Dem Elektronen-Positronen-Plasma auf der Spur En route to electron-positron plasmas

Größe: px
Ab Seite anzeigen:

Download "Dem Elektronen-Positronen-Plasma auf der Spur En route to electron-positron plasmas"

Transkript

1 Dem Elektronen-Positronen-Plasma auf der Spur En route to electron-positron plasmas Horn-Stanja, Juliane Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Greifswald Korrespondierender Autor Zusammenfassung Ein aus Elektronen und Positronen bestehendes Paarplasma ist sowohl von großem Interesse für die grundlegende Plasmaphysik als auch für die Astrophysik, die diese Plasmen in der Umgebung verschiedener astrophysikalischer Objekte vermutet. Im Rahmen des APEX-Projekts soll erstmalig ein magnetisch eingeschlossenes Elektronen-Positronen-Plasma im Labor erzeugt werden. Erste Positronenexperimente haben bereits wichtige Ergebnisse geliefert. Summary A pair plasma consisting of electrons and positrons is of great interest both in basic plasma physics and in astrophysics. Here these plasmas are believed to exist in the vicinity of various astrophysical objects. Within the framework of the APEX project, a magnetically confined electron-positron plasma is to be generated in the laboratory for the first time. First positron experiments have already yielded important results. Grundlegende Phänomene der Plasmaphysik beruhen darauf, dass ein Großteil der bekannten Plasmen aus Ionen und Elektronen besteht. Der große Massenunterschied zwischen den beiden Teilchenarten eröffnet zwei separate Bereiche: In Bezug auf die Elektronendynamik können die Ionen als stationär betrachtet werden und in Bezug auf die Ionendynamik erreichen die Elektronen ihren Gleichgewichtszustand quasi instantan. Geht man von diesen traditionellen Plasmen über zu sogenannten Paarplasmen Plasmen, die aus zwei Spezies gleicher Masse aber entgegengesetzter Ladung bestehen dann muss die Dynamik beider Spezies gleichwertig behandelt werden und es werden fundamental andere Phänomene erwartet. Vorhergesagt sind eine deutlich reduzierte Diversität von Wellenphänomenen und eine damit verbundene stark reduzierte Turbulenz, was zu einem viel besseren Einschluss führen würde. Dass es sich bei Paarplasmen nicht nur um Gedankenspiele handelt, zeigen astrophysikalische Publikationen, die Paarplasmen beschreiben, die aus Elektronen (e - ) und Positronen (e + ) bestehen, zum Beispiel in aktiven Galaxienkernen sowie in Winden und Jets von Pulsaren. Die Erzeugung und Untersuchung eines solchen Paarplasmas insbesondere eines Elektronen-Positronen-Plasmas im Labor stellt daher das bisherige Verständnis der grundlegenden Plasmaphysik auf die Probe, bietet die Gelegenheit, theoretische Modelle zu optimieren, die auch Eingang in Simulationen für die Fusionsforschung finden, und könnte das Verständnis des Universums erweitern Max-Planck-Gesellschaft 1/5

2 Das Laborexperiment APEX Eine Gruppe des Max-Planck-Instituts für Plasmaphysik (IPP) hat es sich zur Aufgabe gemacht, mit dem Experiment APEX erstmalig ein magnetisch eingeschlossenes niederenergetisches Elektronen-Positronen- Plasma im Labor zu erzeugen [1]. Angelehnt an die Lehrbuchdefinition eines Plasmas soll die Debyelänge, d. h. die charakteristische Länge, auf welcher das elektrische Potenzial einer lokalen Überschussladung auf das 1/e-fache abnimmt, dabei rund zehnmal geringer sein als die charakteristische Länge des Plasmagefäßes. Bei einem Gefäßvolumen von 10 Litern und einer Plasmatemperatur von ca. 1 Elektronenvolt benötigt man somit eine Mindestzahl von Teilchen jeder Spezies im Plasmagefäß. Während es sehr einfach ist, eine Wolke aus Elektronen zu erzeugen, kann diese Positronenzahl heutzutage nur mithilfe reaktorbasierter Positronenquellen bereitgestellt werden, deren maximale Intensität bei ca Positronen pro Sekunde liegt. Auch bei Verwendung einer dieser Quellen müsste sichergestellt sein, dass dem Positronenstrahl beim Transport keine Temperaturerhöhung widerfährt, die Positronen zu 100 Prozent in die Plasmafalle eingebracht werden und dort für mindestens 10 Sekunden verbleiben. Die Anforderungen an diese drei Faktoren lassen sich abschwächen, wenn eine Anordnung aus linearen Fallen zur Positronenanreicherung zwischen der Positronenquelle und der Plasmafalle verwendet wird. Um schließlich Teilchen mit beiden Vorzeichen der elektrischen Ladung einzuschließen, bedarf es einer Plasmafalle, die auf rein magnetischen Konzepten beruht. Ein Kandidat ist ein Stellarator, ähnlich dem zurzeit am IPP in Greifswald hinsichtlich seiner Kraftwerkseignung getesteten Wendelstein 7-X. Ein alternatives Konzept, das von astrophysikalischer Relevanz ist, da es im Magnetfeld der Erde und anderer Himmelskörper wiedergefunden werden kann, ist das Dipolfeld. Im Labor kann ein Dipolfeld mit geschlossenen Magnetfeldlinien mithilfe einer schwebenden supraleitenden Stromschleife technisch realisiert werden. Dass diese Anordnung für Plasmaexperimente geeignet ist, wurde vor wenigen Jahren an der Universität von Tokio mit dem Experiment RT1 erfolgreich demonstriert. A bb. 1: Schem atischer Aufbau des Experim ents APEX. Positronen aus einer intensiven Positronenquelle werden in einer Anordnung aus linearen Fallen angereichert und gebündelt in eine rein m agnetische Plasm afalle eingebracht. Max-Planck-Institut für Plasm aphysik / E. V. Stenson Unter Berücksichtigung dieser Randbedingungen ergibt sich für APEX der folgende Aufbau (Abb. 1): Ein Positronenstrahl mit bis zu 10 9 monoenergetischen, magnetisch geführten Positronen pro Sekunde wird von der Positronenquelle NEPOMUC am Forschungsreaktor FRM II der Technischen Universität München in Garching [2] bereitgestellt. Sie zählt zu den intensivsten Positronenquellen weltweit. Die Positronen sollen zunächst im Experiment PAX mithilfe linearer Puffergas- und Penning-Malmberg-Fallen angereichert und schließlich zusammen mit Elektronen in eine Dipolfalle (APEX-D) oder eine Stellaratorfalle (APEX-S) eingebracht werden. Hierbei hat die Dipolgeometrie Priorität, da sie Einschlusszeiten von mehreren Minuten verspricht [3]. Erst wenn die neue Nutzerhalle auf dem Gelände des FRM II fertiggestellt ist, können die einzelnen Komponenten zusammengefügt werden. Doch bereits jetzt kann eine Vielzahl wesentlicher Experimente mit 2017 Max-Planck-Gesellschaft 2/5

