Beispiel: Multiples Modell/Omitted Variable Bias I

Größe: px
Ab Seite anzeigen:

Download "Beispiel: Multiples Modell/Omitted Variable Bias I"

Transkript

1 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias I Beispieldatensatz mit Daten zur Lohnhöhe (y i ), zu den Ausbildungsjahren über den Hauptschulabschluss hinaus (x 1i ) sowie zum Alter in Jahren (x 2i ) von n = 20 Mitarbeitern eines Betriebs: i Lohnhöhe y i Ausbildung x 1i Alter x 2i i Lohnhöhe y i Ausbildung x 1i Alter x 2i (vgl. von Auer, Ludwig: Ökonometrie Eine Einführung, 6. Aufl., Tabelle 13.1) Es soll nun angenommen werden, dass das multiple lineare Regressionsmodell y i = β 0 + β 1 x 1i + β 2 x 2i + u i, u i iid N(0, σ 2 ), i {1,..., 20}, mit den üblichen Annahmen korrekt spezifiziert ist. Ökonometrie (SS 2018) Folie 205

2 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias II Zunächst wird (fälschlicherweise!) die Variable Alter (x 2i ) weggelassen und die Lohnhöhe (y i ) nur mit der Variable Ausbildung (x 1i ) erklärt: Call: lm(formula = Lohnhöhe ~ Ausbildung) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-11 *** Ausbildung *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 18 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 1 and 18 DF, p-value: Ökonometrie (SS 2018) Folie 206

3 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias III Danach wird das korrekte, vollständige Modell geschätzt: Call: lm(formula = Lohnhöhe ~ Ausbildung + Alter) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-06 *** Ausbildung ** Alter * --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 17 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 2 and 17 DF, p-value: Ökonometrie (SS 2018) Folie 207

4 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias IV Geschätzte Regressionsebene mit Residuen Lohnhöhe y i Alter x 2i Ausbildung x 1i Ökonometrie (SS 2018) Folie 208

5 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias V Gegenüberstellung der Schätzergebnisse: falsches Modell korrektes Modell Absolutglied β σ β Ausbildung β σ β Alter β σ β û û SER R R Ökonometrie (SS 2018) Folie 209

6 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias VI Die Regressoren x 1i (Ausbildungsjahre) und x 2i (Alter) sind positiv korreliert, es gilt (mit den Bezeichnungen von Folie 191) genauer s 12 = bzw. s = = s11 s Außerdem hat der Regressor Alter (neben dem Regressor Ausbildung ) im korrekten Modell einen signifikanten Regressionskoeffizienten. Im Modell mit ausgelassener Variablen x 2i (Alter) spiegelt der geschätzte Koeffizient zum Regressor Ausbildung damit nicht den isolierten Effekt der Ausbildung wider, sondern einen kombinierten Effekt. Wie man zeigen (und im Beispiel leicht nachrechnen) kann, erhält man (analog zum Resultat von Folie 184) durch β 1 + s 12 β2 = = s aus den Schätzergebnissen des korrekten Modells den Punktschätzer für β 1 im falschen Modell mit ausgelassenem Regressor. Ökonometrie (SS 2018) Folie 210

7 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias VII Auch die Punkt- und Intervallschätzung von β 0 sowie Hypothesentests für die Regressionsparameter unterliegen im Modell mit ausgelassener Variablen vergleichbaren Verzerrungen. Geht man fälschlicherweise davon aus, die Annahmen des linearen Regressionsmodell im Modell mit ausgelassenem Regressor erfüllt und mit der Modellschätzung den isolierten Effekt des Regressors Ausbildung gemessen zu haben, so führt dies zu verzerrten Punktschätzern, verschobenen und in der Breite verzerrten Konfidenzintervallen sowie wertlosen Hypothesentests für den isolierten Effekt (da man tatsächlich einen kombinierten Effekt gemessen hat). Ökonometrie (SS 2018) Folie 211

8 4 Multiple lineare Regression Punkt- und Intervallprognosen 4.4 Punkt- und Intervallprognosen I Wie im einfachen linearen Regressionsmodell: Erweiterung der Modellannahme y i = β 0 + β 1 x 1i β K x Ki + u i, u i iid N(0, σ 2 ), i {1,..., n} auf (zumindest) einen weiteren Datenpunkt (y 0, x 10,..., x K0 ), bei dem jedoch y 0 nicht beobachtet wird, sondern lediglich die Werte der Regressoren x 10,..., x K0 bekannt sind. Ziel ist wiederum die Prognose von y 0 = β 0 + β 1 x β K x K0 + u 0 bzw. E(y 0 ) = β 0 + β 1 x β K x K0 auf Grundlage von x 10,..., x K0. Hierzu definiert man wie im einfachen linearen Modell mit ŷ 0 := β 0 + β 1 x β K x K0 bzw. Ê(y 0 ) := β 0 + β 1 x β K x K0 die (bedingte) Punktprognose ŷ 0 für y 0 gegeben x 10,..., x K0 bzw. die (bedingte) Punktprognose Ê(y 0) für E(y 0 ) gegeben x 10,..., x K0. Ökonometrie (SS 2018) Folie 212

9 4 Multiple lineare Regression Punkt- und Intervallprognosen 4.4 Punkt- und Intervallprognosen II Die Untersuchung der Eigenschaften der bedingten Punktprognosen vereinfacht sich durch die Definition des Vektors x 0 = [ 1 x 10 x K0, der (transponiert) analog zu einer Zeile der Regressormatrix X aufgebaut ist. Für die (bedingte) Punktprognose für y 0 bzw. E(y 0 ) gegeben x 0 erhält man so die kompakte Darstellung ŷ 0 = x 0 β bzw. Ê(y0 ) = x 0 β. Die Erwartungstreue der (bedingten) Punktprognosen ergibt sich damit unmittelbar aus der Erwartungstreue von β für β und E(u 0 ) = 0: E(x 0 β) = x0 E( β) = x 0 β = E(y 0 ) [ = E(E(y 0 )) Ökonometrie (SS 2018) Folie 213

10 4 Multiple lineare Regression Punkt- und Intervallprognosen 4.4 Punkt- und Intervallprognosen III Wie im einfachen linearen Modell resultiert der Prognosefehler e E := Ê(y 0) E(y 0 ) = x 0 β x0 β = x 0 ( β β) nur aus dem Fehler bei der Schätzung von β durch β, während e 0 := ŷ 0 y 0 = x 0 β (x0 β + u 0 ) = x 0 ( β β) u 0 zusätzlich die zufällige Schwankung von u 0 N(0, σ 2 ) enthält. Für die Varianz des Prognosefehlers e E erhält man (da E(Ê(y 0) E(y 0 )) = 0) σ 2 e E := Var(e E ) = Var(Ê(y 0) E(y 0 )) = E [[x 0 ( β β) 2 [ (!) = E (x 0 ( β β))(x 0 ( β β)) = E [x 0 ( β β)( β β) x 0 = x 0 V( β)x 0 = σ 2 x 0 (X X) 1 x 0. Ökonometrie (SS 2018) Folie 214

11 4 Multiple lineare Regression Punkt- und Intervallprognosen 4.4 Punkt- und Intervallprognosen IV Für die Varianz des Prognosefehlers e 0 erhält man (wegen E(ŷ 0 y 0 ) = 0, E( β β) = 0 und E(u 0 ) = 0) σe 2 0 := Var(e 0 ) = Var(ŷ 0 y 0 ) = E [[x 0 ( β β) u 0 2 [ = E [x 0 ( β β) 2 2x 0 ( β β)u 0 + u0 2 = E [[x 0 ( β β) 2 2x 0 E [( β β)u 0 } {{ } } {{ } =σ 2 x 0 (X X) 1 x 0 = σ 2 [ 1 + x 0 (X X) 1 x 0. =Cov( β β,u 0)=0 + E(u 2 0) }{{} =σ 2 Ökonometrie (SS 2018) Folie 215

12 4 Multiple lineare Regression Punkt- und Intervallprognosen 4.4 Punkt- und Intervallprognosen V Wegen der Linearität von ŷ 0 bzw. Ê(y 0) in β überträgt sich die Normalverteilungseigenschaft von β auf ŷ 0 bzw. Ê(y 0), es gilt also ŷ 0 N ( y 0, σ 2 e 0 ) bzw. Ê(y 0 ) N ( E(y 0 ), σ 2 e E ). Wie im einfachen linearen Regressionsmodell muss das unbekannte σ 2 durch σ 2 geschätzt werden, mit σ 2 e 0 := σ 2 [ 1 + x 0 (X X) 1 x 0 bzw. σ2 ee := σ 2 x 0 (X X) 1 x 0 erhält man mit σ e0 := σ2 e0 und σ ee := σ2 ee die Verteilungsaussagen ŷ 0 y 0 σ e0 t(n (K + 1)) bzw. Ê(y 0 ) E(y 0 ) σ ee t(n (K + 1)), aus denen sich Prognoseintervalle für y 0 und E(y 0 ) konstruieren lassen. Ökonometrie (SS 2018) Folie 216

13 4 Multiple lineare Regression Punkt- und Intervallprognosen 4.4 Punkt- und Intervallprognosen VI Intervallprognosen für y 0 zur Vertrauenswahrscheinlichkeit 1 α erhält man also in der Form [ ŷ 0 t n (K+1);1 α 2 σ e 0, ŷ 0 + t n (K+1);1 α 2 σ e 0 = [ x 0 β tn (K+1);1 α 2 σ 1+x 0 (X X) 1 x 0, x 0 β+tn (K+1);1 α 2 σ 1+x 0 (X X) 1 x 0 Intervallprognosen für E(y 0 ) zur Vertrauenswahrscheinlichkeit 1 α (auch interpretierbar als Konfidenzintervalle zum Konfidenzniveau 1 α für E(y 0 )) erhält man entsprechend in der Form [Ê(y0 ) t n (K+1);1 α 2 σ e E, Ê(y 0) + t n (K+1);1 α 2 σ e E = [ x 0 β tn (K+1);1 α 2 σ x 0 (X X) 1 x 0, x 0 β+tn (K+1);1 α 2 σ x 0 (X X) 1 x 0.. Ökonometrie (SS 2018) Folie 217

14 4 Multiple lineare Regression Punkt- und Intervallprognosen 4.4 Punkt- und Intervallprognosen VII Eine Punktprognose für die (erwartete) Lohnhöhe eines 38-jährigen Mitarbeiters, der nach dem Hauptschulabschluss weitere 4 Ausbildungsjahre absolviert hat, erhält man im geschätzten Modell aus Folie 207 mit x 0 = [ als ŷ 0 = Ê(y [ 0) = x 0 β = = Im Beispiel aus Folie 207 gilt weiterhin (X X) 1 = und σ = Ökonometrie (SS 2018) Folie 218

15 4 Multiple lineare Regression Punkt- und Intervallprognosen 4.4 Punkt- und Intervallprognosen VIII Mit x 0 (X X) 1 x 0 = [ = erhält man weiter σ e0 = σ 1 + x 0 (X X) 1 x 0 = = und σ ee = σ x 0 (X X) 1 x 0 = = Ökonometrie (SS 2018) Folie 219

