Wahrscheinlichkeitsrechnung [probability]

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wahrscheinlichkeitsrechnung [probability]"

Transkript

1 Wahrscheinlichkeitsrechnung [probability] Hinweis: Die Wahrscheinlichkeitsrechnung ist nicht Gegenstand dieser Vorlesung. Es werden lediglich einige Begriffsbildungen bereitgestellt und an Beispielen erläutert, die die Verwendung und Interpretation von Wahrscheinlichkeiten ermöglichen sollen, die (z.b.) SPSS in Form von p-werten bei der Anwendung von Verfahren der schließenden Statistik exakt oder näherungsweise ermittelt. 1

2 Zufällige Ereignisse [random event] Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer Menge möglicher Ausgänge ungewiss (zufällig) ist. Ω... Menge der möglichen (elementaren, einander ausschließenden) Versuchsausgänge ω Ω A... Ereignisfeld, enthält Teilmengen von Ω, die Ereignisse A A Ein Ereignis A tritt ein, wenn der Versuchsausgang ω, den der Versuch liefert, ein Element der Menge A ist, d.h. wenn ω A gilt. 2

3 Beispiele: (1) Würfeln mit idealem Würfel: Ω = {1, 2, 3, 4, 5, 6} A = {2, 4, 6} B = {3, 4, 5, 6} C = {6} Ereignis, dass eine gerade Zahl gewürfelt wird Ereignis, dass eine Zahl > 2 gewürfelt wird Ereignis, dass eine 6 gewürfelt wird (2) Würfeln mit 2 unterscheidbaren Würfeln Ω = { (1, 1), (1, 2),..., (1, 6), (2, 1),..., (6, 6) } ω = ( Ergebnis Würfel 1, Ergebnis Würfel 2 ) Ω 3

4 (3) Zufällige Auswahl einer Versuchsperson (a) Fragebogen mit 1 Frage und 4 Antwortmöglichkeiten Ω = {a, b, c, d} (b) Fragebogen mit 2 Fragen und je 4 Antwortmöglichkeiten Ω = {(a, a), (a, b), (a, c), (a, d), (b, a),..., (d, d)} ω = (Antwort 1. Frage, Antwort 2. Frage) Ω Es sind 4 4 = 16 verschiedene elementare Versuchsausgänge (ausgefüllte Bögen) möglich. Ereignis A = {(a, a), (a, b), (a, c), (a, d)}: 1. Frage mit a beantwortet. 4

5 (4) Zufällige Auswahl einer Versuchsperson, die die Antwort auf eine Frage auf einer Ratingskala (10 cm lang) markiert: sehr unsympathisch sehr sympathisch Ω = [ 0, 10 ] Es gibt überabzählbar viele mögliche Antworten. 5

6 (5) Zahlenlotto 6 aus 49: Ω = Menge der möglichen Ziehungsergebnisse Auswahl von 6 aus 49 Zahlen möglich, es gibt also ( ) 49 = verschiedene Ziehungsergebnisse. 6

7 Rechnen mit Ereignissen Beispiel (3b): Ω = {(a, a), (a, b), (a, c), (a, d), (b, a),..., (d, d)} A = {(a, a), (a, b), (a, c), (a, d)} (Erste Frage mit a beantwortet) B = {(a, b), (b, b), (c, b), (d, b), (a, c), (b, c), (c, c), (d, c)} (Zweite Frage mit b oder mit c beantwortet) Können A und B gleichzeitig eintreten? Ja, wenn (a, b) oder (a, c) geantwortet wird. 7

8 Verknüpfungen von Ereignissen A B ist das Ereignis, das eintritt, wenn A und B gleichzeitig eintreten. A B = {(a, b), (a, c)} A B ist das Ereignis, das eintritt, wenn A oder B eintritt. A B = {(a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (c, b), (c, c), (d, b), (d, c)} 8

9 A \ B ist das Ereignis, das eintritt, wenn A eintritt, aber B nicht. A \ B = {(a, a), (a, d)} Ā ist das Ereignis, das eintritt, wenn A nicht eintritt, Ā heißt das komplementäre Ereignis zu A. Ā = {(b, a), (b, b), (b, c), (b, d), (c, a),..., (d, d)} = Ω \ A 9

