch Wahrscheinlichkeitsrechnung und schließende Statistik von Karl Mosler, Friedrich Schmid Neuausgabe Wahrscheinlichkeitsrechnung und schließende Statistik Mosler / Schmid schnell und portofrei
Den folgenden speziellen Verteilungen liegt immer eine stetige Zufallsvariable X zugrunde.
Kapitel 0 Stetige Zufallsvariablen und ihre Verteilungen Letzte Änderung: 7. Mai 2000, 20 Seiten Den folgenden speziellen Verteilungen liegt immer eine stetige Zufallsvariable X zugrunde. X: Ω R Die stetige
P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X)
Ich habe eine Frage zur Tschebyschew Ungleichung. In der Aufgabe 4 des Übungsblattes 3 benötigt man ja die Ungleichung. In diesem Falle war der Bereich (0, 20) symmetrisch um den Erwartungswert µ = 5.
Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.
Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen
1 Grundprinzipien statistischer Schlußweisen
Grundprinzipien statistischer Schlußweisen - - Grundprinzipien statistischer Schlußweisen Für die Analyse zufallsbehafteter Eingabegrößen und Leistungsparameter in diskreten Systemen durch Computersimulation
Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge
2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten
Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp
Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- [email protected] 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und
Statistik II. Statistische Tests. Statistik II
Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen
9 Die Normalverteilung
9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,
Exemplar für Prüfer/innen
Exemplar für Prüfer/innen Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Juni 2016 Mathematik Kompensationsprüfung 3 Angabe für Prüfer/innen Hinweise zur
Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion
Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig
i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1
1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen
Aufgabe 50. Ein Schießbudenbesitzer hat festgestellt, dass die Trefferwahrscheinlichkeit in den späten Abendstunden 0;1 pro Schuss beträgt.
Aufgabe 0 Ein Schießbudenbesitzer hat festgestellt, dass die Trefferwahrscheinlichkeit in den späten Abendstunden 0;1 pro Schuss beträgt. a) Wie hoch ist die Wahrscheinlichkeit, bei Schüssen mindestens
Übungsaufgaben zu Statistik II
Übungsaufgaben zu Statistik II Prof. Dr. Irene Prof. Dr. Albrecht Ungerer Die Kapitel beziehen sich auf das Buch: /Ungerer (2016): Statistik für Wirtschaftswissenschaftler Springer Gabler 4 Übungsaufgaben
Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, [email protected], TU Wien, 11/2006
1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, [email protected], TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen
10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg
. Vorlesung Grundlagen in Statistik Seite 29 Beispiel Gegeben: Termhäufigkeiten von Dokumenten Problemstellung der Sprachmodellierung Was sagen die Termhäufigkeiten über die Wahrscheinlichkeit eines Dokuments
Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!)
Deskriptive Statistik Beschreiben, Zusammenfassen, Darstellen gegebener Daten (Datenreduktion!) - Arithmetisches Mittel o Das arithmetische Mittel (auch Durchschnitt) ist ein Mittelwert, der als Quotient
Beispiel: Zweidimensionale Normalverteilung I
10 Mehrdimensionale Zufallsvariablen Bedingte Verteilungen 10.6 Beispiel: Zweidimensionale Normalverteilung I Wichtige mehrdimensionale stetige Verteilung: mehrdimensionale (multivariate) Normalverteilung
Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse
Kursthemen 12. Sitzung Folie I - 12-1 Spezielle Verteilungen: Warteprozesse Spezielle Verteilungen: Warteprozesse A) Die Geometrische Verteilung (Folien 2 bis 7) A) Die Geometrische Verteilung (Folien
Kapitel 2 Wahrscheinlichkeitsrechnung
Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt
Monte-Carlo Simulation
Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung
13.5 Der zentrale Grenzwertsatz
13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle
Übungsrunde 9, Gruppe 2 LVA 107.369, Übungsrunde 8, Gruppe 2, 12.12. Markus Nemetz, TU Wien, 12/2006
3.75. Angabe Übungsrunde 9, Gruppe 2 LVA 07.369, Übungsrunde 8, Gruppe 2, 2.2. Markus Nemetz, [email protected], TU Wien, 2/2006 X sei eine stetige sg mit Dichte f(x), x R. Ermitteln Sie einen
Diskrete Verteilungen
KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder
die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen
Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung
Über den Autor 7. Teil Beschreibende Statistik 29
Inhaltsverzeichnis Über den Autor 7 Einführung Über dieses Buch - oder:»... für Dummies«verpflichtet! Wie man dieses Buch benutzt 22 Wie ich Sie mir vorstelle 22 Wie dieses Buch aufgebaut ist 23 Teil I:
Ausarbeitung des Seminarvortrags zum Thema
Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung
Keine Panik vor Statistik!