16 4 Multiple lineare Regression Punkt- und Intervallprognosen 4.4 Punkt- und Intervallprognosen IX Insgesamt erhält man für α = 0.05 schließlich das Prognoseintervall [ ŷ 0 t 20 (2+1); σ e0, ŷ t 20 (2+1); σ e0 2 = [ŷ 0 t 17;0.975 σ e0, ŷ 0 + t 17;0.975 σ e0 = [ , = [ , zur Vertrauenswahrscheinlichkeit 1 α = 0.95 für y 0 gegeben x 10 = 4 und x 20 = 38. Entsprechend erhält man für α = 0.05 das Prognoseintervall σ ee [Ê(y0 ) t 20 (2+1); σ ee, Ê(y 0) + t 20 (2+1); = [ , = [ , zur Vertrauenswahrscheinlichkeit 1 α = 0.95 für E(y 0 ) gegeben x 10 = 4 und x 20 = 38. Ökonometrie (SS 2018) Folie 220

17 4 Multiple lineare Regression Tests einzelner linearer Hypothesen 4.5 Tests einzelner linearer Hypothesen I Neben Tests für einzelne Regressionsparameter sind auch Tests (und Konfidenzintervalle) für Linearkombinationen von Regressionsparametern problemlos möglich. Bei Vorliegen der Normalverteilungseigenschaft u i iid N(0, σ 2 ) bzw. u N(0, σ 2 I n ) gilt bekanntlich β N ( β, σ 2 (X X) 1), und auch ohne Normalverteilungsannahme an die u i ist die approximative Verwendung einer (mehrdimensionalen) Normalverteilung für β oft sinnvoll. Damit gilt allerdings nicht nur β k N(β k, σ 2 ) bzw. β k N(βk, σ 2 ) für k {0,..., K}, sondern darüberhinaus, dass jede beliebige Linearkombination der Koeffizientenschätzer β 0, β 1,..., β K (näherungsweise) normalverteilt ist. Ökonometrie (SS 2018) Folie 221

18 4 Multiple lineare Regression Tests einzelner linearer Hypothesen 4.5 Tests einzelner linearer Hypothesen II Tests über einzelne Linearkombinationen von Regressionsparametern lassen sich mit Hilfe von K + 1 Koeffizienten a 0, a 1,..., a K R für die Parameter β 0, β 1,..., β K sowie einem Skalar c R in den Varianten H 0 : H 1 : K a k β k = c H 0 : k=0 K a k β k c H 0 : k=0 K a k β k c vs. vs. vs. K a k β k c K H 1 : a k β k > c K H 1 : a k β k < c k=0 k=0 bzw. in vektorieller Schreibweise mit a := [ a 0 a 1 a K als H 0 : a β = c H 0 : a β c H 0 : a β c k=0 k=0 vs. vs. vs. H 1 : a β c H 1 : a β > c H 1 : a β < c formulieren. Ökonometrie (SS 2018) Folie 222

19 4 Multiple lineare Regression Tests einzelner linearer Hypothesen 4.5 Tests einzelner linearer Hypothesen III Mit den bekannten Rechenregeln für die Momente von Linearkombinationen eines Zufallsvektors (vgl. Folie 50) erhält man zunächst a β N ( a β, σ 2 a (X X) 1 a ) bzw. a β N ( a β, σ 2 a (X X) 1 a ). Ersetzt man die unbekannte Störgrößenvarianz σ 2 wie üblich durch den (erwartungstreuen) Schätzer σ 2, so erhält man die Verteilungsaussage a β a β σ a (X X) 1 a t(n (K + 1)) bzw. a β a β σ t(n (K +1)), a (X X) 1 a woraus sich in gewohnter Weise Konfidenzintervalle und Tests konstruieren lassen. Ökonometrie (SS 2018) Folie 223

20 4 Multiple lineare Regression Tests einzelner linearer Hypothesen 4.5 Zusammenfassung: t-test für einzelne lineare Hypothesen im multiplen linearen Regressionsmodell Anwendungs- exakt: y = Xβ + u mit u N(0, σ 2 I n), voraussetzungen approx.: y = Xβ + u mit E(u) = 0, V(u) = σ 2 I n, σ 2 unbekannt, X deterministisch mit vollem Spaltenrang K + 1, Realisation y = (y 1,..., y n) beobachtet Nullhypothese H 0 : a β = c H 0 : a β c H 0 : a β c Gegenhypothese H 1 : a β c H 1 : a β > c H 1 : a β < c Teststatistik a β c t = σ a (X X) 1 a Verteilung (H 0) t für a β = c (näherungsweise) t(n (K + 1))-verteilt Benötigte Größen β = (X X) 1 X y, σ 2 = û û, wobei û = y X β n (K + 1) Kritischer Bereich (, t n (K+1);1 α 2 ) (t n (K+1);1 α, ) (, t n (K+1);1 α ) zum Niveau α (t n (K+1);1 α 2, ) p-wert 2 (1 F t(n (K+1)) ( t )) 1 F t(n (K+1)) (t) F t(n (K+1)) (t) Ökonometrie (SS 2018) Folie 224

Beispiel: Multiples Modell/Omitted Variable Bias I

Beispiel: Multiples Modell/Omitted Variable Bias I 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias I Beispieldatensatz mit Daten zur Lohnhöhe (y i ), zu den Ausbildungsjahren über den Hauptschulabschluss

Mehr

Tests einzelner linearer Hypothesen I

Tests einzelner linearer Hypothesen I 4 Multiple lineare Regression Tests einzelner linearer Hypothesen 4.5 Tests einzelner linearer Hypothesen I Neben Tests für einzelne Regressionsparameter sind auch Tests (und Konfidenzintervalle) für Linearkombinationen