10 Spezielle Ereignisse... unmögliches Ereignis (leere Menge, Ω) Ω... sicheres Ereignis (Ω Ω) 10

11 Beziehungen zwischen Ereignissen A B... A zieht B nach sich: Wenn A eintritt (ω A), dann tritt auch B ein (ω B). Sei beispielsweise C := {(a, b), (b, b), (c, b), (d, b)} (Zweite Frage mit b beantwortet), dann gilt C B. Gilt A B =, so heißen A und B unvereinbar. Sei beispielsweise D := {(b, a), (b, b), (b, c), (b, d)} (Erste Frage mit b beantwortet), dann gilt A D =. 11

12 Das Ereignisfeld A wird nun aus genügend vielen Ereignissen gebildet, so dass alle obigen Operationen zwischen diesen Ereignissen ausführbar sind und außerdem Ω A (und damit auch A) gilt. Enthält Ω unendlich viele Elemente, so müssen die Forderungen noch ausgedehnt werden. 12

13 Wahrscheinlichkeiten Vorbetrachtung n malige Durchführung eines zufälligen Versuches und Zählen, wie häufig ein uns interessierendes Ereignis A eingetreten ist: absolute Häufigkeit: h n (A) relative Häufigkeit: f n (A) = 1 n h n(a) Erfahrung: Für große n stabilisieren sich die relativen Häufigkeiten. 13

14 Beispiel: Spiel: Gegen einen Einsatz von x EURO darf ein Spieler 6 mal eine Münze werfen und erhält so viele EURO, wie oft Wappen gefallen ist. Ω = {0, 1, 2, 3, 4, 5, 6} Spiel n mal wiederholen und die Häufigkeiten h n ({ω}) der einzelnen Auszahlungen beobachten. Welcher Preis x wäre fair? 14

15 Absolute Häufigkeiten Auszahlung

16 Relative Häufigkeiten

17 Eigenschaften der relativen Häufigkeit (1) 0 f n (A) 1 (2) f n (Ω) = 1 (Ω tritt immer ein) f n ( ) = 0 ( tritt nie ein) (3) Gilt A B = (d.h. A und B sind unvereinbar), dann gilt f n (A B) = f n (A) + f n (B) (4) f n (A B) = f n (A) + f n (B) f n (A B) (5) f n (Ā) = 1 f n(a) 17

18 Wahrscheinlichkeit Axiomsystem (Kolmogorov, 1933) Eine Abbildung P : A R heißt Wahrscheinlichkeit, wenn gilt: (1) 0 P (A) 1 für alle A A (2) P (Ω) = 1 (3) Wenn A B =, dann gilt P (A B) = P (A) + P (B) (Additivität) (Genauer muss das Axiom (3) auf eine beliebige Folge von unvereinbaren Ereignissen erweitert werden.) Wahrscheinlichkeiten können als Modell für die Chance des Eintretens von Ereignissen verstanden werden. 18

19 Aus den Axiomen folgen weitere wichtige Formeln: P ( ) = 0 P (A B) = P (A) + P (B) P (A B) P (Ā) = 1 P (A) P (A \ B) = P (A) P (A B) 19

20 Beispiel: Gegeben: P (A) = 0.7 P (B) = 0.4 P (A B) = 0.15 Dann gilt: P (A \ B) = = 0.55 P (B \ A) = = 0.25 P (A B) = =

21 Darstellung in Vierfeldertafel: B B A Ā

22 Symmetrische Wahrscheinlichkeitsräume Modell z.b. für das Würfeln, den Münzwurf, die Roulette, die Ziehung von Lottozahlen Ausgangspunkt: Es gibt keinen erkennbaren Grund, einem der möglichen Versuchsausgänge eine größere Wahrscheinlichkeit zuzuordnen als einem anderen. Sei Ω = {ω 1, ω 2,..., ω n }. Dann gibt es n mögliche Versuchsausgänge. Nehmen wir an, dass jeder Versuchsausgang ω i gleich wahrscheinlich ist, so folgt: P ({ω i }) = 1 n ( ) P (Ω) = P ({ω 1 }) + P ({ω 2 }) P ({ω n }) = n 1 n = 1 22

23 Für jedes Ereignis A A erhalten wir P (A) = i: ω i A P ({ω i }) = i: ω i A 1 n Also P (A) = Anzahl der ω i in A n = Anzahl der für A günstigen Fälle Anzahl aller möglichen Fälle Zur Bestimmung dieser Anzahlen sind häufig die Formeln der Kombinatorik hilfreich. 23

