1. Grundlagen der Wahrscheinlichkeitsrechnung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1. Grundlagen der Wahrscheinlichkeitsrechnung"

Transkript

1 1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer Menge möglicher Ausgänge ungewiss (zufällig) ist. Ω... Menge der möglichen (elementaren, einander ausschließenden) Versuchsausgänge ω Ω A... Ereignisfeld, enthält Teilmengen von Ω, die Ereignisse A A Ein Ereignis A tritt ein, wenn der Versuchsausgang ω, den der Versuch liefert, ein Element der Menge A ist, d.h. wenn ω A. ω A Ω 1

2 Beispiele 1. Würfeln mit idealem Würfel Ω = {1, 2, 3, 4, 5, 6} A = {2, 4, 6}... Ereignis, dass eine gerade Zahl gewürfelt wird B = {3, 4, 5, 6}... Ereignis, dass Zahl > 2 gewürfelt wird C = {6}... D = {1}... Ereignis, dass 6 gewürfelt wird Ereignis, dass 1 gewürfelt wird A B = {4, 6}... A und B, Ereignis, dass eine gerade Zahl gewürfelt wird, die größer als 2 ist 2. Würfeln mit 2 unterscheidbaren Würfeln Ω = { (1, 1), (1, 2),..., (1, 6), (2, 1),..., (6, 6) } ω = ( Ergebnis Würfel 1, Ergebnis Würfel 2 ) Ω 2

3 3. Entnehmen einer Probe von einem Maisfeld (Futterpflanzen) und messen des Aflatoxin Gehaltes (ein Schimmelpilz Gift) in ppb (µg/kg). Ω = [ 0, 10 9 (?) ] 4. Entnehmen von 16 Proben von einem Maisfeld und messen des Aflatoxin Gehaltes jeder Probe in ppb. Ω = (ω 1, ω 2,..., ω 16 ), ω i = Aflatoxin Gehalt der i ten Probe in ppb 5. Entnehmen von je 16 Proben von 8 unterschiedlichen Maisfeldern und messen des Aflatoxin Gehaltes jeder Probe in ppb. Ω = ω 1 1 ω ω ω 8 1 ω ω 8 16 ω i j = Aflatoxin Gehalt der j ten Probe vom i ten Feld 6. Zahlenlotto 6 aus 49 Ω = Menge der möglichen Tipps (Auswahl von 6 aus 49 Zahlen) also 49 = verschiedene Tippscheine möglich. 6 3

4 Rechnen mit Ereignissen A B ist ein Ereignis. Es tritt ein, wenn A und B gleichzeitig eintreten. A B A B ist das Ereignis, das eintritt, wenn A oder B eintritt (oder beide zugleich). A B A \ B ist das Ereignis, das eintritt, wenn A eintritt aber B nicht. A B Ā ist das Ereignis, das eintritt, wenn A nicht eintritt, Ā ist das komplementäre Ereignis zu A. Spezielle Ereignisse: Ω A Ā... unmögliches Ereignis (leere Menge) Ω... sicheres Ereignis (Ω Ω) 4

5 Beziehungen zwischen Ereignissen A B... A zieht B nach sich A B Ω Ist A eingetreten, d.h. der Versuchsausgang ist ein ω A, so gilt ω B, d.h. B ist ebenfalls eingetreten. Gilt A B =, so heißen A und B unvereinbar, sie können niemals gemeinsam eintreten. A Ω B Das Ereignisfeld A wird nun aus genügend vielen Ereignissen gebildet, so dass alle obigen Operationen zwischen diesen Ereignissen ausführbar sind und außerdem Ω A gilt. (Enthält Ω unendlich viele Elemente (vgl. Bsp. 3) so müssen auch Grenzwerte von Operationen der Form A 1 A 2... in A sein. A ist dann σ-algebra.). Den Operationen zwischen Ereignissen entsprechen Operationen zwischen Mengen (Durchschnitt, Vereinigung,... ). 5