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 3.6 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Konfidenz-, Prognoseintervalle und Hypothesentests IV im multiplen linearen Regressionsmodell mit heteroskedastischen Störgrößen

Konfidenz-, Prognoseintervalle und Hypothesentests IV im multiplen linearen Regressionsmodell mit heteroskedastischen Störgrößen 4 Multiple lineare Regression Heteroskedastische Störgrößen 4.10 Konfidenz-, Prognoseintervalle und Hypothesentests IV im multiplen linearen Regressionsmodell mit heteroskedastischen Störgrößen Ein approximatives

Mehr

Prognoseintervalle für y 0 gegeben x 0

Prognoseintervalle für y 0 gegeben x 0 10 Lineare Regression Punkt- und Intervallprognosen 10.5 Prognoseintervalle für y 0 gegeben x 0 Intervallprognosen für y 0 zur Vertrauenswahrscheinlichkeit 1 α erhält man also analog zu den Intervallprognosen

Mehr

Konfidenz-, Prognoseintervalle und Hypothesentests II bei heteroskedastischen Störgrößen

Konfidenz-, Prognoseintervalle und Hypothesentests II bei heteroskedastischen Störgrößen Konfidenz-, Prognoseintervalle und Hypothesentests II bei heteroskedastischen Störgrößen Achtung! Bei der Verwendung von heteroskedastie-konsistenten Schätzern für V( β) muss unbedingt darauf geachtet

Mehr

Schätzung im multiplen linearen Modell VI

Schätzung im multiplen linearen Modell VI Schätzung im multiplen linearen Modell VI Wie im einfachen linearen Regressionsmodell definiert man zu den KQ/OLS-geschätzten Parametern β = ( β 0, β 1,..., β K ) mit ŷ i := β 0 + β 1 x 1i +... β K x Ki,

Mehr

Zusammenfassung: Einfache lineare Regression I

Zusammenfassung: Einfache lineare Regression I 4 Multiple lineare Regression Multiples lineares Modell 41 Zusammenfassung: Einfache lineare Regression I Bisher: Annahme der Gültigkeit eines einfachen linearen Modells y i = β 0 + β 1 x i + u i, i {1,,

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Breusch-Pagan-Test I Ein weiterer Test ist der Breusch-Pagan-Test. Im Gegensatz zum Goldfeld-Quandt-Test ist es nicht erforderlich, eine (einzelne) Quelle der Heteroskedastizität anzugeben bzw. zu vermuten.

Mehr

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie WS 2014/15. ( = 57 Punkte)

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie WS 2014/15. ( = 57 Punkte) Aufgabe 3 (6 + 4 + 8 + 4 + 10 + 4 + 9 + 4 + 8 = 57 Punkte) Hinweis: Beachten Sie die Tabellen mit Quantilen am Ende der Aufgabenstellung! Mit Hilfe eines multiplen linearen Regressionsmodells soll auf

Mehr

4 Multiple lineare Regression Multikollinearität 4.9

4 Multiple lineare Regression Multikollinearität 4.9 Multikollinearität Erinnerung: Unter der (gemäß Modellannahmen ausgeschlossenen) perfekten Multikollinearität versteht man eine perfekte lineare Abhängigkeit unter den Regressoren (einschließlich des Absolutglieds

Mehr

4 Multiple lineare Regression Multikollinearität 4.9

4 Multiple lineare Regression Multikollinearität 4.9 Multikollinearität Erinnerung: Unter der (gemäß Modellannahmen ausgeschlossenen) perfekten Multikollinearität versteht man eine perfekte lineare Abhängigkeit unter den Regressoren (einschließlich des Absolutglieds

Mehr

Perfekte Multikollinearität III. Multikollinearität

Perfekte Multikollinearität III. Multikollinearität Multikollinearität Perfekte Multikollinearität I Erinnerung: Unter der (gemäß Modellannahmen ausgeschlossenen) perfekten Multikollinearität versteht man eine perfekte lineare Abhängigkeit unter den Regressoren

Mehr

Perfekte Multikollinearität III. Multikollinearität

Perfekte Multikollinearität III. Multikollinearität Multikollinearität Perfekte Multikollinearität I Erinnerung: Unter der (gemäß Modellannahmen ausgeschlossenen) perfekten Multikollinearität versteht man eine perfekte lineare Abhängigkeit unter den Regressoren

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Ein weiterer Test auf Heteroskedastie in den Störgrößen ist der Breusch-Pagan-Test. Im Gegensatz zum Goldfeld-Quandt-Test ist es nicht erforderlich,

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen 4 Multiple lineare Regression Tests auf Heteroskedastie 4.11 Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Ein weiterer Test auf Heteroskedastie in den Störgrößen ist der Breusch-Pagan-Test.

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen 4 Multiple lineare Regression Tests auf Heteroskedastie 4.11 Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Ein weiterer Test auf Heteroskedastie in den Störgrößen ist der Breusch-Pagan-Test.