3 Positronen durchgeführt werden, was im Folgenden an ausgewählten Beispielen illustriert wird. Positronenexperimente für APEX Um Experimente mit dem NEPOMUC-Positronenstrahl gestützt durch Simulationen zu planen, sie durchzuführen und deren Ergebnisse zu interpretieren, ist die Kenntnis der Intensität, der energetischen Verteilung bezüglich des Magnetfeldes sowie der räumlichen Verteilung des Positronenstrahls grundlegend. Mithilfe eines eigens konstruierten Aufbaus zum Abtasten des räumlichen Profils und zur Messung der magnetfeldabhängigen Energieverteilung ist es gelungen, den NEPOMUC-Positronenstrahl umfassend zu charakterisieren [4]. Am IPP in Greifswald wird in Zusammenarbeit mit der Universität Greifswald untersucht, wie lange und wie viele Positronen in linearen Fallen gespeichert werden können und welche Positronendiagnostiken geeignet sind. Viele dieser Experimente sollen zunächst mit den leichter zu produzierenden Elektronen durchgeführt werden. Daher ist es relevant, ob zum Beispiel Phosphorschirme, die eine Standarddiagnostik für Experimente mit linearen Fallen sind, unterschiedlich auf Elektronen- und Positronenstrahlen reagieren. Für ein gebräuchliches lumineszierendes Material (P22B) wurden substanzielle Unterschiede im Lumineszenzsignal von Elektronen und Positronen gefunden. Besonders bemerkenswert ist dabei, dass auch beim Einfall von niederenergetischen Positronen das Lumineszenzsignal nicht verschwindet. A bb. 2: Schem atische Darstellung des Prototyps für eine Dipolfalle, m it der unter anderem Experim ente zum Transport geladener Teilchen über geschlossene Magnetfeldlinien durchgeführt wurden. Ein wichtiger Schritt zum Experimentieren mit einem Paarplasma ist die Injektion der Positronen in den Bereich geschlossener Feldlinien der Dipolfalle, da nur dort die Teilchen gespeichert werden können. Um zu erforschen, wie geladene Teilchen über geschlossene Magnetfeldlinien transportiert werden können, wurde am IPP in Garching ein Prototyp für eine Dipolfalle gebaut (Abb. 2). Sie besteht aus einem zentral gelagerten Permanentmagneten, welcher von einer Ringelektrode umgeben ist. Mithilfe eines Paares elektrostatischer Platten kann man eine Teilchendrift induzieren, die senkrecht zum elektrischen Feld und zu den Magnetfeldlinien gerichtet ist und es damit erlaubt, Teilchen von außen in das einschließende Magnetfeld hinein zu transportieren. Ein erfolgreicher Teilchentransport lässt sich über das Annihilationssignal auf einem Target nachweisen, das von der Magnetoberfläche bis zur Ringelektrode radial verschoben werden kann. Durch Experimente an der NEPOMUC-Quelle konnte gezeigt werden, dass sich bei geeigneten Spannungen am Magneten, der Ringelektrode sowie dem Plattenpaar bis zu 40 Prozent des Positronenstrahls innerhalb der 2017 Max-Planck-Gesellschaft 3/5