6 Wahrscheinlichkeiten Vorbetrachtung: n-malige Durchführung eines zufälligen Versuches und zählen, wie häufig ein uns interessierendes Ereignis A eingetreten ist: absolute Häufigkeit: H n (A) relative Häufigkeit: h n (A) = 1 n H n(a) Erfahrung: Für große n stabilisieren sich die relativen Häufigkeiten 6

7 Eigenschaften der relativen Häufigkeit: h1) 0 h n (A) 1 h2) Ω tritt immer ein: H n (Ω) = n, tritt nie ein: h n (Ω) = 1, h n ( ) = 0. h3) Gilt A B =, (A und B disjunkt ) dann treten A und B niemals gleichzeitig ein, und es gilt H n (A B) = H n (A) + H n (B), ( ) und somit: h n (A B) = h n (A) + h n (B), A B =. h4) Gilt A B, dann wird auf der rechten Seite in ( ) doppelt gezählt, falls A B eintritt. Also gilt H n (A B) = H n (A) + H n (B) H n (A B), und somit: h n (A B) = h n (A) + h n (B) h n (A B). Beispiel Würfel: A = {1, 2}, B = {2, 3}, A B = {1, 2, 3} h n ({1, 2, 3} = h n ({1, 2}) + h n ({2, 3}) h n ({2}). 7

8 Wahrscheinlichkeiten können als Modell verstanden werden für die Grenzwerte der relativen Häufigkeiten (n ), bzw. für die Gesetzmäßigkeiten, die dahinterstecken oder dahinter vermutet werden. P (A), A Ω (A A) Wahrscheinlichkeit des Ereignisses A, definiert in Analogie zu den Eigenschaften der h n durch ein Axiomsystem (Kolmogorov, 1933) A1 0 P (A) 1 für alle A A A2 P (Ω) = 1, P ( ) = 0 A3 A B = P (A B) = P (A) + P (B) (Additivität) Genauer muss man verlangen: A3 Für A 1, A 2, A 3,... mit A j A, j N, und A i A j =, i, j N, i j, gilt P (A 1 A 2 A 3...) = (σ-additivität) i=1 P (A i ) Grenzwert von n i=1 für n 8

9 Daraus folgen, wie für h n, weitere wichtige Formeln: P (Ā) = 1 P (A) denn: A Ā = und A Ā = Ω, P (A) + P (Ā) =A3 P (A Ā) = P (Ω) =A2 1. P (A B) = P (A) + P (B) P (A B) denn: A B lässt sich disjunkt zerlegen in A \ B, A B und B \ A. A \ B A B B \ A Anschaulich: Ω = Teig der Masse 1 (kg) (ungleichmäßig) ausgerollt. Ein Plätzchen: A = Ereignis hat die Masse P (A). 9

10 P (A \ B) = P (A) P (A B) = P (A B) Beispiel: A und nicht B Gegeben: P (A) = 0.7 P (B) = 0.4 P (A B) = 0.15 Dann gilt: P (A B) = = 0.55 P (Ā B) = = 0.25 P (A B) = = 0.95 Darstellung in Vierfeldertafel : B B A Ā Das Tripel ( Ω, A, P ) heißt Wahrscheinlichkeitsraum. 10

11 Die klassische Wahrscheinlichkeit Modell für z.b. Würfeln, Münzwurf, Roulette, Ziehung von Lottozahlen; Ausgangspunkt: Man erkennt keinen Grund, einem der möglichen Versuchsausgänge eine größere Wahrscheinlichkeit zuzuordnen als einem anderen. Also: Ω = {ω 1, ω 2,..., ω n } Ereignisse {ω i } gleichwahrscheinlich, daraus folgt: denn: P ({ω i }) = 1 n Sei P ({ω 1 }) = P ({ω 2 }) =... = P ({ω n }) = p. Dann ist 1 = P (Ω) = P ({ω 1 }) + P ({ω 2 }) P ({ω n }) = np. In gleicher Weise erhält man für jedes Ereignis A A: P (A) = P ({ω i }) = 1 n Also: i: ω i A P (A) = Anzahl der ω i in A n i: ω i A = Anzahl der für A günstigen Fälle Anzahl aller möglichen Fälle Zur Bestimmung dieser Anzahlen sind häufig die Formeln der Kombinatorik hilfreich. 11