24 Unabhängigkeit [independence] Die Ereignisse A und B heißen unabhängig, wenn gilt: P (A B) = P (A) P (B) Beispiele: Vierfeldertafel (Vergleiche Kreuztabelle) B B A Ā

25 Exkurs: Bedingte Wahrscheinlichkeit [conditional probability] Seien A und B Ereignisse mit P (B) > 0. Dann heißt P (A B) := P (A B) P (B) die bedingte Wahrscheinlichkeit von A unter B. Sind A und B unabhängig, dann gilt P (A B) = P (A B) P (B) = P (A) P (B) P (B) = P (A) sowie P (B A) = P (B A) P (A) = P (B) P (A) P (A) = P (B) 25

26 Zweimaliges Würfeln: Ω = {(1, 1), (1, 2),..., (6, 6)} Wahrscheinlichkeit für zweimaliges Würfel einer 6: P ({(6, 6)}) = 1 36 Wahrscheinlichkeit, das erster Wurf eine 6 ist: P ({(6, 1),..., (6, 6)}) = 6 36 = 1 6 Wahrscheinlichkeit, das zweiter Wurf eine 6 ist: P ({(1, 6),..., (6, 6)}) = 6 36 = 1 6 Daraus folgt P ({(6, 1),..., (6, 6)} {(1, 6),..., (6, 6)}) = P ({(6, 1),..., (6, 6)}) P ({(1, 6),..., (6, 6)}) 26

27 Vergleich mit empirischer Unabhängigkeit in Kontingenztafeln: Interpretieren wir die beobachteten relativen Häufigkeiten als Schätzungen für die entsprechenden Wahrscheinlichkeiten (z.b. Wahrscheinlichkeit, zufällig einen Bewerber auszuwählen, der abgelehnt worden ist 1/3, einen vom naturwiss. Gym. 2/7), dann sollten sich bei Unabhängigkeit die relativen Häufigkeiten in der Nähe der Produkte dieser Wahrscheinlichkeiten ergeben und damit die zu erwartenden absoluten Häufigkeiten in der Nähe der Werte der Indifferenztabelle. 27

28 Die Definition der Unabhängigkeit harmoniert in vielen Fällen mit der üblichen Vorstellung; eine Gefahr für Fehlinterpretationen besteht z.b. bei einer Kopplung über eine dritte Einflussgröße. Zum Beispiel ist die Zahl der beobachteten Störche im Monat x mit der Anzahl der Geburten im Monat x über saisonale Schwankungen gekoppelt. Beobachtete Abhängigkeiten dürfen also nicht mit Kausalität verwechselt werden. 28

29 Bei mehr als zwei Ereignissen muss zwischen der (oben definierten) paarweisen Unabhängigkeit von jeweils zwei Ereignissen und der (vollständigen) Unabhängigkeit von mehr als zwei Ereignissen unterschieden werden. 29

30 Beispiel: Würfeln mit zwei Würfeln A... erster Würfel: gerade Zahl B... zweiter Würfel: gerade Zahl C... Summe der Augenzahlen ungerade P (A) = P (B) = P (C) = 1/2 P (A B) = P (A C) = P (B C) = 1/4 Daher liegt paarweise Unabhängig vor, aber es gilt P (A B C) = 0 1/2 1/2 1/2 = P (A)P (B)P (C) 30

1. Grundlagen der Wahrscheinlichkeitsrechnung

1. Grundlagen der Wahrscheinlichkeitsrechnung 1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer

Mehr

Teil II. Wahrscheinlichkeitsrechnung

Teil II. Wahrscheinlichkeitsrechnung Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2014) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Kapitel 2. Zufällige Versuche und zufällige Ereignisse. 2.1 Zufällige Versuche

Kapitel 2. Zufällige Versuche und zufällige Ereignisse. 2.1 Zufällige Versuche Kapitel 2 Zufällige Versuche und zufällige Ereignisse In diesem Kapitel führen wir zunächst anschaulich die grundlegenden Begriffe des zufälligen Versuchs und des zufälligen Ereignisses ein und stellen

Mehr

4. Die Laplacesche Gleichverteilung

4. Die Laplacesche Gleichverteilung Universität Basel Wirtschaftswissenschaftliches Zentrum Grundlagen der Stochastik Dr. Thomas Zehrt Inhalt: 1. Die Ereignismenge 2. Die Wahrscheinlichkeitsverteilung 3. Eigenschaften einer Wahrscheinlichkeitsverteilung