4 Speicherregion befinden und einen 180-Grad-Umlauf um den Magneten vollführen [5]. Indem man die Ringelektrode vertikal segmentiert und nur das Segment auf Höhe des Plattenpaares mit einer geeigneten Spannung versieht, kann die Einschusseffizienz auf nahezu 100 Prozent gesteigert werden. A bb. 3: Einschlusszeit von Positronen in der Prototypfalle (a) bei durchgehend angelegten Einschussspannungen und (b) bei gezielter Abschaltung des elektrostatischen Plattenpaares. Mit dieser Falle wurde auch untersucht, ob ein Einschluss der Positronen möglich ist und welche Faktoren die Einschlusszeit beeinträchtigen können. Wenn man nach Abschaltung des Positronenstrahls alle Spannungen für den optimalen Einschuss beibehält, befinden sich nach wenigen Mikrosekunden keine Positronen mehr in der Falle (Abb. 3(a)). Dies entspricht in etwa der Zeit, die die Positronen für einen 360-Grad-Umlauf um den Magneten benötigen. Es hat den Anschein, dass insbesondere die durch das Plattenpaar verursachten elektrischen Felder ein Verbleiben der Positronen in der Falle verhindern. Nach gleichzeitigem Abschalten des Positronenstrahls und des Plattenpaares verbleiben die Positronen wesentlich länger in der Falle (Abb. 3(b)). A bb. 4: Radiales Positronenprofil in der Dipolfalle m it geerdeten Ringsegm enten (RS, rot) und m it zeitlich veränderlichen Potenzialen an den Ringsegm enten (blau). Um zu untersuchen, ob auch die radiale Verteilung der Positronen einen Einfluss auf die Einschlusszeit hat, müssen zunächst Methoden entwickelt werden, mit denen die räumliche Verteilung der Positronen gezielt beeinflusst werden kann. Dies gelingt, indem man zeitlich veränderliche Spannungen an die einzelnen Segmente der Ringelektrode anlegt. Durch die Wahl einer Frequenz in einem weiten Bereich um 150 khz, welche oberhalb der Umlauffrequenz aber unterhalb der Pendelfrequenz aufgrund der Spiegelung an den Polen des Magneten liegt, konnte eine deutliche Veränderung des radialen Profils beobachtet werden (Abb. 4). Ausblick Zukünftige Messungen mit der Prototypfalle sollen dabei helfen, weitere limitierende Faktoren für den 2017 Max-Planck-Gesellschaft 4/5

5 Teilcheneinschluss aufzudecken sowie Methoden zur gezielten Teilchenbeeinflussung in der Falle zu entwickeln. Eine Bündelung des kontinuierlichen Positronenstrahls könnte sich dabei als vorteilhaft erweisen. Parallel zu diesen Experimenten wird die APEX-Falle auf Basis einer schwebenden supraleitenden Spule entwickelt. Während bereits gezeigt wurde, dass ein stabiler Schwebezustand hergestellt werden kann, erforderten die Spulenparameter einen aufwendigen Optimierungsprozess. Die Fertigstellung der Spule ist für Mitte 2017 vorgesehen. Danach wird sie schrittweise zunächst gelagert und dann schwebend in Experimenten eingesetzt werden, die einen gemeinsamen Einschluss von Elektronen und Positronen demonstrieren sollen. Literaturhinweise [1] Sunn Pedersen, T.; Danielson, J. R.; Hugenschmidt, C.; Marx, G.; Sarasola, X.; Schauer, F.; Schweikhard, L.; Surko, C. M.; Winkler, E. Plans for the creation and studies of electron positron plasmas in a stellarator New Journal of Physics 14, (2012) [2] Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Pikart, P.; Reiner, M.; Weber, J.; Zimnik, S. The Upgrade of the Neutron Induced Positron Source NEPOMUC Journal of Physics: Conference Series 443, (2013) [3] Yoshida, Z.; Saitoh, H.; Morikawa, J.; Yano, Y.; Watanabe, S.; Ogawa, Y. Magnetospheric Vortex Formation: Self-Organized Confinement of Charged Particles Physical Review Letters 104, (2010) [4] Stanja, J.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Sunn Pedersen, T.; Saitoh, H.; Stenson, E. V.; Stoneking, M. R.; Hugenschmidt, C.; Piochacz, C. Characterization of the NEPOMUC primary and remoderated positron beams at different energies Nuclear Instruments and Methods in Physics Research A 827, (2016) [5] Saitoh, H.; Stanja, J.; Stenson, E. V.; Hergenhahn, U.; Niemann, N.; Sunn Pedersen, T.; Stoneking, M. R.; Piochacz, C.; Hugenschmidt, C. Efficient injection of an intense positron beam into a dipole magnetic field New Journal of Physics 17, (2015) 2017 Max-Planck-Gesellschaft 5/5

Fusionsexperiment Wendelstein 7-X

Fusionsexperiment Wendelstein 7-X Fusionsexperiment Wendelstein 7-X Garching - Greifswald Wendelstein 7-X, die weltweit größte und modernste Fusionsforschungsanlage ihrer Bauart, wird gegenwärtig im Teilinstitut Greifswald des Max-Planck-Instituts

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

1 Physikalische Grundbegriffe

1 Physikalische Grundbegriffe 1 Physikalische Grundbegriffe Um die Voraussetzungen der physikalischen Kenntnisse in den nächsten Kapiteln zu erfüllen, werden hier die dafür notwendigen Grundbegriffe 1 wie das Atom, das Proton, das

Mehr

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung 2.1 Coulomb-Kraft und elektrische Ladung 2 Elektrostatik 2.1 Coulomb-Kraft und elektrische Ladung Abb. 2.1 Durch Reiben verschiedener Stoffe aneinander verbleiben Elektronen der Atomhüllen überwiegend

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

ELMs unter Kontrolle

ELMs unter Kontrolle ELMs unter Kontrolle PD Dr. Wolfgang Suttrop Max-Planck-Institut für Plasmaphysik, D-85740 Garching e-mail: suttrop@ipp.mpg.de Neue Experimente an Fusions-Plasmen in Tokamaks demonstrieren die Kontrolle

Mehr

Neue Einsatzbereiche der Mikrowellenheizung an ASDEX Upgrade New applications for microwave plasma heating on the ASDEX Upgrade fusion experiment

Neue Einsatzbereiche der Mikrowellenheizung an ASDEX Upgrade New applications for microwave plasma heating on the ASDEX Upgrade fusion experiment Neue Einsatzbereiche der Mikrowellenheizung an ASDEX New applications for microwave plasma heating on the ASDEX fusion experiment Zohm, Hartmut; Stober, Jörg Max-Planck-Institut für Plasmaphysik, Garching

