Physik VI Plasmaphysik
|
|
|
- Klaus Sachs
- vor 9 Jahren
- Abrufe
Transkript
1 Physik VI Plasmaphysik
2 Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im Magnetfeld 5. Wellen im Plasma 6. Plasmakinetik 7. Plasmastrahlung 8. Thermonukleare Plasmen
3 1 5. Wellen im Plasma Gegenüber dem Vakuum wird die Ausbreitung elektromagnetischer Wellen im Plasma durch die Anwesenheit freier Ladungsträger modifiziert. Die Trägerbewegung im Wellenfeld führt zum Auftreten einer Konvektionsstromdichte j, die wiederum mit lokalen Abweichungen von der Neutralität verknüpf sein kann. Ein stationäres äußeres Magnetfeld beeinflusst die Wellen über seine Wirkung auf die Trägerbewegung. Bei der Plasmadiagnostik und zum Heizen von Plasmen wird in der Regel eine elektromagnetische Welle in das Plasma eingestrahlt und deren Absorption gemessen bzw. bei geeigneter Anordnung die Welle absorbiert und somit Energie in das Plasma eingekoppelt. Zur Beschreibung von Wellen in Plasmen geht man von einer Gleichgewichtsdichte n 0 aus, die sich beim Durchgang einer Welle um einen kleinen Betrag dn ändert. Man unterscheidet prinzipiell : parallel und senkrecht für die Ausbreitungsrichtung bezüglich des statischen Magnetfeldes longitudinal und transversal für die Ausbreitungsrichtung bezüglich des elektrischen Feldes elektrostatisch und elektromagnetisch (bei elektrostatischen Wellen tritt nur eine Störung in E auf, während bei elektromagnetischen Wellen eine Störung in E und B auftritt.
4 2 5. Wellen im Plasma 5.1. Elektrostatische Wellen damit eine Änderung in E nicht automatisch eine Änderung in B hervorruft, muss das kann nur durch besondere Wahl von j gewährleistet werden, d.h. elektrostatische Wellen können nur in Medien vorkommen = 0 z.b. elektrostatische Plasma-Oszillationen, bei der sich j und E abwechseln
5 Elektronen-Oszillationen Impulsbilanz Teilchenbilanz dies entspricht der Plasmafrequenz für eine Oszillation der Elektronen vor einem ruhenden Ionenhintergrund (diese Oszillation ist noch keine Welle, die sich ausbreitet) betrachtet man ein Plasma mit einem oszillierenden Bereich in Nachbarschaft zu einem nicht oszillierenden Bereich, sieht der nicht oszillierende Bereich kein oszillierendes E- Feld, da sich die lokale Abweichung von der Quasineutralität herausmittelt d.h. nur durch Randeffekte bei endlichen Volumina ergibt sich ein Übergreifen des elektrischen Feldes auf benachbarte Bereiche
6 Elektronen-Wellen von den Plasma-Oszillationen kommt man durch Berücksichtigung der endlichen Temperatur der Elektronen zu den elektrostatischen Elektronen-Wellen e e 0 e e 0 e e e e Dispersionsrelation maximale Ausbreitungsgeschwindigkeit der Elektronen-Wellen ist die thermische Geschwindigkeit bei kleinen Werten von k ist die Ausbreitungsgeschwindigkeit ~0 Information von oszillierenden Bereichen zu nicht oszillierenden kann demnach nicht durch Diffusion weiter getragen werden
7 Ionen-Wellen bei der Beschreibung der Oszillation der Ionen kann man nicht voraussetzen, dass die sehr viel leichteren Elektronen in Ruhe bleiben vielmehr gleichen die Elektronen die Störung des Potentials durch eine Dichteschwankung der Ionen instantan aus Impulsbilanz i 0 i i 0 i man erkennt, dass die Ionen-Wellen nur bei endlicher Temperatur auftreten können nur bei endlicher Temperatur können sich die Elektronen soweit von den Ionen entfernen, dass sich eine elektrisches Feld aufbauen kann
8 Elektronen-Wellen senkrecht zum B-Feld Impulsbilanz 0 n Teilchenbilanz Poisson-Gleichung 0 die obere hybride Frequenz ist etwas größer als die Plasmafrequenz, da die Gyrationsbewegung im Magnetfeld der Plasma-Oszillation überlagert ist dies führt zu einer zusätzlichen Beschleunigung der Teilchen auf der Gyrationsbahn
9 Ionen-Wellen senkrecht zum B-Feld bei elektrostatischen Ionen- Wellen senkrecht zum Magnetfeld können die Elektronen die Dichteschwankungen der Ionen nur dann ausgleichen, wenn der Winkel zwischen Wellenausbreitung und B-Feld nicht genau 90 beträgt Impulsbilanz 0 Teilchenbilanz die ambipolare Diffusion beschleunigt die Ionen auf ihrer Gyrationsbahn (Ionen-Zyklotron-Wellen) bei der unteren Hybriden überlagern sich Resonanzbedingung der Elektronen mit der der Ionen
10 8 5. Wellen im Plasma 5.2. Elektromagnetische Wellen bei elektromagnetischen Wellen tritt auch eine Änderung in B 1 auf diese Wellen sind die einzigen, die im Vakuum propagieren können sämtliche Wellen, die auf Plasmen eingestrahlt werden, sind deshalb notwendigerweise elektromagnetische Wellen diese können an die elektrostatischen Wellen im Plasma ankoppeln, wenn Frequenzen identisch sind und die elektrischen Feldkomponenten in die gleiche Richtung zeigen ganz allgemein gilt: im Fourier-Raum ergibt dies die allgemeine Wellengleichung:
11 Elektromagnetische Wellen für B 0 = 0 für den Fall transversaler, elektromagnetischer Wellen liegen E und der Wellenvektor k senkrecht zueinander Impulsbilanz 0 der Brechungsindex eines Plasmas wird vielfältig für diagnostische Zwecke genutzt typisches Beispiel ist die Interferometrie, bei der durch eine Phasenverschiebung auf den Brechungsindex und über die Plasmafrequenz auf die Dichte im Plasma geschlossen wird
12 Elektromagnetische Wellen für B 0 = 0, _ B 0 zunächst betrachten wir den Fall, dass die Störung im elektrischen Feld E 1 parallel zu B 0 liegt damit erfolgt die Bewegung der Elektronen parallel zum Magnetfeld und somit tritt keine zusätzliche Komponente durch die Lorentz-Kraft auf dies bezeichnet man als ordentliche Welle mit der Dispersion liegt die Störung im elektrischen Feld E 1 senkrecht zu B 0, bezeichnet man dies als außerordentliche Welle Wellengleichung Impulsbilanz Resonanz Cutoff
13
14 Elektromagnetische Wellen für B 0 = 0, II B 0 Wellengleichung 1 Impulserhaltung Brechungsindex Whistler-Moden sind elektromagnetische Wellen parallel zum Magnetfeld, die zwischen den Polen in der Ionosphäre hin- und herlaufen im akustischen Bereich < w c hat die Dispersion positive Krümmung Faraday-Rotation: Phasengeschwindigkeit ist unterschiedlich für rechts- und linkszirkular polarisiertes Licht (d.h. der Polarisationszustand des Lichtes, das durch ein Plasma dringt, kann somit geändert werden)
15
16 12 5. Wellen im Plasma 5.3. Hydromagnetische Wellen dies sind die langsamsten Wellenphänomene, bei denen die Trägheit der Ionen und die unterschiedliche Geschwindigkeit der Ionen und Elektronen berücksichtigt werden d.h. es kann jetzt nicht mehr von ruhenden Ionen bzw. einer Änderung der Elektronendichte gemäß der Boltzmann-Beziehung ausgegangen werden jetzt ist also Wellengleichung Alfven-Wellen Alfven-Wellen sind hydromagnetische Wellen, die sich parallel zum Magnetfeld ausbreiten
17 13 Impulsbilanz der Ionen dies sind dieselben Gleichungen, die wir schon für die Herleitung der elektrostatischen Ionen-Wellen senkrecht zu B 0 hergeleitet hatten im Unterschied zu dieser Analyse betrachten wir jetzt explizit auch die Geschwindigkeitskomponenten der Elektronen unter Verwendung der Wellengleichung erhält man und schließlich die Alfven-Geschwindigkeit Alfven-Wellen entsprechen einer Schwingung im Plasma, bei der der eingefrorene Fluss um seine Ruhelage schwingt das elektrische Feld entsteht durch eine Ladungstrennung auf Grund der Trägheit der Ionen im Vergleich zu den Elektronen
18 Magnetosonische Wellen bei der Wellenausbreitung senkrecht zum Magnetfeld werden die Terme ExB und grad p entscheidend Impulsbilanz in Analogie zu Herleitung der Alfven-Wellen erhält man Dispersionsrelation mit für den Fall verschwindenden Magnetfeldes reduziert sich die Gleichung zur Dispersion Ionen-akustischer Wellen im Fall kalter Plasmen (gegeben durch T~0 bzw. v s ~0) ergeben sich die schnellen hydromagnetischen Wellen
19
20
Elektrodynamik eines Plasmas
Elektrodynamik eines Plasmas Elektrodynamik eines Plasmas Klassifikation von Plasmen Klassisches Plasma / Quantenplasma nicht-relativistisches / relativistisches Plasma Schwach / stark wechselwirkendes
Elektromagnetische Wellen
Elektromagnetische Wellen Im Gegensatz zu Schallwellen sind elektromagnetische Wellen nicht an ein materielles Medium gebunden -- sie können sich auch in einem perfekten Vakuum ausbreiten. Sie sind auch
V9: Wellen in Plasmen II
V9: Wellen in Plasmen II Allgemeine Wellengleichung Allgemeine Dispersionsgleichung Dieelektrizitätskonstante, -funktion Energie in Wellen MHD-Wellen: Alfven- und magnetosonische Wellen Physik VI - V9
Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus
7. Wellen Ausbreitung von Schwingungen -> Wellen Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus Welle entsteht durch lokale Anregung oder Störung eine Mediums, die sich
X.4 Elektromagnetische Wellen im Vakuum
X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen
Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht
Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Betreuer: Norbert Lages Hanno Rein [email protected] Florian Jessen [email protected] 26. April 2004 Made
Aufgabe 2.1: Wiederholung: komplexer Brechungsindex
Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: [email protected] / [email protected] Blatt 2, Besprechung: 23.04.2014 / 30.04.2014
7. Periodische Bewegungen Physik für E-Techniker. 7.2 Wellen Harmonische Welle Wellenpakete. Doris Samm FH Aachen
7. Periodische Bewegungen 7.2 Wellen 7.2.1 Harmonische Welle 7.2.2 Interferenz von Wellen 7.2.3 Wellenpakete 723 7.2.3 Stehende Wellen 7.2 Wellen Störung y breitet sich in Raum x und Zeit t aus. y = f(t)
Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel
11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen
9 Periodische Bewegungen
Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum
IV. Elektrizität und Magnetismus
IV. Elektrizität und Magnetismus IV.5 Elektromagnetische Wellen Physik für Mediziner 1 Elektromagnetische Wellen Physik für Mediziner 2 Wiederholung: Schwingkreis elektrische Feld im Kondensator wird periodisch
V8: Wellen in Plasmen
V8: Wellen in Plasmen Plasmaoszillationen Langmuirwellen Ionenakustische Wellen Gruppen- und Phasengeschwindigkeit Dispersionsrelation Zusammenhang mit der Debye Länge elektromagnetische Wellen, Ionosphäre
EPI WS 2008/09 Dünnweber/Faessler
11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte
EINFÜHRUNG IN DIE PLASMAPHYSIK UND IHRE TECHNISCHE ANWENDUNG
EINFÜHRUNG IN DIE PLASMAPHYSIK UND IHRE TECHNISCHE ANWENDUNG Herausgegeben von GUSTAV HERTZ und ROBERT ROMPE 2., erweiterte Auflage Mit 145 Abbildungen und 10 Tabellen AKADEMIE-VERLAG BERLIN 1968 INHALTSVERZEICHNIS
6.4 Wellen in einem leitenden Medium
6.4. WELLEN IN EINEM LEITENDEN MEDIUM 227 6.4 Wellen in einem leitenden Medium Unter einem leitenden Medium verstehen wir ein System, in dem wir keine ruhenden Ladungen berücksichtigen, aber Ströme, die
1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.
Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten
12. Vorlesung. I Mechanik
12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene
EPI WS 2007/08 Dünnweber/Faessler
11. Vorlesung EP I Mechanik 7. Schwingungen Wiederholung: Resonanz 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Glas zersingen
5. Wellen. Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen Struktur.
Dieter Suter - 90 - Physik B 5.1. Allgemeines 5. Wellen 5.1.1. Beispiele und Definition Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen
5. Wellen. Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen Struktur.
Prof. Dieter Suter Physik B3 SS 03 5.1 Grundlagen 5.1.1 Beispiele und Definition 5. Wellen Als Welle bezeichnet man die Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen
16 Elektromagnetische Wellen
16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass
Felder und Wellen Übung 13 WS 2018/2019
Christoph Füllner Felder und Wellen Übung 13 WS 2018/2019 Institute of Photonics (IPQ), Department of Electrical Engineering and Information Technology (ETIT) KIT The Research University in the Helmholtz
Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael
Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden
9. Periodische Bewegungen
9.2 Wellen Inhalt 9.2 Wellen 9.2.1 Harmonische Welle 9.2.2 Interferenz von Wellen 9.2.3 Wellenpakete 9.2.3 Stehende Wellen 9.2 Wellen 9.2 Wellen 9.2 Wellen Störung y breitet sich in Raum x und Zeit t aus.
Das Ampere sche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenz sche Regel
10. Elektrodynamik 10.5.4 Das Ampere sche Gesetz 10.5.5 Der Maxwellsche Verschiebungsstrom 10.5.6 Magnetische Induktion 10.5.7 Lenz sche Regel 10.6 Maxwell sche Gleichungen 10.7 Elektromagnetische Wellen
Gekoppelte Schwingkreise verhalten sich wie gekoppelte mechanische Pendel
1.3.8.5 Gekoppelte Schwingkreise verhalten sich wie gekoppelte mechanische Pendel Zwei induktiv gekoppelte LC-Kreise verhalten sich analog zu zwei gekoppelten Federn/Pendeln. Wie in der Mechanik kommt
III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator
III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante
Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.
Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei
Physik B2.
Physik B2 https://e3.physik.tudortmund.de/~suter/vorlesung/physik_a2_ws17/physik_a2_ws17.html 1 Wellen Welle = Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen
Zwischenprüfung. 3. (2 Pkt.) Formulieren Sie beide Lösungen in der Polardarstellung mit Polarwinkel in Einheiten von π im Bereich [ π, π]
Datum: 10.04.2019 Elektromagnetische Felder & Wellen Frühjahrssemester 2019 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Wir betrachten
[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.
Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------
Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016
Übungsklausur Optik und Wellenmechanik (Physik311) WS 2015/2016 Diese Übungsklausur gibt Ihnen einen Vorgeschmack auf die Klausur am 12.02.2015. Folgende Hilfsmittel werden erlaubt sein: nicht programmierbarer
1 Physikalische Grundbegriffe
1 Physikalische Grundbegriffe Um die Voraussetzungen der physikalischen Kenntnisse in den nächsten Kapiteln zu erfüllen, werden hier die dafür notwendigen Grundbegriffe 1 wie das Atom, das Proton, das
Polarisationsapparat
1 Polarisationsapparat Licht ist eine transversale elektromagnetische Welle, d.h. es verändert die Länge der Vektoren des elektrischen und magnetischen Feldes. Das elektrische und magnetische Feld ist
Elektromagnetische Felder und Wellen
Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:
Mit 184 Bildern und 9 Tabellen
Physik II Elektrodynamik Einfuhrungskurs für Studierende der Naturwissenschaften und Elektrotechnik von Klaus Dransfeld und Paul Kienle Bearbeitet von Paul Berberich 5., verbesserte Auflage Mit 184 Bildern
Glanz und Farbe der Metalle
https://www.itp.uni-hannover.de/zawischa.html Glanz und Farbe der Metalle Dietrich Zawischa ITP, Leibniz University Hannover, Germany Ausgehend von den Maxwellgleichungen soll das Reflexionsvermögen von
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 214/215 Thomas Maier, Alexander Wolf Lösung 1 Wellengleichung und Polarisation Aufgabe 1: Wellengleichung Eine transversale elektromagnetische Welle im Vakuum
Wellen und Dipolstrahlung
Wellen und Dipolstrahlung Florian Hrubesch. März 00 Maxwellgleichungen a) Leiten Sie aus den Maxwellgleichungen im Vakuum die Wellengleichung im Vakuum her. Zeigen Sie, dass E, B und k senkrecht aufeinander
7. Elektromagnetische Wellen (im Vakuum)
7. Elektromagnetische Wellen (im Vakuum) Wir betrachten das elektromagnetische Feld bei Abwesenheit von Ladungen und Strömen und untersuchen die Lösungen der Maxwellschen Gleichungen. 7.1 Wellengleichungen
Schallgeschwindigkeit in Gasen ******
V050510 5.5.10 ****** 1 Motivation Mittels Oszilloskop wird die Zeit gemessen, die ein Schallwellenimpuls nach seiner Erzeugung m Lautsprecher bis zum Empfänger (Mikrofon) braucht. 2 Experiment Abbildung
3.3 Polarisation und Doppelbrechung. Ausarbeitung
3.3 Polarisation und Doppelbrechung Ausarbeitung Fortgeschrittenenpraktikum an der TU Darmstadt Versuch durchgeführt von: Mussie Beian, Florian Wetzel Versuchsdatum: 8.6.29 Betreuer: Dr. Mathias Sinther
Plasmen: Einzelteilchenbewegungen
Plasmen: Einzelteilchenbewegungen Übersicht: elektromagnetische Felder, Lorentz-Kraft, Gyration und Führungszentrum, Driften, adiabatische Invarianten. Voraussetzungen: Energiedichte der Teilchen sehr
SA Saitenschwingungen
SA Saitenschwingungen Blockpraktikum Frühjahr 2007 (Gruppe 2) Freitag, 13. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Allgemeine Wellengleichung............... 2 2.2 Transversalwelle
gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her)
Mechanik Wellen 16. Wellen 16.1. Einleitung Beispiele: gekoppelte Pendelreihe Wellenmaschine Seilwelle (hin und her) Was passiert? Das schwingende Medium/Teilchen bewegt sich nicht fort, sondern schwingt
Elektromagnetische Welle, Wellengleichung, Polarisation
Aufgaben 4 Elektromagnetische Wellen Elektromagnetische Welle, Wellengleichung, Polarisation Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können.
Wellen und Dipolstrahlung
Wellen und Dipolstrahlung Florian Hrubesch. März 00 Inhaltsverzeichnis Wellen. Wellen im Vakuum............................. Lösung der Wellengleichung................... Energietransport / Impuls - der
V. Optik in Halbleiterbauelementen
V.1: Einführung V. Optik in Halbleiterbauelementen 1. Kontakt 1. 3.. 1. Kontakt Abb. VI.1: Spontane Emission an einem pn-übergang Rekombination in der LED: - statistisch auftretender Prozess - Energie
Maxwell mit Minkowski. Max Camenzind Uni Würzburg Senioren 2015
Maxwell mit Minkowski Max Camenzind Uni Würzburg Senioren 2015 Vektorfelder in 3 Dimensionen F(t,x) = (F x,f y,f z ) Satz von Gauß Quelle Fluss Die Massenerhaltung Ein Nettomassenfluss M durch die festen
Ferienkurs Teil III Elektrodynamik
Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................
SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Gymnasium Jahrgangstufe 11 (Physik)
SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Gymnasium Jahrgangstufe 11 (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität
0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip
1 05.04.2006 0.1 76. Hausaufgabe 0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip Trifft eine Welle auf Barriere, die idealisiert nur in einem einzigen Punkt durchlässig ist, bildet sich im Öffnungspunkt
Übersicht Hohlleiter. Wellenausbreitung. Allgemeine Bemerkungen. Lösung der Maxwell'schen Gleichungen
Übersicht Hohlleiter Vergleich: freie Wellen vs. Leitungswellen Ebene Welle im rechteckigen Hohlleiter "Geführte Wellenlänge" Übertragung von Signalen Moden Mathematische Herleitung (Rechteck) Aufteilung
Übersicht Hohlleiter. Felder & Komponenten II. Copyright: Pascal Leuchtmann
Übersicht Hohlleiter Vergleich: freie Wellen vs. Leitungswellen Ebene Welle im rechteckigen Hohlleiter "Geführte Wellenlänge" Übertragung von Signalen Moden Mathematische Herleitung (Rechteck) Aufteilung
0.1.1 Exzerpt von B. S. 280f.: Mikrowellen; Reflektion eletromagnetischer
1 31.03.2006 0.1 75. Hausaufgabe 0.1.1 Exzerpt von B. S. 280f.: Mikrowellen; Reflektion eletromagnetischer Wellen Elektromagnetische Hochfrequenzschwingkreise strahlen elektromagnetische Wellen ab. Diese
Ferienkurs Experimentalphysik III - Optik
Ferienkurs Experimentalphysik III - Optik Max v. Vopelius, Matthias Brasse 23.02.09 Inhaltsverzeichnis 1 Wellen 1 1.1 Allgemeines zu Wellen.................................... 1 1.1.1 Wellengleichung für
Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides?
Grundbausteine des Mikrokosmos (7) Wellen? Teilchen? Beides? Experimentelle Überprüfung der Energieniveaus im Bohr schen Atommodell Absorbierte und emittierte Photonen hν = E m E n Stationäre Elektronenbahnen
Fragen zur Vorlesung Licht und Materie
Fragen zur Vorlesung Licht und Materie SoSe 2014 Mögliche Prüfungsfragen, mit denen man das Verständnis des Vorlesungsstoffes abfragen könnte Themenkomplex Lorentz-Modell : Vorlesung 1: Lorentz-Modell
Physik VI Plasmaphysik
Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im Magnetfeld 5. Wellen
Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves
Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves 1. Einleitung 2. Optische Grundbegriffe 3. Optische Meßverfahren 3.1 Grundlagen dρ 3.2 Interferometrie, ρ(x,y), dx (x,y) 3.3 Laser-Doppler-Velozimetrie
Die Maxwell Gleichungen
Die Maxwell Gleichungen Die Maxwellschen Gleichungen beschreiben Beziehungen zwischen dem elektrischen Feld E = E( x;t), der magnetischen Flussdichte B = B( x;t), der elektrischen Stromstärke J = J( x;t),
Zur Idee der Quantenkryptographie: Abhörsicher kommunizieren?!
Zur Idee der Quantenkryptographie: Abhörsicher kommunizieren?! Institut für Theoretische Physik Universität Wien Quantenphysik: beschreibt das Verhalten von Teilchen, wie Elektronen, Protonen, Neutronen,
Polarisation durch Reflexion
Version: 27. Juli 2004 Polarisation durch Reflexion Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene, optische
Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 4 Thema: Elektromagnetische Schwingungen, elektromagnetische Wellen und Spezielle Relativitätstheorie Technische Universität München 1 Fakultät für
Physik 1 für Chemiker und Biologen 11. Vorlesung
Physik 1 für Chemiker und Biologen 11. Vorlesung 22.01.2018 Wiederholungs-/Einstiegsfrage: Abstimmen unter pingo.upb.de, #282978 http://xkcd.com/1161/ Heute: - Wiederholung: Schwingungen - Resonanz - Wellen
Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall
Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall Versuchsziel Geschwindigkeitsmessung mit Hilfe
Brewster-Winkel - Winkelabhängigkeit der Reflexion.
5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation
Strahlungsdruck, Potentiale
Übung 7 Abgabe: 29.04. bzw. 03.05.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Strahlungsdruck, Potentiale 1 Der Brewsterwinkel
1-D photonische Kristalle
1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2
Basiskenntnistest - Physik
Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit
Zusammenfassung. Maxwellgleichungen und elektromagnetische Wellen
Zusammenfassung Maxwellgleichungen und elektromagnetische Wellen nach dem uch Physik von Paul A. Tipler pektrum Akademischer Verlag Datum:.. von Michael Wack ) http://www.skriptweb.de Hinweise z.. auf
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags
Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG
3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt
Physik VI Plasmaphysik
Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im
Wellenlänge, Wellenzahl, Lichtgeschwindigkeit
Das -Feld Wellenlänge, Wellenzahl, Lichtgeschwindigkeit Harmonische Welle: macht harmonische Schwingung sin[ωt + φ( r)] an jedem Punkt im Raum; variiert bei festem t sinusförmig entlang z Wellenfronten
Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz
Roter Faden: Vorlesung 12+13+14: Heute: Wellen, Überlagerung von Wellen, Dispersion, Fourier-Synthese, Huygenssche Prinzip, Kohärenz, Interferenz Versuche: Huygens sche Prinzip, Schwebungen zweier Schwinggabel,
Physik 1 für Chemiker und Biologen 11. Vorlesung
Physik 1 für Chemiker und Biologen 11. Vorlesung 16.01.2017 Heute: - Wiederholung: Schwingungen - Resonanz - Wellen Prof. Dr. Jan Lipfert [email protected] http://xkcd.com/273/ Bitte genau ausfüllen!