12 Bedingte Wahrscheinlichkeiten Beispiel. Spiel: Urne mit 50 Kugeln, leichte und schwere, weiße und rote, wobei das Ziehen einer roten Kugel einen Gewinn verspricht, das Ziehen einer weißen nicht. Verteilung (Vierfeldertafel): weiß rot 10 g g Versuch: Ziehen einer Kugel A... Die gezogene Kugel ist rot = Gewinn B... Die gezogene Kugel ist schwer Klassische Wkt.: P (A) = Die Gewinnchance beträgt 50%. = 0.5 = 50%. Zusatzinformation: Beim Herausnehmen kann der Spieler - noch bevor er die Farbe erkennt - zweifelsfrei feststellen, dass es eine schwere Kugel ist. Er erwartet jetzt nur noch mit P B (A) = 5 25 einen Gewinn. = 0.2 = 20% Die Information B ist eingetreten hat die Bewertung der Chancen für das Eintreten von A geändert. 12

13 Sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Für jedes B A mit P (B) > 0 heißt P (A B) P B (A) = P (A B) = P (B) Bedingte Wahrscheinlichkeit von A unter der Bedingung B Folgerungen: Für jedes B A mit P (B) > 0 werden durch P B = P (. B) Wahrscheinlichkeiten auf A definiert. Diese Wahrscheinlichkeiten sind auf B konzentriert : P (B B) = 1. P (A Ω) = P (A) Sei min{ P (A), P (B) } > 0. Dann gilt P (A B) P (B) = P (B A) P (A). Die bedingte Wahrscheinlichkeit eines jeden Ereignisses ergibt sich aus seinem Anteil an B. Formeln für Wkt.en gelten bei fester Bedingung analog. Bsp.: P (A B C) = P (A C) + P (B C) P (A B C) P (A B) + P (Ā B) = 1 13

14 Mitunter ist bedingte Wkt. P (A B) leichter zu ermitteln als P (A B). Man benutzt dann: P (A B) = P (A B) P (B) Multiplikationssatz Unabhängigkeit Wir vergleichen P (A) mit P (A B): Gilt P (A) = P (A B), dann hat die Information, dass B eingetreten ist, keinen Einfluss auf die Bewertung der Chance, dass auch A eingetreten ist. Definition: Die Ereignisse A und B heißen unabhängig, wenn gilt: P (A B) = P (A) P (B). Anderenfalls heißen die Ereignisse abhängig. Wegen P (A B) = P (A B) P (B) ist Unabhängigkeit dann (falls P (B) 0) gleichbedeutend mit: P (A B) = P (A B) P (B) = P (A) P (B) P (B) = P (A) 14

15 Definition harmoniert meistens mit der üblichen Vorstellung von Unabhängigkeit; Gefahr bei Kopplung über dritte : Anzahl der beobachteten Störche am Tag x Anzahl der Geburten am Tag x gekoppelt über saisonale Schwankungen Unterscheiden zwischen der oben definierten paarweisen Unabhängigkeit von jeweils zwei Ereignissen und der vollständigen Unabhängigkeit von mehr als zwei Ereignissen Beispiel: Würfeln mit zwei Würfeln: A... erster Würfel: gerade Zahl B... zweiter Würfel: gerade Zahl C... Summe der Augenzahlen ungerade P (A) = P (B) = P (C) = 1/2 P (A B) = P (A C) = P (B C) = 1/4 paarweise unabhängig, aber P (A B C) = 0 15

Wahrscheinlichkeitsrechnung [probability]

Wahrscheinlichkeitsrechnung [probability] Wahrscheinlichkeitsrechnung [probability] Hinweis: Die Wahrscheinlichkeitsrechnung ist nicht Gegenstand dieser Vorlesung. Es werden lediglich einige Begriffsbildungen bereitgestellt und an Beispielen erläutert,