Mehr

Abbildung 3.1: Kraftwirkungen zwischen zwei Stabmagneten

Abbildung 3.1: Kraftwirkungen zwischen zwei Stabmagneten Kapitel 3 Magnetostatik 3.1 Einführende Versuche Wir beginnen die Magnetostatik mit einigen einführenden Versuchen. Wenn wir - als für uns neues und noch unbekanntes Material - zwei Stabmagnete wie in

Mehr

Feldlinienbilder: nur die halbe Wahrheit! H. Hauptmann, F. Herrmann Abteilung für Didaktik der Physik, Universität, Karlsruhe

Feldlinienbilder: nur die halbe Wahrheit! H. Hauptmann, F. Herrmann Abteilung für Didaktik der Physik, Universität, Karlsruhe Feldlinienbilder: nur die halbe Wahrheit! H. Hauptmann, F. Herrmann Abteilung für Didaktik der Physik, Universität, 76128 Karlsruhe Einleitung Ein Feldlinienbild ist wohl die am häufigsten benutzte Methode

Mehr

Teilchenbeschleuniger Collider

Teilchenbeschleuniger Collider Teilchenbeschleuniger Collider 1. Theoretische Grundlagen 1.1 Warum baut man Collider In der heutigen Grundlagenforschung steht man oft vor Aufgabe, neue bisher nicht beobachtete Teilchen zu finden und

Mehr

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen:

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen: Magnete Die Wirkung und der Aufbau lassen sich am einfachsten erklären mit dem Modell der Elementarmagneten. Innerhalb eines Stoffes (z.b. in ein einem Stück Eisen) liegen viele kleine Elementarmagneten

Mehr

Experimentierbeginn an der Fusionsanlage Wendelstein 7-X Start of scientific experimentation at the Wendelstein 7-X fusion device

Experimentierbeginn an der Fusionsanlage Wendelstein 7-X Start of scientific experimentation at the Wendelstein 7-X fusion device Experimentierbeginn an der Fusionsanlage Start of scientific experimentation at the fusion device Klinger, Thomas; Milch, Isabella Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Greifswald

Mehr

Ein (Tokamak-) Fusionsreaktor. Wolfgang Suttrop, Max-Planck-Institut fu r Plasmaphysik, Garching

Ein (Tokamak-) Fusionsreaktor. Wolfgang Suttrop, Max-Planck-Institut fu r Plasmaphysik, Garching Einfu hrung in die Fusionsforschung Ein (Tokamak-) Fusionsreaktor Ein (Tokamak-) Fusionsreaktor Wolfgang Suttrop, Max-Planck-Institut fu r Plasmaphysik, Garching 1 Einführung in die Fusionsforschung Ein

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

Astroseimology of magnetars

Astroseimology of magnetars Asteroseismologie bei Magnetaren Astroseimology of magnetars Gabler, Michael; Müller, Ewald; Cerdá-Durán, Pablo; Font, Antonio; Stergioulas, Nikolaos Max-Planck-Institut für Astrophysik, Garching Korrespondierender

Mehr

Das elektrische Feld ein fundamentaler Nachtrag

Das elektrische Feld ein fundamentaler Nachtrag Kapitel 11 Das elektrische Feld ein fundamentaler Nachtrag In diesem Kapitel soll eine lange fällige Ergänzung unserer Theorie erfolgen, die vorher nicht unbedingt, für die weiteren Betrachtungen nun aber

Mehr

Kernfusion durch magnetischen Einschluss

Kernfusion durch magnetischen Einschluss Bachelor Seminar SoSe 2012 13. Juli 2012 Gliederung Grundlagen der Kernfusion 1 Grundlagen der Kernfusion 2 Grundprinzip des magnetischen Einschlusses Der Tokamak Der Stellarator 3 Die Deuterium-Tritium-Reaktion

Mehr

Unsichtbares sichtbar machen

Unsichtbares sichtbar machen Unsichtbares sichtbar machen Beschleuniger Detektoren Das Z Boson Blick in die Zukunft, Kirchhoff Institut für Physik, Universität Heidelberg Wozu Beschleuniger und Detektoren? Materie um uns herum ist

Mehr

Physik VI Plasmaphysik

Physik VI Plasmaphysik Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im

Mehr

Magnetic perturbations in ASDEX Upgrade facilitate power exhaust in a fusion plasma

Magnetic perturbations in ASDEX Upgrade facilitate power exhaust in a fusion plasma Magnetische Störfelder in ASDEX Upgrade erleichtern die Magnetic perturbations in ASDEX Upgrade facilitate power exhaust in a fusion plasma Suttrop, Wolfgang Max-Planck-Institut für Plasmaphysik, Garching

Mehr

3.3 Das elektrische Feld

3.3 Das elektrische Feld 3.3 Das elektrische Feld Im vorangegangen Kapitel wurde gezeigt, dass sich gleichnamige Ladungen gegenseitig abstoßen und ungleichnamige Ladungen gegenseitig anziehen. Die Abstoßung bzw. Anziehung von

Mehr

Fusionsexperiment WEGA geht in den Ruhestand WEGA fusion experiment goes into retirement

Fusionsexperiment WEGA geht in den Ruhestand WEGA fusion experiment goes into retirement Fusionsexperiment WEGA geht in den Ruhestand WEGA fusion experiment goes into retirement Wagner, Friedrich Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Greifswald Korrespondierender Autor

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Maxwell mit Minkowski. Max Camenzind Uni Würzburg Senioren 2015

Maxwell mit Minkowski. Max Camenzind Uni Würzburg Senioren 2015 Maxwell mit Minkowski Max Camenzind Uni Würzburg Senioren 2015 Vektorfelder in 3 Dimensionen F(t,x) = (F x,f y,f z ) Satz von Gauß Quelle Fluss Die Massenerhaltung Ein Nettomassenfluss M durch die festen

Mehr

Planetare Magnetosphären

Planetare Magnetosphären Planetare Magnetosphären Übersicht: die Planeten, Topologie der Magnetophären, Planeten ohne Magnetfeld, Vergleich der Magnetosphären Größe, Upstream-Wellen, Plasmaquellen, Strahlungsgürtel. Voraussetzungen:

Mehr

Ein Divertor für Wendelstein 7-X A divertor for Wendelstein 7-X

Ein Divertor für Wendelstein 7-X A divertor for Wendelstein 7-X Ein Divertor für Wendelstein 7-X A divertor for Wendelstein 7-X Pedersen, Thomas Sunn Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Greifswald Korrespondierender Autor E-Mail: info@ipp.mpg.de

Mehr

Ferienakademie Kernfusion. von Matthias Dodenhöft

Ferienakademie Kernfusion. von Matthias Dodenhöft Ferienakademie 18.09.11-30.09.11 Kernfusion von Matthias Dodenhöft 1 Inhalt 1. Geschichte der Kernfusion 2. Physikalische Grundlagen 3. Kernfusion auf der Sonne 4. Kernfusion auf der Erde 4.1 Umsetzung

Mehr

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

Magnetische Monopole

Magnetische Monopole Magnetische Monopole Einführung: Aber in der Schule haben wir doch gelernt... Dirac s Idee symmetrischer Maxwell-Gleichungen Konsequenzen aus der Existenz magnetischer Monopole Quantisierung der elektrischen

Mehr

Kompetenzen bündeln, Zukunft gestalten. 193 Professoren mehr als 4000 Wiss. Mitarbeiter Budget 500 Mio.

Kompetenzen bündeln, Zukunft gestalten. 193 Professoren mehr als 4000 Wiss. Mitarbeiter Budget 500 Mio. Kompetenzen bündeln, Zukunft gestalten 193 Professoren mehr als 4000 Wiss. Mitarbeiter Budget 500 Mio. Schicksal der Antimaterie Suchen nach Ursachen für das Verschwinden der Antimaterie Indirekte Direkte

Mehr

Negative Sauerstoffionen in kapazitiv gekoppelten RF- Plasmen

Negative Sauerstoffionen in kapazitiv gekoppelten RF- Plasmen Negative Sauerstoffionen in kapazitiv gekoppelten RF- Plasmen Martin Polak Institut für Niedertemtemperatur-Plasmaphysik (INP) Greifswald 15.03.2006 Workshop "Oberflächentechnologie mit Plasma- und Ionenstrahlprozessen

Mehr

Der Large Hadron Collider (LHC)

Der Large Hadron Collider (LHC) Der Large Hadron Collider (LHC)...ein Rundgang durch das größte Experiment der Welt 1 Der Large Hadron Collider Institut für Experimentelle Kernphysik Übersicht Die Welt der Elementarteilchen Teilchenbeschleuniger

Mehr

Nanoplasma. Nano(cluster)plasmen

Nanoplasma. Nano(cluster)plasmen Nano(cluster)plasmen Nanoplasma Neben der Rumpfniveauspektroskopie an Clustern bietet FLASH die Möglichkeit Cluster unter extremen Bedingungen im Feld eines intensiven Röntgenpulses zu studieren (Nano)Plasmaphysik

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Suche nach Dunkler Materie

Suche nach Dunkler Materie Suche nach Dunkler Materie Seminarvortrag Schlüsselexperimente der Teilchenphysik Julian Emmerich 09.07.2014 Julian Emmerich 1 Gliederung 1. Hinweise auf Dunkle Materie 2. Erklärungsversuche 3. Mögliche

Mehr

Wieviele Dimensionen hat die Welt?

Wieviele Dimensionen hat die Welt? Wieviele Dimensionen hat die Welt? Prof. Carlo Ewerz ExtreMe Matter Institute EMMI, GSI & Universität Heidelberg Weltmaschine Darmstadt, 3. September 2011 by D. Samtleben by D. Samtleben by D. Samtleben

Mehr

Zusammenfassung v13 vom 20. Juni 2013

Zusammenfassung v13 vom 20. Juni 2013 Zusammenfassung v13 vom 20. Juni 2013 Magnetfeldberechnungen Gerader Leiter im Abstand r: B = µ 0 I/(2 r) (57) Auf der Achse einer Leiterschleife mit Radius R im Abstand x von der Mitte der Schleife: B

Mehr

Die Natur braucht sich nicht anzustrengen, bedeutend zu sein. Sie ist es.

Die Natur braucht sich nicht anzustrengen, bedeutend zu sein. Sie ist es. Die Natur braucht sich nicht anzustrengen, bedeutend zu sein. Sie ist es. Robert Walser (1878-1956) Gigalichtjahre Gigajahre Das Ganze Nanokelvin Die Quantenwelt Nanometer Femtosekunden Die Komplexität

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

Auf der Suche nach den "elementaren" Bausteinen der Welt

Auf der Suche nach den elementaren Bausteinen der Welt Auf der Suche nach den "elementaren" Bausteinen der Welt 1. Die Entdeckung des Elektrons 2. Die Entdeckung des Positrons 3. Quantenfeldtheorie 4. Richard Feynman Leben und Persönlichkeit 5. Die Entdeckung

Mehr

Antworten zu Wiederholungsfragen Stand:

Antworten zu Wiederholungsfragen Stand: 1.1) Was bedeutet der Begriff ionisiert? 1.2) Jede gegebene Ladungsmenge Q setzt sich aus Elementarladungen zusammen. Wieviele Elementarladungen enthält die Einheitsladung 1C? 1.3) Was sagt der Ladungserhaltungssatz

Mehr

Felder als Objekte. F. Herrmann.

Felder als Objekte. F. Herrmann. Felder als Objekte F. Herrmann www.physikdidaktik.uni-karlsruhe.de 1. Das Wort Feld in zweierlei Bedeutung 2. Das Feld als Gegenstand 3. Zur Geschichte des Feldbegriffs 4. Konsequenzen für den Unterricht

Mehr

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Aufgaben 12 Magnetisches Feld Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

Messungen und Simulationen für das Strahlverlust-Monitor-System des LHC

Messungen und Simulationen für das Strahlverlust-Monitor-System des LHC Messungen und Simulationen für das Strahlverlust-Monitor-System des LHC M. Stockner und das Beam Loss Monitoring Team Inhalt: Large Hadron Collider (LHC) Strahlverlust-Monitor-System Aufgaben Geant4 &

Mehr

GOTTTEILCHEN und WELTMASCHINE

GOTTTEILCHEN und WELTMASCHINE Harald Appelshäuser Institut für Kernphysik GOTTTEILCHEN und WELTMASCHINE dem Urknall auf der Spur mit dem Teilchenbeschleuniger am CERN Large Hadron Collider (LHC) 8,6 km Large Hadron Collider (LHC) 1232

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Planungsblatt Physik für die 4A

Planungsblatt Physik für die 4A Planungsblatt Physik für die 4A Woche 12 (von 20.11 bis 24.11) Hausaufgaben 1 Bis Freitag 24.11: Lerne die Notizen von Montag und die der vorigen Woche! Bis Dienstag 28.11: Lerne die Notizen von Woche

Mehr

Tonerzeugung mit Lichtbögen unter Verwendung von Magnetfeldern

Tonerzeugung mit Lichtbögen unter Verwendung von Magnetfeldern Tonerzeugung mit Lichtbögen unter Verwendung von Magnetfeldern Beitrag zum Elster-und-Geitel-Wettbewerb 2009 eingereicht von Jonathan Schilling und Jonathan Meier Inhalt 1. Einleitung 2. Vorstellung des

Mehr

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1. Influenz

Physik II TU Dortmund SS2018 Götz Uhrig Shaukat Khan Kapitel 1. Influenz Influenz Als Influenz wird der Einfluss eines elektrischen Felds auf Ladungen in Materie bezeichnet, insbesondere die Verschiebung der beweglichen Ladungen in Leitern, aber auch die Polarisation (z.b.

Mehr

Handout zum Masterseminar I Detektorensysteme

Handout zum Masterseminar I Detektorensysteme Handout zum Masterseminar I Philipp Heil 1 15. Juli 2013 1 pheil@students.uni-mainz.de Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 ATLAS Detektor 3 2 Arten von Teilchenvermessung 3 3 Transversal-Hermetischer

Mehr

Ultraschnelle Magnonen für Spintronik Ultrafast magnons for spintronics

Ultraschnelle Magnonen für Spintronik Ultrafast magnons for spintronics Ultraschnelle Ultrafast magnons for spintronics Zakeri Lori, Khalil; Zhang, Yu; Chuang, Tzu-Hung; Kirschner, Jürgen Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale Korrespondierender Autor E-Mail:

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

Der Large Hadron Collider (LHC)

Der Large Hadron Collider (LHC) Der Large Hadron Collider (LHC)...ein Rundgang durch das größte Experiment der Welt 1 Der Large Hadron Collider Institut für Experimentelle Kernphysik 2 Der Large Hadron Collider Institut für Experimentelle

Mehr

Magnetische Phänomene

Magnetische Phänomene Magnetische Phänomene Bekannte magnetische Phänomene: Permanentmagnete; Das Erdmagnetfeld (Magnetkompass!); Elektromagnetismus (Erzeugung magnetischer Kraftwirkungen durch Stromfluss) Alle magnetischen

Mehr

Die Entdeckung des Gluons VORTRAG

Die Entdeckung des Gluons VORTRAG Die Entdeckung des Gluons VORTRAG 27.01.2015 FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Lehrstuhl für Experimentalphysik I Referent: Andreas Nitsch Gliederung 1. Was sind Gluonen? 2. Erkenntnisse Anfang der 1970

Mehr

1.Schulaufgabe aus der Physik Lösungshinweise

1.Schulaufgabe aus der Physik Lösungshinweise 1.Schulaufgabe aus der Physik Lösungshinweise Gruppe A Aufgabe 1 (Grundwissen) Größe Energie Stromstärke Widerstand Ladung Kraft Buchstabe E I R Q F Einheit Joule: J Ampere: A Ohm: Ω Coulomb: C Newton:

Mehr

Kernfusion und Wendelstein 7-X

Kernfusion und Wendelstein 7-X Kernfusion und Wendelstein 7-X Dirk Hartmann Max-Planck Institut für Plasmaphysik EURATOM Association Wendelsteinstr. 1 Greifswald Dirk Hartmann 1 Kernfusion Pro Sekunde werden in der Sonne 675.000.000

Mehr

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2 IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2

Mehr

Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung

Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung 11. Tagung "Feinwerktechnische Konstruktion" 22.09.2017, Dresden Martin Banduch für das W7-X Team This work has been carried out within the

Mehr

Das ätherische Magnetfeld (Teil 2) Steuerung

Das ätherische Magnetfeld (Teil 2) Steuerung 1 Eugen J. Winkler / Das ätherische Magnetfeld (Teil 2) Das ätherische Magnetfeld (Teil 2) Steuerung Hier möchte ich Ihnen anhand von Diagrammen darstellen, wie die Form des ätherischen Magnetfeldes bei

Mehr

Plasmatechnologie für Medizin und Pharmazie

Plasmatechnologie für Medizin und Pharmazie Powered by Seiten-Adresse: https://www.gesundheitsindustriebw.de/de/fachbeitrag/aktuell/plasmatechnologie-fuermedizin-und-pharmazie/ Plasmatechnologie für Medizin und Pharmazie In der Medizin kommen häufig

Mehr

Was ist ein Plasma? Max Camenzind Akademie HD 2018

Was ist ein Plasma? Max Camenzind Akademie HD 2018 Was ist ein Plasma? Max Camenzind Akademie HD 2018 Vortragszyklus Das Dunkle Universum 19.9. / 17.10. / 21.11. / 12.12.2018 10:40-12:10 Uhr in E06 Max Camenzind Heidelberg 2018 Lagrange-Punkte / effektives

Mehr

Schülerübungen zum elektrischen Strom und Magnetismus

Schülerübungen zum elektrischen Strom und Magnetismus Schülerübungen zum elektrischen Strom und Magnetismus Themen 1. Die Rolle des elektrischen Stroms 2. Elektrizität und Materie 3. Ladungen in Bewegung 4. Die Batterie 5. Das Volta-Element 6. Die Potenzialdifferenz

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Ideale und reale Spannungsquellen Kirchhoffsche Regeln Parallelschaltung und Reihenschaltungen von Widerständen Amperemeter

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten orlesung können Sie sich noch erinnern? Elektrische Feldlinien Das elektrische Feld einer Punktladung Das Feld eines elektrischen Dipols E = Elektrische Felder von

Mehr

Der 270 MHz- Oszillator

Der 270 MHz- Oszillator Der 270 MHz- Oszillator Von Sascha Laue und Henry Westphal Seite 5-1 Die Idee. Deutlichere Sichtbarkeit hochfrequenter Effekte durch weitere Erhöhung der Oszillatorfrequenz. Im Wintersemester 2005/6 wurde

Mehr

Passive Bauelemente. AnodenFolie. Anoden. Papier. Funktionsbereich. Kathode KathodenFolie

Passive Bauelemente. AnodenFolie. Anoden. Papier. Funktionsbereich. Kathode KathodenFolie Passive Bauelemente Anoden { AnodenFolie Papier Funktionsbereich Kathode KathodenFolie Chemische Bindungstypen metallisch kovalent ionisch Veranschaulichung der chemischen Bindungstypen. Elektronen sind

Mehr

INFORMATIONSTEXT 1: Halbleiter Spurdetektoren (Gruppe 1) Moderne Teilchendetektoren bestehen aus mehreren Detektorkomponenten.

INFORMATIONSTEXT 1: Halbleiter Spurdetektoren (Gruppe 1) Moderne Teilchendetektoren bestehen aus mehreren Detektorkomponenten. INFORMATIONSTEXT 1: Halbleiter Spurdetektoren (Gruppe 1) Moderne Teilchendetektoren bestehen aus mehreren Detektorkomponenten. Der ATLAS De tektor (A Torodial LHC ApparatuS) am CERN beispielsweise besteht

Mehr

erimente) am -Exp Das Konzept der Speicherringe ( colliding-be Kapitel 12

erimente) am -Exp Das Konzept der Speicherringe ( colliding-be Kapitel 12 Das Konzept der Speicherringe ( colliding-beam -Experimente) Kapitel 12 Colliding-beam-Experimente Ab 1960 ersten colliding-beam-experimente vor allem e + -e - Speicherringe (zwei getrennten Ringen oder

Mehr

Zentralabitur 2009 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min

Zentralabitur 2009 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min Thema: Homogene magnetische Felder Im Mittelpunkt der ersten beiden Aufgaben stehen das magnetische Feld einer Spulenanordnung und das Induktionsgesetz. Es werden unterschiedliche Versuche zum Induktionsgesetz

Mehr

PD Para- und Diamagnetismus

PD Para- und Diamagnetismus PD Para- und Diamagnetismus Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Magnetfeld in Materie............................ 2 1.2 Arten von Magnetismus...........................

Mehr

Magnetische Domänen bilden die Grundlage für das Verständnis vieler magnetischer

Magnetische Domänen bilden die Grundlage für das Verständnis vieler magnetischer Dreidimensionale Abbildung magnetischer Domänen Magnetische Domänen bilden die Grundlage für das Verständnis vieler magnetischer Phänomene und der Eigenschaften magnetischer Materialien. Ihre Existenz

Mehr

Aufgabe I: Fusionsreaktor und Sonne

Aufgabe I: Fusionsreaktor und Sonne Europa-Gymnasium Wörth Abiturprüfung 2012 Leistungskurs Physik LK2 Aufgabe I: Fusionsreaktor und Sonne Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Tabelle

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr

Damit ergibt sich für den antisymmetrischen Feldstärke-Tensor

Damit ergibt sich für den antisymmetrischen Feldstärke-Tensor Damit ergibt sich für den antisymmetrischen Feldstärke-Tensor 0 E x E y E z F µ = @ µ A @ A µ E = x 0 B z B y E y B z 0 B x E z B y B x 0 Die homogenen Maxwell- Gleichungen B = 0 E + @ t B = 0 sind durch

Mehr

Der Weg zu einem Fusionskraftwerk

Der Weg zu einem Fusionskraftwerk EURATOM Max-Planck-Institut für Plasmaphysik Standort Greifswald Der Weg zu einem Fusionskraftwerk Standort Garching G. Hasinger, IPP Garching TU München Ringvorlesung Umwelt 3. Juni 2009, TU München Das