Markus Oestreich I Oliver Romberg Keine Panik vor Statistik! Erfolg und Spaß im Horrorfach nichttechnischer Studiengänge STUDIUM 11 VIEWEG+ TEUBNER Inhaltsverzeichnis 1 Erstmal locker bleiben: Es längt
Vorlesung Wirtschaftsstatistik 2 (FK ) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren. Dipl.-Ing.
Vorlesung Wirtschaftsstatistik 2 (FK 040637) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Vorlesungsinhalte Wiederholung:
Ü b u n g s b l a t t 15
Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine
Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.
Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )
S tandardabweichung : σ= n p 1 p = 200 0,24 0,76 6,04
R. Brinkmann http://brinkmann-du.de Seite 1 14.10.2007 Wahrscheinlichkeiten von Umgebungen Bei einer Binomialverteilung ist der Erwartungswert der mit der größten Wahrscheinlichkeit. In der Umgebung des
Operations Research (OR) II
Operations Research (OR) II Fortgeschrittene Methoden der Wirtschaftsinformatik 27. Juni 2007 Michael H. Breitner, Hans-Jörg von Mettenheim und Frank Köller 27.06.2007 # 1 Stochastische Inputgrößen Stochastische
Der Zentrale Grenzwertsatz
QUALITY-APPS Applikationen für das Qualitätsmanagement Der Zentrale Grenzwertsatz Autor: Dr. Konrad Reuter Für ein Folge unabhängiger Zufallsvariablen mit derselben Verteilung und endlichem Erwartungswert
Diskrete Wahrscheinlichkeitstheorie - Probeklausur
Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten
RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG
Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie
Chi-Quadrat Verfahren
Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz
Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse
Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen
Melanie Kaspar, Prof. Dr. B. Grabowski 1
7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen
Statistische Methoden der Datenanalyse Beispielsammlung
Statistische Methoden der Datenanalyse Beispielsammlung R. Frühwirth Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften A-1050 Wien, Nikolsdorfer Gasse 18 Wintersemester 2011/2012
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Übungen für die kompetenzbasierte Abschlussprüfung 1. 60 Äpfel wurden gewogen und die Ergebnisse in einem Boxplot-Diagramm dargestellt. Ergänzen Sie die folgenden
Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester
Messung von Rendite und Risiko Finanzwirtschaft I 5. Semester 1 Messung von Renditen Ergebnis der Anwendung der Internen Zinsfuß- Methode ist die Rentabilität des Projekts. Beispiel: A0-100.000 ZÜ1 54.000
Mathematische und statistische Methoden II
Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte
Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure
Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie
QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer (in Jahren) von KFZ-Batterien des Typs
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 1, Tel 3914 [email protected] QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer (in Jahren)
Von der Normalverteilung zu z-werten und Konfidenzintervallen
Von der Normalverteilung zu z-werten und Konfidenzintervallen Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg [email protected] Statistik 1 S. Garbade (SRH
Übungsrunde 5, Gruppe 2 LVA , Übungsrunde 5, Gruppe 2, Markus Nemetz, TU Wien, 11/2006
3.. Angabe Übungsrunde 5, Gruppe 2 LVA 07.369, Übungsrunde 5, Gruppe 2, 4.. Markus Nemetz, [email protected], TU Wien, /2006 Betrachten Sie einen Behälter, der Karten mit jeweils einer aufgedruckten
Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate
Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für
Aufgaben zu Kapitel 38
Aufgaben zu Kapitel 38 Aufgaben zu Kapitel 38 Verständnisfragen Aufgabe 38. Welche der folgenden vier Aussagen sind richtig:. Kennt man die Verteilung von X und die Verteilung von Y, dann kann man daraus
Chi-Quadrat-Verteilung
Chi-Quadrat-Verteilung Die Verteilung einer Summe X +X +...+X n, wobei X,..., X n unabhängige standardnormalverteilte Zufallsvariablen sind, heißt χ -Verteilung mit n Freiheitsgraden. Eine N(, )-verteilte
Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1
Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.
Elementare Einführung in die Wahrscheinlichkeitsrechnung, Informationstheorie und stochastische Prozesse. Computer-Netzwerke
Informationstechnik Klaus-Dieter Thies Elementare Einführung in die Wahrscheinlichkeitsrechnung, Informationstheorie und stochastische Prozesse für Computer-Netzwerke Mit einer wahrscheinlichkeitstheoretischen
825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden?
1. Aufgabe: Eine Bank will die jährliche Sparleistung eines bestimmten Kundenkreises untersuchen. Eine Stichprobe von 12 Kunden ergab folgende Werte: 825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170
Einführung in die Fehlerrechnung und Messdatenauswertung
Grundpraktikum der Physik Einführung in die Fehlerrechnung und Messdatenauswertung Wolfgang Limmer Institut für Halbleiterphysik 1 Fehlerrechnung 1.1 Motivation Bei einem Experiment soll der Wert einer
5. Stochastische Modelle I: Diskrete Zufallsvariablen
5. Stochastische Modelle I: Diskrete Zufallsvariablen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Zufallsgrößen Eine Zufallsgröße X ist eine Größe, deren Wert wir nicht exakt kennen
Die Binomialverteilung
Fachseminar zur Stochastik Die Binomialverteilung 23.11.2015 Referenten: Carolin Labrzycki und Caroline Kemper Gliederung Einstieg Definition der Binomialverteilung Herleitung der Formel an einem Beispiel
Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8
. Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8
8. Statistik Beispiel Noten. Informationsbestände analysieren Statistik
Informationsbestände analysieren Statistik 8. Statistik Nebst der Darstellung von Datenreihen bildet die Statistik eine weitere Domäne für die Auswertung von Datenbestände. Sie ist ein Fachgebiet der Mathematik
Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!
Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)
Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall
Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen
Hydrologie und Flussgebietsmanagement
Hydrologie und Flussgebietsmanagement o.univ.prof. DI Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Gliederung der Vorlesung Statistische Grundlagen Etremwertstatistik
Inferenzstatistik (=schließende Statistik)
Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die
Erläuterung des Vermögensplaners Stand: 3. Juni 2016
Erläuterung des Vermögensplaners 1 Allgemeines 1.1. Der Vermögensplaner stellt die mögliche Verteilung der Wertentwicklungen des Anlagebetrags dar. Diese verschiedenen Werte bilden im Rahmen einer bildlichen
Diskrete Wahrscheinlichkeitsverteilungen
Diskrete Wahrscheinlichkeitsverteilungen Worum geht es in diesem Modul? Zufallsvariablen Wahrscheinlichkeitsverteilungen Maßzahlen theoretischer Verteilungen Eigenschaften von Erwartungswert und Varianz
Allgemeine Wahrscheinlichkeitsräume
Kapitel 3 Allgemeine Wahrscheinlichkeitsräume 3. Einleitung Wir hatten schon bemerkt, dass der Begriff des diskreten Wahrscheinlichkeitsraums nicht ausreicht, um das unendliche Wiederholen eines Zufallsexperiments
q = 1 p = 0.8 0.2 k 0.8 10 k k = 0, 1,..., 10 1 1 0.8 2 + 10 0.2 0.8 + 10 9 1 2 0.22 1 = 0.8 8 [0.64 + 1.6 + 1.8] = 0.678
Lösungsvorschläge zu Blatt 8 X binomialverteilt mit p = 0. und n = 10: a PX = = 10 q = 1 p = 0.8 0. 0.8 10 = 0, 1,..., 10 PX = PX = 0 + PX = 1 + PX = 10 10 = 0. 0 0.8 10 + 0. 1 0.8 9 + 0 1 10 = 0.8 8 [
Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)
Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!
Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016
Prof. Dr. Christoph Karg 5.7.2016 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2016 Name: Unterschrift: Klausurergebnis Aufgabe 1 (15 Punkte) Aufgabe 3
Einführung in die Bayes-Statistik. Helga Wagner. Ludwig-Maximilians-Universität München WS 2010/11. Helga Wagner Bayes Statistik WS 2010/11 1
Einführung in die Bayes-Statistik Helga Wagner Ludwig-Maximilians-Universität München WS 2010/11 Helga Wagner Bayes Statistik WS 2010/11 1 Organisatorisches Termine: Montag: 16.00-18.00 AU115 Dienstag:
Anleitung: Standardabweichung
Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen