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Teil II. Wahrscheinlichkeitsrechnung

Teil II. Wahrscheinlichkeitsrechnung Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2014) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse

Mehr

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse

Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) Teil II Wahrscheinlichkeitsrechnung 5 Zufallsexperimente Ergebnisse Ereignisse Wahrscheinlichkeiten Deskriptive Statistik und Wahrscheinlichkeitsrechnung

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017 htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT htw saar 2 Gliederung 25.01. Bedingte Wahrscheinlichkeit: Motivation und Definition Multiplikationssatz Stochastische Unabhängigkeit:

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Kapitel 2. Zufällige Versuche und zufällige Ereignisse. 2.1 Zufällige Versuche

Kapitel 2. Zufällige Versuche und zufällige Ereignisse. 2.1 Zufällige Versuche Kapitel 2 Zufällige Versuche und zufällige Ereignisse In diesem Kapitel führen wir zunächst anschaulich die grundlegenden Begriffe des zufälligen Versuchs und des zufälligen Ereignisses ein und stellen

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 . Grundlagen der Wahrscheinlichkeitstheorie. Zufallsereignisse, Ereignisraum und Ereignismenge Zufallsexperiment: nach einer bestimmten Vorschrift ausgeführter, unter gleichen edingungen beliebig oft wiederholbarer

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 7. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 7. Übung SS 16: Woche vom Übungsaufgaben 7. Übung SS 16: Woche vom 23. 5. 27. 5.. 2016 Stochastik I: Klassische Wkt.-Berechnung Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/... (SS16).html

Mehr

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen Ü b u n g 1 Aufgabe 1 Die Ereignisse A, B und C erfüllen die Bedingungen P(A) = 0. 7, P(B) = 0. 6, P(C) = 0. 5 P(A B) = 0. 4, P(A C) = 0. 3, P(B C) = 0. 2, P(A B C) = 0. 1 Bestimmen Sie P(A B), P(A C),

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom Übungsaufgaben 8. Übung SS 16: Woche vom 30. 5. 3.6. 2016 Stochastik II: Klassische Wkt.-Berechnung; Unabhängigkeit Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 1 Aus diesen Eigenschaften lassen sich alle weiteren Eigenschaften ableiten: Beweis zu 1) Melanie Kaspar, Prof. Dr. B. Grabowski 2 Aufgabe Die Wahrscheinlichkeit

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

1.3 Stochastische Unabhängigkeit und bedingte

1.3 Stochastische Unabhängigkeit und bedingte 1.3 Stochastische Unabhängigkeit und bedingte Wahrscheinlichkeiten Ziel: komplexere Modelle aus Verkettung ( Koppelung ) von Zufallsexperimenten bauen, insbesondere Ziehung von n-personen aus n-maliger

Mehr

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen Kapitel ML:IV IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-1 Statistical Learning c STEIN 2005-2011 Definition 1 (Zufallsexperiment,

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 1. und 2. Vorlesung - 2017 Im Alltag... Laut den meteorologischen Vorhersagen wird es morgen regnen. Ob ich riskiere und die Wette verlieren werde? Ich werde mit Sicherheit gewinnen! Ist das wirklich unmöglich?

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

4. Die Laplacesche Gleichverteilung

4. Die Laplacesche Gleichverteilung Universität Basel Wirtschaftswissenschaftliches Zentrum Grundlagen der Stochastik Dr. Thomas Zehrt Inhalt: 1. Die Ereignismenge 2. Die Wahrscheinlichkeitsverteilung 3. Eigenschaften einer Wahrscheinlichkeitsverteilung

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung Vorlesungscharts Vorlesung 1 Grundbegriffe der Wahrscheinlichkeitsrechnung Zufallsvorgänge und Zufallsereignisse Definitionen der Wahrscheinlichkeit Seite 1 von 11 Chart 1: Vorgänge deterministisch zufällig

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 1. Vorlesung - 7.10.2016 Im Alltag... Laut den meteorologischen Vorhersagen wird es morgen regnen. Ob ich riskiere und die Wette verlieren werde? Ich werde mit Sicherheit gewinnen! Ist das wirklich unmöglich?