Mehr

Das Magnetfeld. Das elektrische Feld

Das Magnetfeld. Das elektrische Feld Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2016 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 2. Vorlesung, 17. 3. 2016 Wasserstoffspektren, Zeemaneffekt, Spin, Feinstruktur,

Mehr

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Versuch: Induktions - Dosenöffner Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Der schwebende Supraleiter (idealer Diamagnet) Supraleiter B ind Magnet B Magnet

Mehr

Physik Stand: September Seite 1 von 5

Physik Stand: September Seite 1 von 5 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Unterrichtliche Umsetzung Fachwissen grundlegendes Anforderungsniveau Zusatz für erhöhtes Anforderungsniveau Zusatz für erhöhtes Anforderungsniveau

Mehr

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007)

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007) Physik II für Bauingenieure Vorlesung 03 (08. Mai 2007) http://homepage.rub.de/daniel.haegele Prof. D. Hägele Vorlesung Stoff umfangreich, Zeit knapp. Probleme beim Verständnis der Vorlesung Übungen. Schulgrundlagen

Mehr

Planungsblatt Physik für die 4B

Planungsblatt Physik für die 4B Planungsblatt Physik für die 4B Woche 13 (von 27.11 bis 01.12) Hausaufgaben 1 Bis Freitag 01.12: Lerne die Notizen von Dienstag und die der vorigen Woche! Nimm bitte auch das Buch mit! Bis Dienstag 05.12:

Mehr

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel?

was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Induktion Einleitung Thema: Induktion Fragen: was ist Induktion? was besagt das Induktionsgesetz? was besagt die Lenzsche Regel? Frage: was, wenn sich zeitlich ändernde E- und -Felder sich gegenseitig

Mehr

Untersuchung der kosmischen Höhenstrahlung mit dem AMS01- Detektor im Weltraum

Untersuchung der kosmischen Höhenstrahlung mit dem AMS01- Detektor im Weltraum Untersuchung der kosmischen Höhenstrahlung mit dem AMS01- Detektor im Weltraum Henning Gast I. Physikalisches Institut B Diplomfeier Aachen, 28. Januar 2005 Der AMS01-Detektor im Weltraum AMS01 geflogen

Mehr

RITZ-Gießharz-Leistungstransformatoren auch präsent im Forschungsbereich

RITZ-Gießharz-Leistungstransformatoren auch präsent im Forschungsbereich RITZ-Gießharz-Leistungstransformatoren auch präsent im Forschungsbereich 14 Stück RITZ Gießharz-Transformatoren in der Glasfaser-Vakuum Technologie (GVT) speisen die supraleitenden Magnetspulen für das

Mehr

DIELEKTRIKA. Faraday s Beobachtung : Leiter im Kondensator Q = C U. frei bewegliche Ladungen ohne Strom : im Inneren feldfrei

DIELEKTRIKA. Faraday s Beobachtung : Leiter im Kondensator Q = C U. frei bewegliche Ladungen ohne Strom : im Inneren feldfrei > DIELEKTRIK Leiter frei bewegliche Ladungen ohne Strom : im Inneren feldfrei Isolatoren Ladungen fest aber lokal verschiebbar : polarisierbar EXII SS2007 + C = H E J H K C = H E J H erschiebung der Ladungsschwerpunkte

Mehr

6.4.4 Elihu-Thomson ****** 1 Motivation

6.4.4 Elihu-Thomson ****** 1 Motivation V644 6.4.4 ****** 1 Motivation Ein als Sekundärspule dienender geschlossener Aluminiumring wird durch Selbstinduktion von der Primärspule abgestossen und in die Höhe geschleudert. Ein offener Aluminiumring

Mehr

42. Radioaktivität. 35. Lektion Radioaktivität

42. Radioaktivität. 35. Lektion Radioaktivität 42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche

Mehr

Einführung in die Astroteilchenphysik. Hermann Kolanoski Institut für Physik, Humboldt-Universität zu Berlin

Einführung in die Astroteilchenphysik. Hermann Kolanoski Institut für Physik, Humboldt-Universität zu Berlin Einführung in die Astroteilchenphysik Hermann Kolanoski Institut für Physik, Humboldt-Universität zu Berlin ... Inhaltsverzeichnis Literaturverzeichnis iv 1 Einführung 1 2 Die Entwicklung des Universums

Mehr

Die Physik schneller Teilchen in Fusionsplasmen Physics of fast particles in fusion plasmas

Die Physik schneller Teilchen in Fusionsplasmen Physics of fast particles in fusion plasmas Die Physik schneller Teilchen in Physics of fast particles in fusion plasmas Guenter, Sibylle; Lauber, Philipp; Strumberger, Erika Max-Planck-Institut für Plasmaphysik, Garching Korrespondierender Autor

Mehr

Forschung für die Energie der Zukunft

Forschung für die Energie der Zukunft Forschung für die Energie der Zukunft Die Sonne, ein gewaltiger Plasmaball. Seit Jahrmillionen verströmt sie Licht und Wärme. Fusion eine neue Energiequelle Kernverschmelzungen sind wichtige Natur prozesse:

Mehr

Klausur Experimentalphysik II

Klausur Experimentalphysik II Universität Siegen Naturwissenschaftlich-Technische Fakultät Department Physik Sommer Semester 2018 Prof. Dr. Mario Agio Klausur Experimentalphysik II Datum: 25.9.2018-10 Uhr Name: Matrikelnummer: Einleitung

Mehr

Pamela findet Antimaterie

Pamela findet Antimaterie Pamela findet Antimaterie Die Satellitenmissionen Pamela und Fermi, und das Gammastrahlen-Teleskop H.E.S.S. in Namibia haben Signale von Antiteilchen und Gammaquanten gefunden, die im Hinblick auf Dunkle

Mehr