Mehr

Lean Body Mass [kg] Estimate Std. Error t value Pr(> t ) (Intercept) ??? lbm <2e-16 ***

Lean Body Mass [kg] Estimate Std. Error t value Pr(> t ) (Intercept) ??? lbm <2e-16 *** Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden

Mehr

Auswertung und Lösung

Auswertung und Lösung Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Schließende Statistik Sommersemester Namensschild. Dr.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Schließende Statistik Sommersemester Namensschild. Dr. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Schließende Statistik Sommersemester 2013 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer ˆ Kleben Sie bitte sofort Ihr Namensschild

Mehr

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie WS 2017/18. ( = 58 Punkte)

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie WS 2017/18. ( = 58 Punkte) Aufgabe 3 (14 + 2 + 7 + 7 + 3 + 5 + 9 + 11 = 58 Punkte) Hinweis: Beachten Sie die Tabellen mit Quantilen am Ende der Aufgabenstellung! Mit Hilfe der Statistiksoftware R soll der Datensatz HousePrices aus

Mehr

11. Übungsblatt zur Vorlesung Ökonometrie SS 2014

11. Übungsblatt zur Vorlesung Ökonometrie SS 2014 Universität des Saarlandes Lehrstab Statistik Dr. Martin Becker Dipl.-Kfm. Andreas Recktenwald 11. Übungsblatt zur Vorlesung Ökonometrie SS 2014 Aufgabe 45 Die in Aufgabe 43 getroffene Annahme heteroskedastischer

Mehr

2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme)

2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme) 2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme) Annahme A1: Im multiplen Regressionsmodell fehlen keine relevanten exogenen Variablen und die benutzten exogenen Variablen x 1,

Mehr

7.1 Korrelationsanalyse. Statistik. Kovarianz. Pearson-Korrelation. Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien

7.1 Korrelationsanalyse. Statistik. Kovarianz. Pearson-Korrelation. Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Statistik 7.1 Korrelationsanalyse Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Sommersemester 2012 7 Regressions- und Korrelationsanalyse Kovarianz Pearson-Korrelation Der (lineare)

Mehr

Dr. M. Kalisch. Statistik (für Biol./Pharm. Wiss.) Winter Musterlösung

Dr. M. Kalisch. Statistik (für Biol./Pharm. Wiss.) Winter Musterlösung Dr. M. Kalisch. Statistik (für Biol./Pharm. Wiss.) Winter 2014 Musterlösung 1. (11 Punkte) a) Für welchen Parameter ist X ein geeigneter Schätzer? X ist ein geeigneter Schätzer für den Erwartungswert µ

Mehr

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie SS 2018

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie SS 2018 Aufgabe 3 (15 + 1 + 7 + 7 + 7 + 5 = 42 Punkte) Hinweis: Beachten Sie die Tabellen mit Quantilen am Ende der Aufgabenstellung! Mit Hilfe der Statistiksoftware R soll der Datensatz HousePrices aus dem Paket

Mehr

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie SS ( = 57 Punkte)

Aufgabensammlung (Nicht-MC-Aufgaben) Klausur Ökonometrie SS ( = 57 Punkte) Aufgabe 3 (9 + 5 + 7 + 7 + 3 + 9 + 7 + 10 = 57 Punkte) Hinweis: Beachten Sie die Tabellen mit Quantilen am Ende der Aufgabenstellung! Zu Beginn der Studienjahre 2011 und 2012 wurden Studienanfänger an

Mehr

Teil XIII. Multiple lineare Regression. Woche 11: Multiple lineare Regression. Zusammenfassung Einfache lineare Regression.

Teil XIII. Multiple lineare Regression. Woche 11: Multiple lineare Regression. Zusammenfassung Einfache lineare Regression. Woche 11: Multiple lineare Regression Patric Müller Teil XIII Multiple lineare Regression ETHZ WBL 17/19, 10.07.017 Wahrscheinlichkeit und Statistik Patric Müller WBL

Mehr

Schweizer Statistiktage, Aarau, 18. Nov. 2004

Schweizer Statistiktage, Aarau, 18. Nov. 2004 Schweizer Statistiktage, Aarau, 18. Nov. 2004 Qualitative Überprüfung der Modellannahmen in der linearen Regressionsrechnung am Beispiel der Untersuchung der Alterssterblichkeit bei Hitzeperioden in der

Mehr

Einführung in die Induktive Statistik: Regressionsanalyse

Einführung in die Induktive Statistik: Regressionsanalyse Einführung in die Induktive Statistik: Regressionsanalyse Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Regressionsanalyse Ziel: Analyse

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Schließende Statistik Wintersemester 2012/13. Namensschild. Dr.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Schließende Statistik Wintersemester 2012/13. Namensschild. Dr. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Schließende Statistik Wintersemester 2012/13 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer ˆ Kleben Sie bitte sofort Ihr Namensschild

Mehr

Multiple Regression III

Multiple Regression III Multiple Regression III Werner Brannath VO Biostatistik im WS 2006/2007 Inhalt Überprüfung der Modellannahmen Residuen-Plot Normal-Q-Q-Plot Cook s Distanz-Plot Maßnahmen bei Abweichungen von Modellannahmen

Mehr

Fragen. Einführung in die induktive Statistik. Übersicht. Lineare Einfachregression

Fragen. Einführung in die induktive Statistik. Übersicht. Lineare Einfachregression Fragen Welche Unsicherheitsfaktoren beeinflussen die Schätzung einer Regressionsgeraden? Einführung in die induktive Statistik Friedrich Leisch Institut für Statistik Ludwig-Maximilians-Universität München

Mehr

Wirtschaftswissenschaftliches Prüfungsamt

Wirtschaftswissenschaftliches Prüfungsamt Wirtschaftswissenschaftliches Prüfungsamt Master of Economics, Finance and Philosophy Diplomprüfung Econometric Methods and Applications Wintersemester 2011/12 22. Februar 2012 Prof. Dr. Ralph Friedmann

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Lineare Regression in R, Teil 1

Lineare Regression in R, Teil 1 Lineare Regression in R, Teil 1 Christian Kleiber Abt. Quantitative Methoden, WWZ, Universität Basel October 6, 2009 1 Vorbereitungen Zur Illustration betrachten wir wieder den Datensatz CASchools aus

Mehr

Schriftliche Prüfung (90 Minuten)

Schriftliche Prüfung (90 Minuten) Dr. M. Kalisch. Statistik (für Biol./Pharm. Wiss.) Winter 2014 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016

Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016 ETH Zürich D-USYS Institut für Agrarwissenschaften Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016 Peter von Rohr Datum 30. Mai 2016 Beginn 08:00 Uhr Ende 08:45

Mehr

Aufgabenstellung und Ergebnisse zur. Bachelor-Prüfung Schließende Statistik Wintersemester 2017/18. Dr. Martin Becker

Aufgabenstellung und Ergebnisse zur. Bachelor-Prüfung Schließende Statistik Wintersemester 2017/18. Dr. Martin Becker Aufgabenstellung und Ergebnisse zur Bachelor-Prüfung Schließende Statistik Wintersemester 2017/18 Dr. Martin Becker Hinweise für die Klausurteilnehmer Die Klausur besteht aus insgesamt 9 Aufgaben. Prüfen

Mehr

Interpretation von Testergebnissen I

Interpretation von Testergebnissen I 2 Wiederholung statistischer Grundlagen Schließende Statistik 2.3 Interpretation von Testergebnissen I Durch die Asymmetrie in den Fehlerwahrscheinlichkeiten 1. und 2. Art ist Vorsicht bei der Interpretation

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Schließende Statistik Sommersemester Namensschild. Dr.

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Schließende Statistik Sommersemester Namensschild. Dr. Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Schließende Statistik Sommersemester 2011 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer ˆ Kleben Sie bitte sofort Ihr

Mehr

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS)

Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS) Lineare Regressionen mit R (Ökonometrie SS 2014 an der UdS) Es soll untersucht werden, ob und wie sich Rauchen während der Schwangerschaft auf den Gesundheitszustand des Neugeborenen auswirkt. Hierzu werden

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Bachelorprüfung: Statistik (1 Stunde)

Bachelorprüfung: Statistik (1 Stunde) Prof. H.R. Künsch D-BIOL, D-CHAB Winter 2010 Bachelorprüfung: Statistik (1 Stunde) Bemerkungen: Es sind alle mitgebrachten schriftlichen Hilfsmittel und der Taschenrechner erlaubt. Natels sind auszuschalten!

Mehr

Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10

Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10 6 Hypothesentests Gauß-Test für den Mittelwert bei bekannter Varianz 6.3 Beispiel für Gütefunktionen Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = 0.10 G(µ) 0 α 0. 0.4 0.6 0.8 1 n = 10 n =

Mehr

x t2 y t = 160, y = 8, y y = 3400 t=1

x t2 y t = 160, y = 8, y y = 3400 t=1 Aufgabe 1 (25 Punkte) 1. Eine Online Druckerei möchte die Abhängigkeit des Absatzes gedruckter Fotos vom Preis untersuchen. Dazu verwendet die Firma das folgende lineare Regressionsmodell: wobei y t =

Mehr

Statistik II für Betriebswirte Vorlesung 8

Statistik II für Betriebswirte Vorlesung 8 Statistik II für Betriebswirte Vorlesung 8 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 3. Dezember 2018 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 8 Version:

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

WIRTSCHAFTSWISSENSCHAFTLICHES PRÜFUNGSSEKRETARIAT DER RECHTS- UND WIRTSCHAFTSWISSENSCHAFTLICHEN FAKULTÄT DER UNIVERSITÄT DES SAARLANDES

WIRTSCHAFTSWISSENSCHAFTLICHES PRÜFUNGSSEKRETARIAT DER RECHTS- UND WIRTSCHAFTSWISSENSCHAFTLICHEN FAKULTÄT DER UNIVERSITÄT DES SAARLANDES WIRTSCHAFTSWISSENSCHAFTLICHES PRÜFUNGSSEKRETARIAT DER RECHTS- UND WIRTSCHAFTSWISSENSCHAFTLICHEN FAKULTÄT DER UNIVERSITÄT DES SAARLANDES Von der/dem Studierenden auszufüllen (Bitte leserlich und in Blockschrift):

Mehr

Schriftliche Prüfung (2 Stunden)

Schriftliche Prüfung (2 Stunden) Prüfung Statistik Winter 2013 Schriftliche Prüfung (2 Stunden) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten! Lesen Sie zuerst alle Aufgaben

Mehr

Teekonsum in den USA (in 1000 Tonnen), Nimmt den Wert 1 an für alle Perioden, Durchschnittlicher Preis des Tees in Periode t (in Tausend $/Tonne).

Teekonsum in den USA (in 1000 Tonnen), Nimmt den Wert 1 an für alle Perioden, Durchschnittlicher Preis des Tees in Periode t (in Tausend $/Tonne). Aufgabe 1 (5 Punkte) Gegeben sei ein lineares Regressionsmodell in der Form. Dabei ist y t = x t1 β 1 + x t β + e t, t = 1,..., 10 (1) y t : x t1 : x t : Teekonsum in den USA (in 1000 Tonnen), Nimmt den

Mehr

Musterlösung zu Serie 1

Musterlösung zu Serie 1 Prof. Dr. W. Stahel Regression HS 2015 Musterlösung zu Serie 1 1. a) > d.bv plot(blei ~ verkehr, data = d.bv, main

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

WIRTSCHAFTSWISSENSCHAFTLICHES PRÜFUNGSSEKRETARIAT

WIRTSCHAFTSWISSENSCHAFTLICHES PRÜFUNGSSEKRETARIAT WIRTSCHAFTSWISSENSCHAFTLICHES PRÜFUNGSSEKRETARIAT ER NIVERSITÄT ES AARLANDES Von der/dem Studierenden auszufüllen (Bitte leserlich und in Blockschrift): Schließende Statistik Name der Prüfung: Semester,

Mehr

Multiple lineare Regression

Multiple lineare Regression Multiple lineare Regression Bisher eine Einflußgröße X 1 (und der Achsenabschnitt). Dagegen das Modell der multiplen Regression Y = β 0 X 0 + β 1 X 1 +... + β p X p + ε mit p Einflußgrößen und dem Achsenabschnitt.