6 Elektromagnetische Schwingungen und Wellen. E y. E(z=0) Polarisation Richtung des E-Vektors gibt die Polarisation an.
6 Elektromagnetische Schwingungen und Wellen E y E(z=0) E 0 z E y E 0 t Abbildung 6.10: (a) E(z, t = t 1 ): Momentaufnahme für t = t 1. (b) E(z = z 1, t): Zeitabhängigkeit an festem Ort z = z 1. Polarisation
Aufgabe 1 ( 3 Punkte)
Elektromagnetische Felder und Wellen: Klausur 2016-2 1 Aufgabe 1 ( 3 Punkte) Welche elektrische Feldstärke benötigt man, um ein Elektron (Masse m e, Ladung q = e) im Schwerefeld der Erde schweben zu lassen?
1 Die Fresnel-Formeln
1 Die Fresnel-Formeln Im Folgenden werden die Bezeichnungen aus dem Buch Optik von Eugene Hecht 5. Auflage, Oldenburg verwendet, aus dem auch die Bilder stammen. In der Vorlesung wurden andere Bezeichnungen
A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5 m/s D. v = 4.4 m/s E. v = 1.3 m/s
Aufgabe 1: Wie schnell muss ein Wagen in einem Looping mit 8 m Durchmesser am höchsten Punkt sein, damit er gerade nicht herunterfällt? (im Schwerefeld der Erde) A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5
Brechung (Refrak/on) von Lichtstrahlen. wahre Posi/on
Brechung (Refrak/on) von Lichtstrahlen wahre Posi/on Brechung des Lichts, ein kurze Erklärung Fällt Licht auf die Grenzfläche zweier durchsich/ger Körper, so wird nur ein Teil reflek/ert während der Rest
NG Brechzahl von Glas
NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes
PROBLEME AUS DER PHYSIK
Helmut Vogel PROBLEME AUS DER PHYSIK Aufgaben und Lösungen zur 16. Auflage von Gerthsen Kneser Vogel Physik Mit über 1100 Aufgaben, 158 Abbildungen und 16 Tabellen Springer-Verlag Berlin Heidelberg New
Die Sonne ein Stern im Detail (2) Die Photosphäre
Die Sonne ein Stern im Detail (2) Die Photosphäre Plasma der Stoff, aus dem die Sonne ist Ab einer Temperatur von 10000 K liegt die Materie vollständig im Plasmazustand vor. Dieser spezielle 4. Aggregatzustand
Relativistische Beziehungen Hochfrequenzgrundlagen
Hochfrequenzgrundlagen Prof. Dr. H. Podlech 1 Klassische Mechanik Im Rahmen der klassischen Mechanik gelten folgende Beziehungen Masse: m=konstant Impuls: Kinetische Energie: Geschwindigkeit: Prof. Dr.
Elektromagnetische Felder
К. Meetz W L Engl Elektromagnetische Felder Mathematische und physikalische Grundlagen Anwendungen in Physik und Technik Mit 192 Abbildungen Springer-Verlag Berlin Heidelberg New York 1980 Inhaltsverzeichnis
VORSCHAU. 4. Es werden mechanische und elektromagnetische Wellen unterschieden. Ordne folgende Beispiele.
Die mechanischen 1. Entscheide, ob die Aussagen richtig oder falsch sind. Wenn du denkst, es handelt sich um eine falsche Aussage, dann berichtige diese. Aussage richtig falsch Die Aussage müsste richtig