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung

Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung SS 16: Woche vom Übungsaufgaben 8. Übung SS 16: Woche vom 30. 5. 3.6. 2016 Stochastik II: Klassische Wkt.-Berechnung; Unabhängigkeit Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen Kapitel ML:IV IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-1 Statistical Learning c STEIN 2005-2011 Definition 1 (Zufallsexperiment,

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung

Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung Vorlesungscharts Vorlesung 1 Grundbegriffe der Wahrscheinlichkeitsrechnung Zufallsvorgänge und Zufallsereignisse Definitionen der Wahrscheinlichkeit Seite 1 von 11 Chart 1: Vorgänge deterministisch zufällig

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Motivation bisher: Beschreibung von Datensätzen = beobachteten Merkmalsausprägungen Frage: Sind Schlußfolgerungen aus diesen Beobachtungen möglich? Antwort: Ja, aber diese gelten nur mit einer bestimmten

Mehr

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Rumpfskript Elementare Wahrscheinlichkeitsrechnung Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Vorbemerkung Vorbemerkung Das vorliegende Skript heißt nicht nur Rumpf skript, sondern

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Wahrscheinlichkeit und Zufallsvorgänge Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

1. Experimente, zufällige Ereignisse

1. Experimente, zufällige Ereignisse KAPITEL I: EINFÜHRUNG 1. Experimente, zufällige Ereignisse Die Wahrscheinlichkeitstheorie gründet sich auf die Existenz des Zufalls. Die Frage nach dem Charakter des Zufalls beschäftigt seit langer Zeit

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58

Statistik Einführung // Wahrscheinlichkeitstheorie 3 p.2/58 Statistik Einführung Wahrscheinlichkeitstheorie Kapitel 3 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // Wahrscheinlichkeitstheorie

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 5 Hilfsmittel aus der Kombinatorik 7 Bedingte

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 9. Übung SS 16: Woche vom Übungsaufgaben 9. Übung SS 16: Woche vom 5. 6. 10. 6. 2016 Stochastik III: Totale Wkt., S.v.Bayes, Diskrete ZG Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/...

Mehr

Ein Ereignis ist eine Menge von Elementarereignissen. Berechnung von Wahrscheinlichkeiten zufälliger Ereignisse erfordert ein Modell.

Ein Ereignis ist eine Menge von Elementarereignissen. Berechnung von Wahrscheinlichkeiten zufälliger Ereignisse erfordert ein Modell. SS 2013 Prof. Dr. J. Schütze/ J.Puhl FB GW Wkt.1 1 Grundbegriffe Zufallsexperiment unter gleichen Bedingungen wiederholbarer Vorgang (geplant, gesteuert, beobachtet oder auch nur gedanklich) Menge der

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele UE Statistik, SS 05, letztes Update am 5. März 05 Übungsbeispiele Beispiele mit Musterlösungen finden Sie auch in dem Buch Brannath, W., Futschik, A., Krall, C., (00) Statistik im Studium der Wirtschaftswissenschaften..

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING)

Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Vorlesung 03.01.09 Stochastik Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Der Mathematikunterricht der Schule hat die Aufgabe, eine Grundbildung zu vermitteln, die auf ein mathematisches

Mehr

Überblick. Linguistische Anwendungen: æ Spracherkennung æ Textretrival æ probabilistische Grammatiken: z.b. Disambiguierung. Problem: woher Daten?

Überblick. Linguistische Anwendungen: æ Spracherkennung æ Textretrival æ probabilistische Grammatiken: z.b. Disambiguierung. Problem: woher Daten? 1 Überblick æ Beschreibende Statistik: Auswertung von Experimenten und Stichproben æ Wahrscheinlichkeitsrechnung: Schlüsse aus gegebenen Wahrscheinlichkeiten, Hilfsmittel: Kombinatorik æ Beurteilende Statistik:

Mehr

9. Elementare Wahrscheinlichkeitsrechnung

9. Elementare Wahrscheinlichkeitsrechnung 9. Elementare Wahrscheinlichkeitsrechnung Beispiel (Einmaliges Würfeln): verbal mengentheoretisch I. Zufällige Ereignisse Beispiel (Einmaliges Würfeln): Alle möglichen Ausgänge 1,,, 6 des Experiments werden

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3.1 Einführung Bsp. 19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω {zzz,zzw,zwz,wzz,zww,wzw,wwz,www}. Ω 2 3 8 N Wir definieren

Mehr

Grundwissen zur Stochastik

Grundwissen zur Stochastik Grundwissen zur Stochastik Inhalt: ABHÄNGIGE EREIGNISSE...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON ERGEBNISSEN...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON MERKMALEN IN VIERFELDERTAFELN...2 ABSOLUTE HÄUFIGKEIT...2

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Dozentin: Wiebke Petersen 8. Foliensatz Wiebke Petersen math. Grundlagen 1 Motivation Bsp.: In vielen Bereichen der CL kommt Wahrscheinlichkeitstheorie

Mehr

2. Zufallsvorgänge und Wahrscheinlichkeiten

2. Zufallsvorgänge und Wahrscheinlichkeiten 2. Zufallsvorgänge und Wahrscheinlichkeiten Ziel des Kapitels: Einführung elementarer Begriffe der Wahrscheinlichkeitsrechnung (definitorisch) Ziel der Wahrscheinlichkeitsrechnung: Modellierung von zufälligen

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Das Zweikinderproblem

Das Zweikinderproblem Das Zweikinderproblem Definition Zweikinderproblem Eine Familie besitzt zwei Kinder. Wie groß ist die Wahrscheinlichkeit Pr[ Beide Kinder sind Mädchen. Eines der Kinder ist ein Mädchen ]? Lösung: Sei A

Mehr

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Wahrscheinlichkeiten

Wahrscheinlichkeiten Wahrscheinlichkeiten Bestimmung der Wahrscheinlichkeit Bei einem Zufallsexperiment kann man nicht voraussagen, welches Ereignis eintritt, aber manche Ereignisse treten naturgemäß mit einer größeren Wahrscheinlichkeit

Mehr

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/174

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/174 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/174 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: srechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung 2/174

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassung vom 12. Januar 2001 121 WAHRSCHEINLICHKEITS-RÄUME Stichproben-Raum. 9.1 9.1 Stichproben-Raum. Die bisher behandelten Beispiele von Naturvorgängen oder Experimenten

Mehr

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man x / M. Man sagt, M ist Teilmenge von N und schreibt M N, wenn für jedes x M auch x N gilt.

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung. Semester Begleitendes Skriptum zur Vorlesung im FH-Masterstudiengang Technisches Management von Günther Karigl FH Campus Wien 206/7 Inhaltsverzeichnis. Semester: Wahrscheinlichkeitsrechnung

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten Zufallsvorgang: Geschehen mit ungewissem

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Wahrscheinlichkeitsrechnung Theorie Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem,

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

1 Wahrscheinlichkeitsrechnung und Zufallsvariablen

1 Wahrscheinlichkeitsrechnung und Zufallsvariablen 1 Wahrscheinlichkeitsrechnung und Zufallsvariablen Zoltán Zomotor Versionsstand: 18. Mai 2015, 09:29 Die nummerierten Felder bitte während der Vorlesung ausfüllen. This work is licensed under the Creative

Mehr

Dieser Begriff wurde von Jacob Bernoulli Ars conjectandi geprägt (1773), in dem das erste Gesetz der großen Zahlen bewiesen wurde.

Dieser Begriff wurde von Jacob Bernoulli Ars conjectandi geprägt (1773), in dem das erste Gesetz der großen Zahlen bewiesen wurde. 10.1 Über den Begriff Stochastik Die Wahrscheinlichkeitsrechnung ist eine Teildisziplin von Stochastik. Dabei kommt das Wort Stochastik aus dem Griechischen : die Kunst des Vermutens (von Vermutung, Ahnung,

Mehr

Institut für Biometrie und klinische Forschung. WiSe 2012/2013

Institut für Biometrie und klinische Forschung. WiSe 2012/2013 Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive

Mehr

Beschreibende Statistik

Beschreibende Statistik Beschreibende Aufgaben der beschreibenden : Erhebung von Daten Auswertung von Daten Darstellung von Daten Erhebung von Daten Bei der Erhebung von Daten geht es um die Erfassung von Merkmalen (Variablen)

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

Wahrscheinlichkeitsrechnung Teil 1

Wahrscheinlichkeitsrechnung Teil 1 Wahrscheinlichkeitsrechnung Teil Einführung in die Grundbegriffe Sekundarstufe Datei Nr 30 Stand September 2009 Friedrich W Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK wwwmathe-cdde Inhalt Zufallsexperimente,

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 21.02.2014 Holger Wuschke B.Sc. Glücksspiel auf der Buchmesse Leipzig, 2013 Organisatorisches 1. Begriffe in der Stochastik (1)

Mehr

Didaktik der Stochastik

Didaktik der Stochastik Didaktik der Stochastik. Didaktik der Stochastik Didaktik der Stochastik. Inhaltsverzeichnis Didaktik der Stochastik Ziele und Inhalte Beschreibende Statistik Wahrscheinlichkeitsrechnung Beurteilende Statistik

Mehr

KAPITEL 2. Kombinatorik

KAPITEL 2. Kombinatorik KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,

Mehr

Population und Stichprobe: Wahrscheinlichkeitstheorie

Population und Stichprobe: Wahrscheinlichkeitstheorie Population und Stichprobe: Wahrscheinlichkeitstheorie SS 2001 4. Sitzung vom 15.05.2001 Wahrscheinlichkeitstheorie in den Sozialwissenschaften: Stichprobenziehung: Aussagen über Stichprobenzusammensetzung

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

STATISTIK 1 - BEGLEITVERANSTALTUNG

STATISTIK 1 - BEGLEITVERANSTALTUNG STATISTIK 1 - BEGLEITVERANSTALTUNG VORLESUNG 2 - WAHRSCHEINLICHKEIT 28.11.2014 1 28.11.2014 1 Mona Ulrich, Psychologie (M.Sc.) AGENDA 01 WAS IST WAHRSCHEINLICHKEITSRECHNUNG? 02 THEOREME DER WAHRSCHEINLICHKEITSRECHNUNG

Mehr

Mathematik IV (Stochastik) für Informatiker

Mathematik IV (Stochastik) für Informatiker Bausteine zur Vorlesung von Prof. Dr. Bernd Hofmann Mathematik IV (Stochastik) für Informatiker Fakultät für Mathematik der Technischen Universität Chemnitz Sommersemester 2016 Dieser Text soll die Nacharbeit

Mehr

Übungsaufgaben, Statistik 1

Übungsaufgaben, Statistik 1 Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama

Mehr

1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments.

1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments. Übungsmaterial 1 1 Zufallsexperimente 1.1 Ergebnisräume einfacher Zufallsexperimente Damit ein Experiment ein Zufallsexperiment ist, müssen folgende Eigenschaften erfüllt sein: 1) Das Experiment lässt

Mehr

6 Wahrscheinlichkeitsrechnung

6 Wahrscheinlichkeitsrechnung 6 Wahrscheinlichkeitsrechnung 6.1 Grundbegriffe Ziel der Wahrscheinlichkeitsrechnung ist die Analyse einer stochastischen Situation. Grundlage ist die Modellierung von Zufallsvorgängen. Zwei Fragen: Was

Mehr

Laplace und Gleichverteilung

Laplace und Gleichverteilung Laplace und Gleichverteilung Aufgaben Aufgabe 1 An einem Computer, dessen Tastatur die 26 Tasten für die kleinen Buchstaben (a,b,c... z) hat, sitzt ein Nutzer (User) und tippt zufällige auf den Tasten

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Rainer Hauser Dezember 2012 1 Einleitung 1.1 Zufallsexperimente Im Folgenden wird das Resultat eines Experiments als Ereignis bezeichnet. Lässt man eine Metallkugel aus einer

Mehr

Übungen zur Wahrscheinlichkeitstheorie und Statistik

Übungen zur Wahrscheinlichkeitstheorie und Statistik Übungen zur Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank Blatt 0 vom 16. April 2012 Aufgabe 1 (Wahrscheinlichkeitsräume). Welche der folgenden Aussagen sind wahr? Begründen Sie jeweils

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 27. Oktober 2010 Teil III Wahrscheinlichkeitstheorie 1 Zufallsereignisse Vorüberlegungen Der Ereignisraum Konstruktionen

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 3. Wahrscheinlichkeit P (Probability) Literatur Kapitel 3 * Storrer: Kapitel 32-36 * Stahel: Kapitel 4 * Statistik in Cartoons: Kapitel 3 3.1

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie. Karin Haenelt

Grundbegriffe der Wahrscheinlichkeitstheorie. Karin Haenelt Grundbegriffe der Wahrscheinlichkeitstheorie Karin Haenelt 1 Inhalt Wahrscheinlichkeitsraum Bedingte Wahrscheinlichkeit Abhängige und unabhängige Ereignisse Stochastischer Prozess Markow-Kette 2 Wahrscheinlichkeitsraum

Mehr

Das Ziegenproblem. Nils Schwinning und Christian Schöler Juni 2010

Das Ziegenproblem. Nils Schwinning und Christian Schöler  Juni 2010 Das Ziegenproblem Nils Schwinning und Christian Schöler http://www.esaga.uni-due.de/ Juni 2010 Die Formulierung Obwohl das sogenannte Ziegenproblem in der Mathematik allgegenwärtig erscheint, wurde es

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

Aufgaben zum Wahrscheinlichkeitsrechnen

Aufgaben zum Wahrscheinlichkeitsrechnen 1.) Wie groß ist die Wahrscheinlichkeit, beim einmaligen Werfen mit einem Würfel keine 4 zu werfen? % 2.) Wie groß ist beim einmaligen Werfen von zwei verschieden farbigen Würfeln die Wahrscheinlichkeit,...

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung Kapitel 2: Auffrischung einiger mathematischer Grundlagen Mengen, Potenzmenge, Kreuzprodukt (Paare, Tripel, n-tupel) Relation: Teilmenge MxN Eigenschaften: reflexiv, symmetrisch, transitiv,

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Diskrete Strukturen WiSe 2012/13 in Trier

Diskrete Strukturen WiSe 2012/13 in Trier Diskrete Strukturen WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 11. Januar 2013 1 Diskrete Strukturen Gesamtübersicht Organisatorisches und Einführung Mengenlehre Relationen

Mehr

Diagnose. Statistische Diagnose. Statistische Diagnose. Statistische Diagnose. Einordnung: Diagnose Problemklasse Analyse

Diagnose. Statistische Diagnose. Statistische Diagnose. Statistische Diagnose. Einordnung: Diagnose Problemklasse Analyse Statistische Einordnung: Problemklasse Analyse Kernfrage bzgl. der Modellierung: Wieviel ist bekannt über das zu diagnostizierende System? Begriffe der : System. Ausschnitt aus der realen Welt. Hier: System

Mehr

1. Einleitung und Grundlagen der Wahrscheinlichkeit

1. Einleitung und Grundlagen der Wahrscheinlichkeit 1. Einleitung und Grundlagen der Wahrscheinlichkeit 1.1 Einleitung Deskriptive Statistik: llgemeine und spezielle Methoden zur Datenauswertung, die unabhängig von der Erhebungsart angewendet werden können

Mehr

3.3 Bedingte Wahrscheinlichkeit

3.3 Bedingte Wahrscheinlichkeit 28 3.3 Bedingte Wahrscheinlichkeit Oft ist die Wahrscheinlichkeit eines Ereignisses B gesucht unter der Bedingung (bzw. dem Wissen), dass ein Ereignis A bereits eingetreten ist. Man bezeichnet diese Wahrscheinlichkeit

Mehr

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben)

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben) Musterlösung zum. Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur Gruben. Wahrscheinlichkeiten I ( Punkte Die Seiten von zwei Würfeln sind mit den folgenden Zahlen

Mehr

6 Kombinatorik: Einschluß-Ausschluß Formel. 6.1 Indikatorfunktionen. I A ist eine Zufallsvariable E[I A ] = P (A) IĀ = 1 I A I A B = I A I B

6 Kombinatorik: Einschluß-Ausschluß Formel. 6.1 Indikatorfunktionen. I A ist eine Zufallsvariable E[I A ] = P (A) IĀ = 1 I A I A B = I A I B 6 Kombinatorik: Einschluß-Ausschluß Formel 6.1 Indikatorfunktionen I A (ω) = { 1 falls ω A 0 falls ω A I A ist eine Zufallsvariable E[I A ] = P (A) IĀ = 1 I A I A B = I A I B I 2 A = I A V ar[i A ] = P

Mehr

Kapitel 5. Stochastik

Kapitel 5. Stochastik 76 Kapitel 5 Stochastik In diesem Kapitel wollen wir die Grundzüge der Wahrscheinlichkeitstheorie behandeln. Wir beschränken uns dabei auf diskrete Wahrscheinlichkeitsräume Ω. Definition 5.1. Ein diskreter

Mehr