Mehr

Einleitung. Statistik. Bsp: Ertrag Weizen. 6.1 Einfache Varianzanalyse

Einleitung. Statistik. Bsp: Ertrag Weizen. 6.1 Einfache Varianzanalyse Einleitung Statistik Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Der Begriff Varianzanalyse (analysis of variance, ANOVA) taucht an vielen Stellen in der Statistik mit unterschiedlichen

Mehr

3. Das einfache lineare Regressionsmodell

3. Das einfache lineare Regressionsmodell 3. Das einfache lineare Regressionsmodell Ökonometrie: (I) Anwendung statistischer Methoden in der empirischen Forschung in den Wirtschaftswissenschaften Konfrontation ökonomischer Theorien mit Fakten

Mehr

Varianzkomponentenschätzung

Varianzkomponentenschätzung Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler

Mehr

t-differenzentest bei verbundener Stichprobe

t-differenzentest bei verbundener Stichprobe 9 Mittelwert- und Varianzvergleiche Mittelwertvergleiche Nächste Anwendung: Vergleich der Mittelwerte zweier normalverteilter Zufallsvariablen Y A und Y B 1 auf derselben Grundgesamtheit durch Beobachtung

Mehr

WIRTSCHAFTSWISSENSCHAFTLICHES PRÜFUNGSSEKRETARIAT

WIRTSCHAFTSWISSENSCHAFTLICHES PRÜFUNGSSEKRETARIAT WIRTSCHAFTSWISSENSCHAFTLICHES PRÜFUNGSSEKRETARIAT ER NIVERSITÄT ES AARLANDES Von der/dem Studierenden auszufüllen (Bitte leserlich und in Blockschrift): Schließende Statistik Name der Prüfung: Semester,

Mehr

Lineare Modelle in R: Klassische lineare Regression

Lineare Modelle in R: Klassische lineare Regression Lineare Modelle in R: Klassische lineare Regression Achim Zeileis 2009-02-20 1 Das Modell Das klassische lineare Regressionsmodell versucht den Zusammenhang zwischen einer abhängigen Variablen (oder Responsevariablen)

Mehr

Schriftliche Prüfung (2 Stunden)

Schriftliche Prüfung (2 Stunden) Prof. Peter Bühlmann Mathematik IV: Statistik Sommer 2013 Schriftliche Prüfung (2 Stunden) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

Schriftliche Prüfung (90 Minuten)

Schriftliche Prüfung (90 Minuten) Dr. M. Kalisch Prüfung Statistik I Winter 2016 Schriftliche Prüfung (90 Minuten) Bemerkungen: Erlaubte Hilfsmittel: 10 hand- oder maschinengeschriebene A4 Seiten (=5 Blätter). Taschenrechner ohne Kommunikationsmöglichkeit.

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

Tutorial: Regression Output von R

Tutorial: Regression Output von R Tutorial: Regression Output von R Eine Firma erzeugt Autositze. Ihr Chef ist besorgt über die Anzahl und die Kosten von Maschinenausfällen. Das Problem ist, dass die Maschinen schon alt sind und deswegen

Mehr

Biostatistik 101 Korrelation - Regressionsanalysen

Biostatistik 101 Korrelation - Regressionsanalysen Good Data don't need statistics Biostatistik 101 Korrelation - Regressionsanalysen Carl Herrmann IPMB Uni Heidelberg & DKFZ B080 carl.herrmann@uni-heidelberg.de Korrelation Sind Alter und Blutdruck miteinander

Mehr

Empirische Wirtschaftsforschung in R

Empirische Wirtschaftsforschung in R Empirische Wirtschaftsforschung in R Schätzung der keynesianischen Geldnachfragefunktion auf Basis von Daten der dänischen Volkswirtschaft Jonas Richter-Dumke Universität Rostock, Institut für Volkswirtschaftslehre

Mehr

Marcel Dettling. Grundlagen der Mathematik II FS 2015 Woche 14. ETH Zürich, 27. Mai Institut für Datenanalyse und Prozessdesign

Marcel Dettling. Grundlagen der Mathematik II FS 2015 Woche 14. ETH Zürich, 27. Mai Institut für Datenanalyse und Prozessdesign Marcel Dettling Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling ETH Zürich, 7. Mai 015 1 Regression Beispiel:

Mehr

Schriftliche Prüfung (1 Stunde)

Schriftliche Prüfung (1 Stunde) Prüfung Statistik Herbstsemester 2011 Schriftliche Prüfung (1 Stunde) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten! Lesen Sie zuerst

Mehr

Aufgabe 35 mit R (Ökonometrie SS 2014 an der UdS)

Aufgabe 35 mit R (Ökonometrie SS 2014 an der UdS) Vorbereitungen Aufgabe 35 mit R (Ökonometrie SS 2014 an der UdS) Falls das R - Paket car noch nicht installiert wurde, kann dies mit der Funktion install.packages() erledigt werden. install.packages("car")

Mehr

Züchtungslehre - Lösung 3

Züchtungslehre - Lösung 3 Züchtungslehre - Lösung 3 Peter von Rohr October 20, 2015 Aufgabe 1 (8) Der in dieser Aufgabe verwendete Datensatz unter http://charlotte-ngs.github.io/livestockbreedingandgenomics/w5/simgenphen.csv umfasst

Mehr

Musterlösung. Kind Blume (beredet) Blume (nicht beredet)

Musterlösung. Kind Blume (beredet) Blume (nicht beredet) Prüfung Statistik Sommer 2012 Musterlösung 1. (9 Punkte) F. Lauer möchte das Gerücht überprüfen, dass Blumen schneller wachsen, wenn man mit ihnen redet. Daher kauft sie acht identische Blumenzwiebeln,

Mehr

Bachelorprüfung: Mathematik 4 - Statistik (2 Stunden)

Bachelorprüfung: Mathematik 4 - Statistik (2 Stunden) Prof. P. Bühlmann D-UWIS, D-ERDW, D-AGRL Frühling 2007 Bachelorprüfung: Mathematik 4 - Statistik (2 Stunden) Bemerkungen: Es sind alle mitgebrachten schriftlichen Hilfsmittel und der Taschenrechner erlaubt.

