Wahrscheinlichkeitstheorie
|
|
|
- August Walter Kramer
- vor 9 Jahren
- Abrufe
Transkript
1 Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten Bedingte Wahrscheinlichkeit tochastische Unabhängigkeit atz von totalen Wahrscheinlichkeit atz von Bayes Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 2 / 24 Problem Problem 1: Wie groß ist die Wahrscheinlichkeit, dass beim Werfen einer Münze Kopf kommt? Verwenden ie eine kala von 0 ( sicher nicht ) bis 1 ( sicher ). Problem 2: Werfen ie nun eine Münze zweimal! Haben ie genau einmal Kopf und einmal Zahl geworfen? Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 3 / 24
2 Wiederholungen des Münzwurfs #Kopf / #Wrfe #Wrfe Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 4 / 24 Experiment und Ereignis (Zufalls-) Experiment Ein Verfahren um eine Beobachtung zu erhalten. pezifikation des Merkmals: Was interessiert mich an dem Experiment? Was wird beobachtet? Ereignis Ein mögliches Ergebnis eines Experiments. Ereignisse werden mit Großbuchstaben, A, B, C,..., bezeichnet. Elementarereignis Elementares (einfachstes) Ergebnis eines Experiments. Ereignisraum () Menge aller möglichen Elementarereignisse. Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 5 / 24 Experimente / Beispiel Experiment: Ziehe pielkarte. Beobachte Farbe und Typ der Karte. Elementarereignisse: Herz-2,..., Pik-König, Pik-Ass. Ereignisse: schwarze Karte, As, Herz-König, Pik, Bild, rote 5,.... Ereignisraum: Alle möglichen Kombinationen von Karten. Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 6 / 24
3 Experimente / Beispiel Experiment: Werfe 2 Münzen. Beobachtet wird Kopf/Zahl. Elementarereignisse: KK, KZ, ZK, ZZ Ereignisse: (Zusammengesetztes) Menge der zugehörigen Ereignis Elementarereignisse Ereignisraum KK, KZ, ZK, ZZ 1 Kopf und 1 Zahl KZ, ZK Kopf auf 1. Münze KK, KZ zumindest einmal Kopf KK, KZ, ZK Kopf auf beiden Münzen KK Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 7 / 24 Venn-Diagramm Experiment: Werfen von 2 Münzen. Beobachtet wird Kopf/Zahl. KZ ZK KK ZZ Elementarereignis Zusammengesetztes Ereignis Ereignisraum: = {KK, KZ, ZK, ZZ} Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 8 / 24 Zusammengesetzte Ereignisse Zusammengesetzte Ereignisse erhält man durch Bildung von Durchschnitt Alle Elementarereignisse, die in beiden Ereignissen A und B enthalten sind. ymbol: (d.h., A B) Vereinigung Alle Elementarereignisse, die in Ereignis A oder B enthalten sind. ymbol: (d.h., A B) Komplement Alle Elementarereignisse, die in nicht im Ereignis A enthalten sind. ymbol: Ā Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 9 / 24
4 Zusammengesetzte Ereignisse / Venn-Diagramme Ass schwarz Ass schwarz Durchschnitt Vereinigung rot Ereignis: nicht- rot Komplement Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 10 / 24 Wahrscheinlichkeit Die Wahrscheinlichkeit ist... Numerisches Maß für die Chance, dass ein Ereignis eintritt P(Ereignis), P(A), Probability(A) Liegt zwischen 0 (sicher nicht) und 1 (sicher). umme der Wahrscheinlichkeiten aller Elementarereignisse ist 1. Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 11 / 24 Wahrscheinlichkeiten spezieller Ereignisse Unmögliches Ereignis A Ereignis mit der Wahrscheinlichkeit 0. P(A) = 0 icheres Ereignis Ereignis mit der Wahrscheinlichkeit 1. P() = 1 Komplementärereignis zu A, Ā P(Ā) = 1 P(A) bzw. P(A) + P(Ā) = 1 Einander ausschließende Ereignisse A und B P(A B) = 0 P(A Ā) = 0 (Gilt für jede Wahl von A.) Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 12 / 24
5 Zuordnung von Wahrscheinlichkeiten A priori Methode Empirische Methode ubjektive Methode Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 13 / 24 A priori Methode truktur des Experiments muß im Vorhinein bekannt sein. Beispiel: Würfeln (idealer Würfel) Jede Augenzahl ist gleichwahrscheinlich: P({1}) = P({2}) =... = P({6}) = 1 6 Regel für gleichwahrscheinliche Elementarereignisse: P(Ereignis) = Anzahl der günstigen Fälle Anzahl der möglichen Fälle = G M Beispiel: Würfeln (idealer Würfel) P({1}) = G M = 1 6 P({1, 2}) = G M = 2 6 P(Gerade Augenzahl) = P({2, 4, 6}) = G M = 3 6 Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 14 / 24 Empirische Methode Daten werden bei Experiment gesammelt. Auswertung: P(Ereignis) = Anzahl mit Eigenschaft Anzahl der Wiederholungen = X N Beispiel: Ausschußwahrscheinlichkeit 1000 Teile werden auf Fehler kontrolliert. Es werden 20 defekte Teile festgestellt. P( defekt ) = X N = = 0.02 = 2% Annahme: Es gibt keine Änderung der Anteile. Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 15 / 24
6 ubjektive Methode Die Wahrscheinlichkeit wird vor dem Experiment erhoben. Basiert auf individuellem Wissen, Erfahrung. Die Antwort unterscheidet sich je nachdem, wen man fragt. Beispiele: Frage an den Experten: Wo wird der Aktienmarkt im Dezember stehen? P(DAX 2500) =? Frage an den Fußballfan: Wer wird nächster Fußballmeister? P(X wird Meister) =? (Wettbüros messen subjektive Wahrscheinlichkeiten.) Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 16 / 24 Zuordnung von Wahrscheinlichkeiten / Beispiel Welche Methoden sind auf folgende Problemstellungen anzuwenden? Werfen einer Münze Lotto spielen Aktien veranlagen portwetten Wie groß ist die Wahrscheinlichkeit, dass ein Teilnehmer dieser LV die Note Gut bekommt? Risk Management... Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 17 / 24 Additionsregel Die Additionsregel wird verwendet, um Wahrscheinlichkeiten von Vereinigungen von Ereignissen, A B, zu berechnen. P(A oder B) = P(A B) = P(A) + P(B) P(A B) Für einander ausschließende Ereignisse (P(A B) = 0) gilt P(A oder B) = P(A B) = P(A) + P(B) Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 18 / 24
7 Bedingte Wahrscheinlichkeit Wahrscheinlichkeit eines Ereignisses, gegeben dass ein anderes Ereignis eingetreten ist. chränkt die Grundgesamtheit auf den Teil ein, der zur neuen Information passt. (Einige Elementarereignisse scheiden aus.) Notation und Definition: P(A B) = P(A B) P(B) prechweise: Wahrscheinlichkeit von A unter der Bedingung B, Wahrscheinlichkeit von A gegeben B Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 19 / 24 Bedingte Wahrscheinlichkeit / Venn-Diagramm Experiment: Ziehen einer Karte. Beobachtet wird Art und Farbe. Ass schwarz gegeben schwarz schränkt den Raum ein schwarz ( neu ) Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 20 / 24 tatistische Unabhängigkeit Das Eintreten eines Ereignisses A hat keine Auswirkung auf die Wahrscheinlichkeit des Eintretens eines anderen Ereignisses B. A und B sind dann (stochastisch) unabhängig. Beispiel: Werfen von 2 Münzen Das Ergebnis des 2. Wurfs ist vom Ergebnis des 1. Wurfs unabhängig. Keine Kausalität! (Der torch bringt nicht die Kinder.) Überprüfung, ob A und B unabhängig sind: Es gilt P(A B) = P(A) und P(A B) = P(A) P(B) Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 21 / 24
8 Multiplikationsregel Die Multiplikationsregel wird verwendet, um Wahrscheinlichkeiten von Durchschnitten von Ereignissen, A B, zu berechnen. P(A und B) = P(A B) = P(A) P(B A) = P(B) P(A B) Für unabhängige Ereignisse, A, B, gilt P(A und B) = P(A B) = P(A) P(B) Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 22 / 24 atz von der totalen Wahrscheinlichkeit eien A 1, A 2,..., A n gegenseitig ausschließende Ereignisse, die den Ereignisraum ganz ausfüllen (Partition), i.e., A 1... A n = und A i A j = für i = j Jedes beliebige Ereignis E lässt sich darstellen als E = (E A 1 )... (E A n ) Nach dem Additionssatz und den Multiplikationssatz gilt P(E) = n i=1 P(E A i ) P(A i ) Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 23 / 24 atz von Bayes Nach dem Multiplikationssatz gilt P(E A i ) = P(A i E) P(E) = P(E A i ) P(A i ) Zusammen mit dem atz von der totalen Wahrscheinlichkeit erhält man den atz von Bayes: P(A i E) = P(E A i) P(A i ) n i=1 P(E A i) P(A i ) Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 24 / 24
Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58
Statistik Einführung Wahrscheinlichkeitstheorie Kapitel 3 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Wahrscheinlichkeitstheorie
Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung
Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung 1. Grundbegriffe Würfeln, Werfen einer Münze, Messen der Lebensdauer einer Glühbirne Ausfall/Ausgang: Würfeln: Augenzahlen 1, 2, 3, 4, 5, 6
Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren
Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG. - LÖSUNGEN. Werfen eines idealen Würfels a. Sei A das Ereignis, eine zu würfeln A { } Das Ereignis, keine
Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren
Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG - LÖSUNGEN. Zweimaliges Werfen eines Würfels mit Berücksichtigung der Reihenfolge a. Ergebnismenge (Ereignisraum)
Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung Grundbegriffe: Experiment: ein Vorgang, den man unter gleichen Voraussatzungen beliebig oft wiederholen kann. Ergebnis ω : Ausgang eines Experiments Ergebnismenge Ω : Menge
Zusammenfassung Stochastik
Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl
Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung
Vorlesungscharts Vorlesung 1 Grundbegriffe der Wahrscheinlichkeitsrechnung Zufallsvorgänge und Zufallsereignisse Definitionen der Wahrscheinlichkeit Seite 1 von 11 Chart 1: Vorgänge deterministisch zufällig
htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017
htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT htw saar 2 Gliederung 25.01. Bedingte Wahrscheinlichkeit: Motivation und Definition Multiplikationssatz Stochastische Unabhängigkeit:
Biometrieübung 2 Wahrscheinlichkeitsrechnung
Biometrieübung 2 (Wahrscheinlichkeitsrechnung) - Aufgabe Biometrieübung 2 Wahrscheinlichkeitsrechnung Aufgabe 1. Kartenspiel Wie groß ist die Wahrscheinlichkeit, daß man aus einem Kartenspiel mit 52 Karten
Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26)
Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Gegeben Menge Ω (Wahscheinlichkeitsraum, Menge aller möglichen Ausgänge eines Zufallsexperiments), Abbildung P : P(Ω) [0, 1] (Wahrscheinlichkeit): Jeder Teilmenge
2.2 Ereignisse und deren Wahrscheinlichkeit
2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,
Unabhängigkeit KAPITEL 4
KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht
Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007
. Grundlagen der Wahrscheinlichkeitstheorie. Zufallsereignisse, Ereignisraum und Ereignismenge Zufallsexperiment: nach einer bestimmten Vorschrift ausgeführter, unter gleichen edingungen beliebig oft wiederholbarer
Einführung in die Wahrscheinlichkeitsrechnung
Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze
Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)
Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.
Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen
Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/
Vorlesung Statistik, H&A Mathe, Master M
Beispiel: Die Wahrscheinlichkeit dafür, dass ein Bewerber von Firma A angenommen wird ist P(A) = 0,2. Die Wahrscheinlichkeit von Firma B angenommen zu werden beträgt P(B) = 0,3. Von mindestens einer der
Kapitel 2 Wahrscheinlichkeitsrechnung
Motivation bisher: Beschreibung von Datensätzen = beobachteten Merkmalsausprägungen Frage: Sind Schlußfolgerungen aus diesen Beobachtungen möglich? Antwort: Ja, aber diese gelten nur mit einer bestimmten
STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück
STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management
Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:
1. Grundlagen der Wahrscheinlichkeitsrechnung
1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer
Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management
Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA : Table of Contents 1 Statistik: Einführung 2 Deskriptive Statistik 3 Wahrscheinlichkeitstheorie
Wahrscheinlichkeitsrechnung [probability]
Wahrscheinlichkeitsrechnung [probability] Hinweis: Die Wahrscheinlichkeitsrechnung ist nicht Gegenstand dieser Vorlesung. Es werden lediglich einige Begriffsbildungen bereitgestellt und an Beispielen erläutert,
Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente
Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der
Wahrscheinlichkeitsrechnung
Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................
Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen
Rumpfskript Elementare Wahrscheinlichkeitsrechnung Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Vorbemerkung Vorbemerkung Das vorliegende Skript heißt nicht nur Rumpf skript, sondern
Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6}
Laplace-Experimente Begriffsklärung am Beispiel eines Laplace-Würfel mit Augenzahlen (AZ) 1-6: Ergebnis: ist jeder Ausgang eines Zufallsexperimentes heißt ein Ergebnis ω dieses Zufallsexperimentes. Die
Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)
Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung
Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1
Melanie Kaspar, Prof. Dr. B. Grabowski 1 Aus diesen Eigenschaften lassen sich alle weiteren Eigenschaften ableiten: Beweis zu 1) Melanie Kaspar, Prof. Dr. B. Grabowski 2 Aufgabe Die Wahrscheinlichkeit
4. Die Laplacesche Gleichverteilung
Universität Basel Wirtschaftswissenschaftliches Zentrum Grundlagen der Stochastik Dr. Thomas Zehrt Inhalt: 1. Die Ereignismenge 2. Die Wahrscheinlichkeitsverteilung 3. Eigenschaften einer Wahrscheinlichkeitsverteilung
Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten.
3. Laplaceexperimente. Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten. Laplace-Münze: p(k) = p(z) = / Laplace-Würfel: p() =... = p(6) = / 6.
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Einführung in die Stochastik. Das komplette Material finden Sie hier:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Einführung in die Stochastik Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Wiederholung Kapitel 1: Der
Einführung in die Wahrscheinlichkeitsrechnung
Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg [email protected] Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung. Semester Begleitendes Skriptum zur Vorlesung im FH-Masterstudiengang Technisches Management von Günther Karigl FH Campus Wien 206/7 Inhaltsverzeichnis. Semester: Wahrscheinlichkeitsrechnung
UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele
UE Statistik, SS 05, letztes Update am 5. März 05 Übungsbeispiele Beispiele mit Musterlösungen finden Sie auch in dem Buch Brannath, W., Futschik, A., Krall, C., (00) Statistik im Studium der Wirtschaftswissenschaften..
Bei 10 dieser Würfe wurde gleichzeitig eine 1 gewürfelt. Bei 25 dieser Würfe wurde gleichzeitig eine Augenzahl größer als 2 gewürfelt.
3 Wahrscheinlichkeiten 1 Kapitel 3: Wahrscheinlichkeiten A: Beispiele Beispiel 1: Ein Experiment besteht aus dem gleichzeitigen Werfen einer Münze und eines Würfels. Nach 100 Wiederholungen dieses Experiments
Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments
Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig
Wirtschaftsstatistik I [E1]
040571-1 WMS: Wirtschaftsstatistik 1 :: WiSe07/08 Wirtschaftsstatistik I [E1] Schwab, Harald 1 [email protected] http://homepage.univie.ac.at/harald.schwab October 7, 2007 1 Sprechstunde: MO 17-18h
a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein.
Lösungsvorschläge zu den Aufgaben von Blatt 6: 43) 7 Telefonzellen ( 7 Kugeln in der Urne); 3 davon sind von je einem Benutzer besetzt ( 3 Kugeln in die Stichprobe). Die Telefonzellen werden nicht mehrfach
Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte
Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum
Statistik I für Betriebswirte Vorlesung 2
Statistik I für Betriebswirte Vorlesung 2 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. April 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 2 Version: 9. April
1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6
Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen
Satz 16 (Multiplikationssatz)
Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.
Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem
Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Wahrscheinlichkeitsrechnung Theorie Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem,
Vorlesung Statistik, WING, ASW Wahrscheinlichkeit in Laplace Versuchen. Kombinatorische Formeln. Bedingte Wahrscheinlichkeit
Wahrscheinlichkeit in Laplace Versuchen Kombinatorische Formeln Bedingte Wahrscheinlichkeit Multiplikationssatz Unabhängigkeit Melanie Kaspar 1 Formel der totalen Wahrscheinlichkeit Satz von Bayes Melanie
Teil II. Wahrscheinlichkeitsrechnung
Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2014) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse
Teil II. Wahrscheinlichkeitsrechnung. Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2015) Folie 129
Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2015) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse
Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse
5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) Teil II Wahrscheinlichkeitsrechnung 5 Zufallsexperimente Ergebnisse Ereignisse Wahrscheinlichkeiten Deskriptive Statistik und Wahrscheinlichkeitsrechnung
Kapitel N. Wahrscheinlichkeitsrechnung
Kapitel N Wahrscheinlichkeitsrechnung Inhalt dieses Kapitels N000 1 Diskrete Wahrscheinlichkeitsräume 2 Bedingte Wahrscheinlichkeit und Unabhängigkeit 1 Produktexperimente 2 Kombinatorik und Urnenmodelle
Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie
Kapitel 4 Christoph Hindermann Vorkurs Mathematik 1 4.0 Motivation Wenn 100 Münzen geworfen werden, wie ist dann die Wahrscheinlichkeit, dass genau 50 davon Kopf zeigen? Angenommen, es befinden sich 300
Definition: Ein endlicher Ergebnisraum ist eine nichtleere Menge, deren. wird als Ereignis, jede einelementige Teilmenge als Elementarereignis
Stochastische Prozesse: Grundlegende Begriffe bei zufälligen Prozessen In diesem Abschnitt beschäftigen wir uns mit den grundlegenden Begriffen und Definitionen von Zufallsexperimenten, also Prozessen,
Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik
Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten Zufallsvorgang: Geschehen
Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management
Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten Zufallsvorgang: Geschehen mit ungewissem
3. Grundbegriffe der Wahrscheinlichkeitstheorie
03. JULI 2006: BLATT 17 3. Grundbegriffe der Wahrscheinlichkeitstheorie (v.a. nach Manning/Schütze: 40ff und Fahrmeir /Künstler/Pigeot/Tutz: 171ff) Übersicht Um entscheiden zu können, ob eine statistische
Grundbegriffe. Vereinigungsmenge Schnittmenge sicheres Ereignis disjunkte Mengen komplementäre Ereignisse/ Gegenereignisse/ Alternativereignisse
Grundbegriffe Vereinigungsmenge Schnittmenge sicheres Ereignis disjunkte Mengen komplementäre Ereignisse/ Gegenereignisse/ Alternativereignisse 33 Mengenschreibweise von Ereignissen - Rechenregeln: (1)
Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 1
TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/ Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie svorschläge zu
Population und Stichprobe: Wahrscheinlichkeitstheorie
Population und Stichprobe: Wahrscheinlichkeitstheorie SS 2001 4. Sitzung vom 15.05.2001 Wahrscheinlichkeitstheorie in den Sozialwissenschaften: Stichprobenziehung: Aussagen über Stichprobenzusammensetzung
Stochastik Grundlagen
Grundlegende Begriffe: Zufallsexperiment: Ein Experiment, das beliebig oft wiederholt werden kann. Die möglichen Ergebnisse sind bekannt, nicht jedoch nicht, welches Ergebnis ein einzelnes Experiment hat.
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Der Wahrscheinlichkeitsbegriff - fit für das Abitur
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Der Wahrscheinlichkeitsbegriff - fit für das Abitur Das komplette Material finden Sie hier: School-Scout.de Wiederholung: Zufallsexperiment,
Übersicht Wahrscheinlichkeitsrechnung EF
Übersicht Wahrscheinlichkeitsrechnung EF. Grundbegriffe der Wahrscheinlichkeitsrechnung (eite ). Regeln zur Berechnung von Wahrscheinlichkeiten (eite ). Bedingte Wahrscheinlichkeit und Vierfeldertafel
Leseprobe. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen
Leseprobe Robert Galata, Sandro Scheid Deskriptive und Induktive Statistik für Studierende der BWL Methoden - Beispiele - nwendungen Herausgegeben von Robert Galata, Markus Wessler ISBN (Buch): 978-3-446-43255-0
Grundbegriffe der Wahrscheinlichkeitstheorie. Karin Haenelt
Grundbegriffe der Wahrscheinlichkeitstheorie Karin Haenelt 1 Inhalt Wahrscheinlichkeitsraum Bedingte Wahrscheinlichkeit Abhängige und unabhängige Ereignisse Stochastischer Prozess Markow-Kette 2 Wahrscheinlichkeitsraum
Wahrscheinlichkeitsrechnung und Statistik
1. Vorlesung - 7.10.2016 Im Alltag... Laut den meteorologischen Vorhersagen wird es morgen regnen. Ob ich riskiere und die Wette verlieren werde? Ich werde mit Sicherheit gewinnen! Ist das wirklich unmöglich?
Kapitel I Diskrete Wahrscheinlichkeitsräume
Kapitel I Diskrete Wahrscheinlichkeitsräume 1. Grundlagen Definition 1 1 Ein diskreter Wahrscheinlichkeitsraum ist durch eine Ergebnismenge Ω = {ω 1, ω 2,...} von Elementarereignissen gegeben. 2 Jedem
3 Wahrscheinlichkeitstheorie
Einige mathematische Konzepte 3 Wahrscheinlichkeitstheorie 3.1 Wahrscheinlichkeit Die Wahrscheinlichkeitstheorie modelliert Situationen, in denen Unsicherheit über bestimmte Aspekte der Umwelt vorherrscht.
Grundbegriffe der Wahrscheinlichkeitstheorie
KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir
Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff?
2. Übung: Wahrscheinlichkeitsrechnung Aufgabe 1 Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? a) P ist nichtnegativ. b) P ist additiv. c) P ist multiplikativ.
15 Wahrscheinlichkeitsrechnung und Statistik
5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben
Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt?
In diesem Kapitel werden wir den egriff Wahrscheinlichkeit und die Grundlagen der Wahrscheinlichkeitsrechnung kennenlernen, um z.. folgende Fragestellungen zu beantworten. Wie hoch ist das Risiko, dass
Satz 18 (Satz von der totalen Wahrscheinlichkeit)
Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte
3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen. Bsp (3-maliges Werfen einer Münze) Menge der Elementarereignisse:
3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen Bsp. 1.19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω {zzz, zzw,zwz,wzz,zww,wzw,wwz,www}. Dabei gilt: Ω 2 3 8 N. Wir definieren
1 Wahrscheinlichkeitsrechnung und Zufallsvariablen
1 Wahrscheinlichkeitsrechnung und Zufallsvariablen Zoltán Zomotor Versionsstand: 18. Mai 2015, 09:29 Die nummerierten Felder bitte während der Vorlesung ausfüllen. This work is licensed under the Creative
Kapitel 5 Stochastische Unabhängigkeit
Kapitel 5 Stochastische Unabhängigkeit Vorlesung Wahrscheinlichkeitsrechnung I vom SoSe 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 5.1 Das Konzept der stochastischen Unabhängigkeit. 1 Herleitung anhand
Grundbegriffe der Wahrscheinlichkeitsrechnung
Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.
Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen
Kapitel ML:IV IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-1 Statistical Learning c STEIN 2005-2011 Definition 1 (Zufallsexperiment,
Wahrscheinlichkeitsrechnung für die Mittelstufe
Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite
1 Grundlagen Wahrscheinlichkeitsrechung
1 Grundlagen Wahrscheinlichkeitsrechung 1.1 Grundbegriffe Alle möglichen Ereignisse eines Zufallsexperiments fassen wir in einer Ereignismenge Ω zusammen. Ereignisse sind Teilmengen von Ω. Umfasst das
Institut für Biometrie und klinische Forschung. WiSe 2012/2013
Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive
Satz von der totalen Wahrscheinlichkeit
htw saar 1 Satz von der totalen Wahrscheinlichkeit Sei (Ω, P) ein Wahrscheinlichkeitsraum, und B 1,, B n seien paarweise disjunkte Ereignisse mit B i = Ω. Für jedes Ereignis A gilt dann: P(A) = P(A B 1
6: Diskrete Wahrscheinlichkeit
Stefan Lucks Diskrete Strukturen (WS 2009/10) 219 6: Diskrete Wahrscheinlichkeit 6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 220 Wahrscheinlichkeitsrechnung Eines der wichtigsten
Technische Universität München
Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,
= 7! = 6! = 0, 00612,
Die Wahrscheinlichkeit, dass Prof. L. die Wette verliert, lässt sich wie folgt berechnen: Ω = {(i 1,..., i 7 ) : i j {1... 7}, j = 1... 7}, wobei i, j für den Wochentag steht, an dem die Person j geboren
K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom
Übungsaufgaben 8. Übung SS 16: Woche vom 30. 5. 3.6. 2016 Stochastik II: Klassische Wkt.-Berechnung; Unabhängigkeit Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...
Übungen zur Wahrscheinlichkeitstheorie und Statistik
Übungen zur Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank Blatt 0 vom 16. April 2012 Aufgabe 1 (Wahrscheinlichkeitsräume). Welche der folgenden Aussagen sind wahr? Begründen Sie jeweils