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt?

Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt? In diesem Kapitel werden wir den egriff Wahrscheinlichkeit und die Grundlagen der Wahrscheinlichkeitsrechnung kennenlernen, um z.. folgende Fragestellungen zu beantworten. Wie hoch ist das Risiko, dass

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

Kapitel 5 Stochastische Unabhängigkeit

Kapitel 5 Stochastische Unabhängigkeit Kapitel 5 Stochastische Unabhängigkeit Vorlesung Wahrscheinlichkeitsrechnung I vom SoSe 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 5.1 Das Konzept der stochastischen Unabhängigkeit. 1 Herleitung anhand

Mehr

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Leseprobe. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen

Leseprobe. Robert Galata, Sandro Scheid. Deskriptive und Induktive Statistik für Studierende der BWL. Methoden - Beispiele - Anwendungen Leseprobe Robert Galata, Sandro Scheid Deskriptive und Induktive Statistik für Studierende der BWL Methoden - Beispiele - nwendungen Herausgegeben von Robert Galata, Markus Wessler ISBN (Buch): 978-3-446-43255-0

Mehr

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen und bedingte Wkt

Lösungen zu Übungs-Blatt 7 Klassische Wahrscheinlichkeit in Glücksspielen und bedingte Wkt Zu Aufgabe ) Wir betrachten den Laplace-Versuch V Werfen zweier Würfel. Berechnen Sie unter Verwendung der Formel P ( A) A aus Aufgabe die Ω Wahrscheinlichkeit für folgende Ereignisse: a) A Werfen zweier

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

Ein Ereignis ist eine Menge von Elementarereignissen. Berechnung von Wahrscheinlichkeiten zufälliger Ereignisse erfordert ein Modell.

Ein Ereignis ist eine Menge von Elementarereignissen. Berechnung von Wahrscheinlichkeiten zufälliger Ereignisse erfordert ein Modell. SS 2013 Prof. Dr. J. Schütze/ J.Puhl FB GW Wkt.1 1 Grundbegriffe Zufallsexperiment unter gleichen Bedingungen wiederholbarer Vorgang (geplant, gesteuert, beobachtet oder auch nur gedanklich) Menge der

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten

Mehr

1 Grundbegriffe der Wahrscheinlichkeitsrechnung

1 Grundbegriffe der Wahrscheinlichkeitsrechnung 4 1 Grundbegriffe der Wahrscheinlichkeitsrechnung 1.1 Grundlegende Begriffe Der Begriff wahrscheinlich wird im Alltag in verschiedenen Situationen verwendet, hat dabei auch unterschiedliche Bedeutung.

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom Übungsaufgaben 9. Übung SS 16: Woche vom 5. 6. 10. 6. 2016 Stochastik III: Totale Wkt., S.v.Bayes, Diskrete ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein.

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein. Lösungsvorschläge zu den Aufgaben von Blatt 6: 43) 7 Telefonzellen ( 7 Kugeln in der Urne); 3 davon sind von je einem Benutzer besetzt ( 3 Kugeln in die Stichprobe). Die Telefonzellen werden nicht mehrfach

Mehr

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Rumpfskript Elementare Wahrscheinlichkeitsrechnung Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Vorbemerkung Vorbemerkung Das vorliegende Skript heißt nicht nur Rumpf skript, sondern

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung

Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung 1. Grundbegriffe Würfeln, Werfen einer Münze, Messen der Lebensdauer einer Glühbirne Ausfall/Ausgang: Würfeln: Augenzahlen 1, 2, 3, 4, 5, 6

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Gegeben Menge Ω (Wahscheinlichkeitsraum, Menge aller möglichen Ausgänge eines Zufallsexperiments), Abbildung P : P(Ω) [0, 1] (Wahrscheinlichkeit): Jeder Teilmenge

Mehr

Kapitel I Diskrete Wahrscheinlichkeitsräume

Kapitel I Diskrete Wahrscheinlichkeitsräume Kapitel I Diskrete Wahrscheinlichkeitsräume 1. Grundlagen Definition 1 1 Ein diskreter Wahrscheinlichkeitsraum ist durch eine Ergebnismenge Ω = {ω 1, ω 2,...} von Elementarereignissen gegeben. 2 Jedem

Mehr

Vorlesung. Prof. Janis Voigtländer Übungsleitung: Dennis Nolte. Mathematische Strukturen Sommersemester 2017

Vorlesung. Prof. Janis Voigtländer Übungsleitung: Dennis Nolte. Mathematische Strukturen Sommersemester 2017 Vorlesung Mathematische Strukturen Sommersemester 017 Prof. Janis Voigtländer Übungsleitung: Dennis Nolte Kombinatorik: Einführung Es folgt eine Einführung in die abzählende Kombinatorik. Dabei geht es

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3.1 Einführung Bsp. 19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω {zzz,zzw,zwz,wzz,zww,wzw,wwz,www}. Ω 2 3 8 N Wir definieren

Mehr

Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING)

Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Vorlesung 03.01.09 Stochastik Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Der Mathematikunterricht der Schule hat die Aufgabe, eine Grundbildung zu vermitteln, die auf ein mathematisches

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Wahrscheinlichkeiten

Wahrscheinlichkeiten Wahrscheinlichkeiten Bestimmung der Wahrscheinlichkeit Bei einem Zufallsexperiment kann man nicht voraussagen, welches Ereignis eintritt, aber manche Ereignisse treten naturgemäß mit einer größeren Wahrscheinlichkeit

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele UE Statistik, SS 05, letztes Update am 5. März 05 Übungsbeispiele Beispiele mit Musterlösungen finden Sie auch in dem Buch Brannath, W., Futschik, A., Krall, C., (00) Statistik im Studium der Wirtschaftswissenschaften..

Mehr

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Dozentin: Wiebke Petersen 8. Foliensatz Wiebke Petersen math. Grundlagen 1 Motivation Bsp.: In vielen Bereichen der CL kommt Wahrscheinlichkeitstheorie

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

9. Elementare Wahrscheinlichkeitsrechnung

9. Elementare Wahrscheinlichkeitsrechnung 9. Elementare Wahrscheinlichkeitsrechnung Beispiel (Einmaliges Würfeln): verbal mengentheoretisch I. Zufällige Ereignisse Beispiel (Einmaliges Würfeln): Alle möglichen Ausgänge 1,,, 6 des Experiments werden

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58 Statistik Einführung Wahrscheinlichkeitstheorie Kapitel 3 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Wahrscheinlichkeitstheorie

Mehr

Das Zweikinderproblem

Das Zweikinderproblem Das Zweikinderproblem Definition Zweikinderproblem Eine Familie besitzt zwei Kinder. Wie groß ist die Wahrscheinlichkeit Pr[ Beide Kinder sind Mädchen. Eines der Kinder ist ein Mädchen ]? Lösung: Sei A

Mehr

Beschreibende Statistik

Beschreibende Statistik Beschreibende Aufgaben der beschreibenden : Erhebung von Daten Auswertung von Daten Darstellung von Daten Erhebung von Daten Bei der Erhebung von Daten geht es um die Erfassung von Merkmalen (Variablen)

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Wahrscheinlichkeitsrechnung Theorie Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem,

Mehr

6: Diskrete Wahrscheinlichkeit

6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 219 6: Diskrete Wahrscheinlichkeit 6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 220 Wahrscheinlichkeitsrechnung Eines der wichtigsten

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff?

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? 2. Übung: Wahrscheinlichkeitsrechnung Aufgabe 1 Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? a) P ist nichtnegativ. b) P ist additiv. c) P ist multiplikativ.

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassung vom 12. Januar 2001 121 WAHRSCHEINLICHKEITS-RÄUME Stichproben-Raum. 9.1 9.1 Stichproben-Raum. Die bisher behandelten Beispiele von Naturvorgängen oder Experimenten

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli BOS 98 S I Im ahmen einer statistischen Erhebung wurden 5 repräsentative Haushalte ausgewählt und im Hinblick auf ihre Ausstattung mit Fernsehern, adiorecordern sowie Homecomputern untersucht. Dabei gaben

Mehr

Grundbegrie der Wahrscheinlichkeitsrechnung

Grundbegrie der Wahrscheinlichkeitsrechnung Die Benutzung dieser Materialien ist auf Herbst 2017 beschränkt. Diese Hilfsmaterialien sind nur für unseren Studenten gemeint, dürfen also nicht weiterverteilt werden. Grundbegrie der Wahrscheinlichkeitsrechnung

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung. In einer Urne befinden sich 3 schwarze und weiße Kugel. Wir entnehmen der Urne eine Kugel, notieren die Farbe und legen die Kugel in die Urne zurück. Dieses

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

1. Grundlagen. R. Albers, M. Yannik Skript zur Vorlesung Stochastik (Elementarmathematik)

1. Grundlagen. R. Albers, M. Yannik Skript zur Vorlesung Stochastik (Elementarmathematik) 1. Grundlagen 1.1 Zufallsexperimente, Ergebnisse Grundlage für alle Betrachtungen zur Wahrscheinlichkeitsrechnung sind Zufallsexperimente. Ein Zufallsexperiment ist ein Vorgang, der - mehrere mögliche

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Motivation bisher: Beschreibung von Datensätzen = beobachteten Merkmalsausprägungen Frage: Sind Schlußfolgerungen aus diesen Beobachtungen möglich? Antwort: Ja, aber diese gelten nur mit einer bestimmten

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 27. Oktober 2010 Teil III Wahrscheinlichkeitstheorie 1 Zufallsereignisse Vorüberlegungen Der Ereignisraum Konstruktionen

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6}

Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6} Laplace-Experimente Begriffsklärung am Beispiel eines Laplace-Würfel mit Augenzahlen (AZ) 1-6: Ergebnis: ist jeder Ausgang eines Zufallsexperimentes heißt ein Ergebnis ω dieses Zufallsexperimentes. Die

Mehr

Bedingte Wahrscheinlichkeiten

Bedingte Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Bei der Betrachtung der Ereignisse A und B eines Zufallsexperiments muss man die beiden im folgendem beschrieben zwei Situationen unterscheiden. 1. Das Ereignis A und B tritt

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten.

Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten. 3. Laplaceexperimente. Beispiele: Beim Zahlenlotto sollte jede Sechserserie von Zahlen mit derselben Wahrscheinlichkeit auftreten. Laplace-Münze: p(k) = p(z) = / Laplace-Würfel: p() =... = p(6) = / 6.

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Haug verwendet man die Denition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A \ B] = Pr[BjA] Pr[A] = Pr[AjB] Pr[B] : (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1 ; : : : ; A n

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Übersicht Wahrscheinlichkeitsrechnung EF

Übersicht Wahrscheinlichkeitsrechnung EF Übersicht Wahrscheinlichkeitsrechnung EF. Grundbegriffe der Wahrscheinlichkeitsrechnung (eite ). Regeln zur Berechnung von Wahrscheinlichkeiten (eite ). Bedingte Wahrscheinlichkeit und Vierfeldertafel

Mehr

Stochastische Unabhängigkeit. 01. Dezember 2014

Stochastische Unabhängigkeit. 01. Dezember 2014 Stochastische Unabhängigkeit 0. Dezember 204 Der Begriff der Unabhängigkeit Großbritannien, im November 999. Die Anwältin Sally Clark wird wegen Mordes an ihren Kindern angeklagt. Clark geriet unter Verdacht

Mehr

1 Wahrscheinlichkeitsrechnung und Zufallsvariablen

1 Wahrscheinlichkeitsrechnung und Zufallsvariablen 1 Wahrscheinlichkeitsrechnung und Zufallsvariablen Zoltán Zomotor Versionsstand: 18. Mai 2015, 09:29 Die nummerierten Felder bitte während der Vorlesung ausfüllen. This work is licensed under the Creative

Mehr