Mehr

Schriftliche Prüfung (90 Minuten)

Schriftliche Prüfung (90 Minuten) Dr. M. Kalisch Probeprüfung Statistik 1 Sommer 2014 Schriftliche Prüfung (90 Minuten) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

Schriftliche Prüfung (90 Minuten)

Schriftliche Prüfung (90 Minuten) Dr. M. Kalisch Prüfung Statistik I Sommer 2015 Schriftliche Prüfung (90 Minuten) Bemerkungen: Erlaubte Hilfsmittel: 10 hand- oder maschinengeschriebene A4 Seiten (=5 Blätter). Taschenrechner ohne Kommunikationsmöglichkeit.

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode?

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode? Aufgabe 1 (25 Punkte) Zur Schätzung der Produktionsfunktion des Unternehmens WV wird ein lineares Regressionsmodell der Form angenommen. Dabei ist y t = β 1 + x t2 β 2 + e t, t = 1,..., T (1) y t : x t2

Mehr

Goethe-Universität Frankfurt

Goethe-Universität Frankfurt Goethe-Universität Frankfurt Fachbereich Wirtschaftswissenschaft PD Dr. Martin Biewen Dr. Ralf Wilke Sommersemester 2006 Klausur Statistik II 1. Alle Aufgaben sind zu beantworten. 2. Bitte runden Sie Ihre

Mehr

OLS-Schätzung: asymptotische Eigenschaften

OLS-Schätzung: asymptotische Eigenschaften OLS-Schätzung: asymptotische Eigenschaften Stichwörter: Konvergenz in Wahrscheinlichkeit Konvergenz in Verteilung Konsistenz asymptotische Verteilungen nicht-normalverteilte Störgrößen zufällige Regressoren

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

> r.lm < lm(log10(ersch) log10(dist), > summary(r.lm) > r.lms < summary(r.lm) R-Funktionen zur linearen Regression. data = d.

> r.lm < lm(log10(ersch) log10(dist), > summary(r.lm) > r.lms < summary(r.lm) R-Funktionen zur linearen Regression. data = d. 3.4 S-Funktionen 75 R-Funktionen zur linearen Regression a Im package stat (immer vorhanden): lm > r.lm < lm(log10(ersch) log10(dist), data = d.spreng) b Funktion summary produziert Resultate, die man

Mehr

Deskriptive Beschreibung linearer Zusammenhänge

Deskriptive Beschreibung linearer Zusammenhänge 9 Mittelwert- und Varianzvergleiche Mittelwertvergleiche bei k > 2 unabhängigen Stichproben 9.4 Beispiel: p-wert bei Varianzanalyse (Grafik) Bedienungszeiten-Beispiel, realisierte Teststatistik F = 3.89,

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X

2 Wiederholung statistischer Grundlagen Schließende Statistik empirischen Information aus Stichprobenrealisation x von X Hypothesentests Bisher betrachtet: Punkt- bzw. Intervallschätzung des unbekannten Mittelwerts Hierzu: Verwendung der 1 theoretischen Information über Verteilung von X empirischen Information aus Stichprobenrealisation

Mehr

Lineare Regression. Kapitel Regressionsgerade

Lineare Regression. Kapitel Regressionsgerade Kapitel 5 Lineare Regression 5 Regressionsgerade Eine reelle Zielgröße y hänge von einer reellen Einflussgröße x ab: y = yx) ; zb: Verkauf y eines Produkts in Stückzahl] hängt vom Preis in e] ab Das Modell

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Stochastik Praktikum Lineare Modelle

Stochastik Praktikum Lineare Modelle Stochastik Praktikum Lineare Modelle Thorsten Dickhaus Humboldt-Universität zu Berlin 06.10.2010 Übersicht 1 Einfache lineare Regression 2 Multiple lineare Regression 3 Varianzanalyse 4 Verallgemeinerte

Mehr

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt:

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Beispiele zum Üben und Wiederholen zu Wirtschaftsstatistik 2 (Kurs 3) 1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Haushaltseinkommen 12 24 30 40 80 60

Mehr

Mehrfache und polynomiale Regression

Mehrfache und polynomiale Regression Mehrfache und polynomiale Regression Kriteria für die Durchführung einer Regression Jonathan Harrington Bitte datasets.zip (unter 5.5, Tabellarische Daten) neu herunterladen und in pfad auspacken Einfache

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 29 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 1 Ökonometrie I Michael Hauser 2 / 29 Inhalt Annahme normalverteilter Fehler Stichprobenverteilung des OLS Schätzers t-test und Konfidenzintervall

Mehr

13. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017

13. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 13. Lösung weitere Übungsaufgaben Statistik II WiSe 2016/2017 1. Aufgabe: Für 25 der größten Flughäfen wurde die Anzahl der abgefertigten Passagiere in den Jahren 2009 und 2012 erfasst. Aus den Daten (Anzahl

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr