Wellen und Dipolstrahlung

Größe: px
Ab Seite anzeigen:

Download "Wellen und Dipolstrahlung"

Transkript

1 Wellen und Dipolstrahlung Florian Hrubesch. März 00 Maxwellgleichungen a) Leiten Sie aus den Maxwellgleichungen im Vakuum die Wellengleichung im Vakuum her. Zeigen Sie, dass E, B und k senkrecht aufeinander stehen. A Die Maxwellgleichungen im Vakuum lauten: = A A () E = 0 B = 0 () E = B Wir wenden jetzt die Rotation auf 3 an: B = µ 0 ɛ 0 E E = B E E = B }{{} }{{} E=0 =µ 0 ɛ 0 E (3) (4) (5) E = µ0 ɛ 0 E (6) Dafür dass E, B und k senkrecht aufeinander stehen: E = B Mit dem Ansatz für planare Ebene Wellen: (7) E = E 0 e i(kz ωt) e x (8)

2 erhält man: B = E 0 ex e i(kz ωt) (9) B = ike 0e i(kz ωt) e y (0) B = ike 0 e y e i(kz ωt) = k ω E 0 e y e i(kz ωt) () E und B stehen also senkrecht aufeinander. Nun bleibt noch zu zeigen, dass es keine longitudinalen Elektromagnetischen Wellen gibt. Wir nehmen an: E (z, t) = E 0 e i(kz ωt) () 0 = E = dx E x + dy E y + dz E z (3) Nachdem eine Ebene Welle in z-richtung keine x- und y- Abhängigkeiten hat folgt also: ike z e i(kz ωt) = 0 (4) Damit hat das E-Feld keine z-abhängigkeit und steht somit senkrecht auf k b) Eine ebene Lichtwelle mit der elektrischen Feldamplitude E = MV falle m senkrecht auf einen perfekten Spiegel. Berechnen Sie den Strahlungsdruck, der auf den Spiegel wirkt. P = I c = ɛ 0c 0 E c 0 = ɛ 0 E = C V m ( 06 V m ) = 8.854P a (5) c) Die magnetische Induktion B sei als Ebene Welle vorgegeben: B (x, y, z, t) = B 0 cos (kz ωt) e x + B 0 cos (kz ωt) e y (6) Florian Hrubesch

3 Berechnen Sie die elektrische Feldstärke und deren Polarisation. Wir verwenden wieder die Maxwellgleichungen: B = E (7) c 0 B x x = B 0 y e x + y e y cos (kz ωt) (8) z z = B 0 k ( e y e x ) sin (kz ωt) (9) E = B 0 kc ( e y e x ) dt sin (kz ωt) (0) = B 0kc cos (kz ωt) ( e y e x ) ω () = B 0 c cos (kz ωt) ( e y e x ) () d) Berechnen Sie damit den Poynting Vektor S = µ 0 ( E B ) = B 0c µ 0 cos (kz ωt) (( e x + e y ) ( e y e x )) (3) = B 0c µ 0 cos (kz ωt) e z (4) Absorption von Licht Aus dem Oszillatormodell der Dispersion erhält man für verdünnte Gase die Frequenzabhängigkeit der Dielektrizitätskonstanten: ɛ r (ω) = + Ne ɛ 0 m ω0 ω + iγω Dabei ist N die Teilchendichte, ω die Resonanzfrequenz und γ die Dämpfungskonstante des Materials. (5) a) Leiten Sie aus dieser Formel den Realteil und den Imaginärteil des Brechungsindex her und skizzieren sie diese um die Resonanzfrequenz ω 0. Verwenden Sie hierzu die Näherung ɛ r = + δ mit δ << und die Reihenentwicklung ( + x) n = + nx. Wir wissen das n = ɛ r : n = ɛ r = ( + δ) + δ (6) Florian Hrubesch 3

4 Und mit der Angabe: Somit gilt für Realteil und Imaginärteil: n = + Ne ɛ 0 m (ω0 ω ) iγω (ω0 ω ) (7) + γ ω n R = + Ne ɛ 0 m (ω0 ω ) (ω0 ω ) + γ ω (8) n I = Ne ɛ 0 m γω (ω0 ω ) + γ ω (9) n R n I ω 0 b) Betrachten Sie nun eine ebene Welle die sich in z-richtung in einem verdünnten Gas mit Brechunsgindex ñ = n + iη ausbreitet: E (z, t) = E 0 exp i (kz ωt). Ersetzen Sie k mit Hilfe der Dispersionsrelation durch n und ω und bestimmen Sie die Intensität der Welle in Abhängigkeit von z. k = ñω (30) c 0 E (z, t) = E nω 0 exp i z ωt (3) c ( 0 = E 0 exp ηωz ) ( ) nω exp i z ωt (3) c 0 c 0 I = ɛ 0 c 0 E (33) = ɛ ( 0c 0 exp ηωz ) (34) c 0 Florian Hrubesch 4

5 c) Wie lautet der Beitrag ɛ (ω) der von der Bewegung freier Elektronen im Metall herrührt? Im Metall existieren keine Rückstellkräfte, also auch keine Resonanzfrequenzen. ɛ r = Nq mɛ 0 ω + iγω (35) 3 Breite der Zone anomaler Dispersion Finden Sie die Breite der Region anomaler Dispersion für eine einzige Resonanzfrequenz ω 0. Gehen Sie davon aus, dass γ << ω 0. Zeigen Sie, dass der Brechungsindex seine Extremwerte genau an den Punkten der Halbwertsbreite des Absorptionskoeffizienten hat. Wir beginnen mit: n = + Nq (ω0 ω ) mɛ 0 (ω0 ω ) + γ ω = Nq (ω0 ω ) (36) mɛ 0 D ( dn dω = Nq ω mɛ 0 D (ω 0 ω ) ( ( ω D 0 ω ) ( ω) + γ ω ) ) = 0 (37) ωd = ( ω0 ω ) ( ( ω0 ω ) γ ) ω (38) Wir lösen nun nach ω auf. (39) ω = ω0 ωγ (40) ω = ω 0 γ ( ω 0 γ ) = ω 0 γ (4) ω 0 ω 0 Und damit ist die Breite der anomalen Dispersion: Für alpha gilt: α = Nq ω mɛ 0 c 0 Für das Maximum ω = ω 0 gilt also: ω = ω ω = γ (4) γ (ω 0 ω ) + γ ω (43) α max = Nq mɛ 0 c 0 γ (44) Florian Hrubesch 5

6 Bei ω und ω gilt: α = Nq ω mɛ 0 c 0 γ ω γ ω0 + γ ω = α max ω + ω0 (45) Und zusätzlich gilt: ω ω + ω 0 = ω 0 ω 0 γ ω0 ω 0 γ = γ ω 0 γ ω 0 (46) 4 Reflektion an Kugel Paralleles Licht der Intensität I = 900 W falle auf eine perfekt spiegelnde Metallkugel vom Durchmesser d = m. Berechnen Sie die Kraft auf die Kugel in m Ausbreitungsrichtung des Lichts. Zunächst Interessiert uns die Kraft auf die Kugel. Dazu betrachten wir einen Kreisstreifen mit dem Radius a = R sin θ auf der Kugel. Dieser hat die Fläche: Wir benötigen die Fläche senkrecht zum Lichteinfall: da = πa R dθ (47) da z = da cos θ = πr sin θ cos θdθ = πr sin (θ) (48) Für die durch das einfallende und das reflektierte Licht ausgeübte Kraft ergibt sich: Integration über die Halbkugel ergibt dann: F ges = I c F e = I c da z (49) F r = I c cos (θ) da z (50) π 0 = πr I c ( + cos (θ)) da z (5) π 0 ( + cos (θ)) sin (θ) dθ (5) Der hintere Term fällt durch die Integration weg und so erhalten wir: (53) F ges = πr I c Die Kugel verhält sich also wie eine Kreisscheibe. (54) Florian Hrubesch 6

7 5 Fouriertransformation Berechnen Sie die Fouriertransformierte der folgenden Amplitudenverteilungen im Frequenzraum: a) E (ω) = E 0 δ (ω ω 0 ) E (t) = π dωe 0 δ (ω ω 0 ) e iωt = π E 0 e iω 0t (55) b) E (ω) = E 0 e α ω E (t) = dωe 0 e α ω e iωt (56) π = E ( ) 0 dωe αω e iωt + dωe αω e iωt (57) π 0 0 = E ( 0 π α + it + ) (58) α it = E 0α (59) α + t 6 Wellengleichung und Intensitäten Aus der Linearität der Wellengleichung folgt, dass jede Linearkombination der Wellenamplitude von Lösungen wieder eine Lösung ergibt. Gilt dies auch für die Intensitäten der Wellen? Gibt es Fälle, bei denen man die Intensitäten zweier Teilwellen addieren kann, um die Gesamtintensität zu bekommen? Wir setzen das Elektrische Feld an: Wir setzen an: E ges = E + E (60) I = ɛ 0 c 0 E = ɛ 0 c 0 ( E + E + E E ) (6) E i = E i cos (ωt + φ i ) (6) I = ɛ 0 c 0 E ges = ( ɛ 0c 0 E + E + E ) E cos (φ φ ) (63) = I + I + I I cos (φ φ ) (64) Für nicht kohärentes Licht schwanken die Phasen ständig, und im Mittel gilt damit φ φ = 0. Für kohärentes Licht gilt das allerdings nicht! Florian Hrubesch 7

8 7 Lichtantrieb Es gibt Pläne, Raumschiffe zu weit entfernten Himmelskörpern durch Photonenrückstoß auf hohe Geschwindigkeiten zu beschleunigen. Wie groß muss die Intensität des Lichtes einer,,lampe mit 00 cm Fläche sein, die Licht aus dem Raumschiff nach,,hinten aussendet, damit eine Masse von 000 kg eine Beschleunigung von 0 5 m erfährt? s Wir starten mit dem Strahlungsdruck: P = I c (65) Die Kraft ist entsprechend: F = P A = I A = m a (66) Wir erhalten also die Intensität zu: Einsezten ergibt: I = m c a A (67) I = W m (68) 8 Brechungsindex bei schwacher Dämpfung Zeigen Sie, dass man für ω ω 0 >> γ den Brechungsindex schreiben kann als b n = a + λ λ 0 (69) Wir starten mit: n = + Nq (ω0 ω ) mɛ 0 (ω0 ω ) (70) + γ ω = a ω 0 ω (7) a 4πc 0 λ 0 = a = a λ 0λ λ λ λ λ 0 λ 0 = a λ 0 + a λ 4 0 λ λ 0 b = a + λ λ 0 (7) (73) Florian Hrubesch 8

9 9 Gruppen und Phasengeschwindigkeit a) Seichtes Wasser ist Nichtdispersiv. Die Wellen haben eine Phasengeschwindigkeit die proportional zur Wurzel der Tiefe des Wassers ist. In tiefen Wasser verhalten sie sich allerdings so, als ob die Tiefe Proportional zur Wellenlänge λ wäre. Zeigen Sie, dass die Phasengeschwindigkeit in tiefen Wasser doppelt so groß wie die Gruppengeschwindigkeit ist. Die Phasengeschwindigkeit ist proportional zur Wurzel aus der Wellenlänge v ph = α λ. Es gilt λ = π und v k ph = ω: k π ω = αk k = α πk (74) Für die Gruppengeschwindigkeit gilt: v g = dω dk = α π k = π α k = α λ = v ph (75) b) In der Quantenmechanik wird ein freies Teilchen der Masse m das sich in x-richtung ausbreitet durch die Wellenfunktion Ψ (x, t) = Ae i(px Et)/ (76) beschrieben. Dabei ist p der Impuls und E = p die kinetische Energie m des Teilchens. Berechnen Sie die Gruppen und die Phasengeschwindigkeit des Teilchens. Welche davon entspricht der tatsächlichen Teilchengeschwindigkeit? i (px Et) = i (kx ωt) (77) k = p (78) ω = E = p m = k m Und damit folgt für die Gruppen und die Phasengeschwindigkeit: v ph = ω k = E p = p m = k m v g = dω dk = k m = k m = p m (79) (80) (8) v ph = v g (8) Die Teilchengeschwindigkeit entspricht also der Gruppengeschwindigkeit. Florian Hrubesch 9

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch. März 00 Inhaltsverzeichnis Wellen. Wellen im Vakuum............................. Lösung der Wellengleichung................... Energietransport / Impuls - der

Mehr

FK Ex 4 - Musterlösung Montag

FK Ex 4 - Musterlösung Montag FK Ex 4 - Musterlösung Montag 1 Wellengleichung Leiten Sie die Wellengleichungen für E und B aus den Maxwellgleichungen her. Berücksichtigen Sie dabei die beiden Annahmen, die in der Vorlesung für den

Mehr

Ferienkurs Experimentalphysik III - Optik

Ferienkurs Experimentalphysik III - Optik Ferienkurs Experimentalphysik III - Optik Max v. Vopelius, Matthias Brasse 23.02.09 Inhaltsverzeichnis 1 Wellen 1 1.1 Allgemeines zu Wellen.................................... 1 1.1.1 Wellengleichung für

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 214/215 Thomas Maier, Alexander Wolf Lösung 1 Wellengleichung und Polarisation Aufgabe 1: Wellengleichung Eine transversale elektromagnetische Welle im Vakuum

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 010/011 Übungsblatt - 1. November 010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) Berechnen Sie die Fouriertransformierte

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 3. Übungsblatt - 8.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (2 Punkte) Berechnen

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Montag

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Montag Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Montag Inhaltsverzeichnis Technische Universität München 1 Elektromagnetische Wellen 1 1.1 Maxwell-Gleichungen im Medium......................

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 017/18 Klassische Theoretische Physik III (Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 10 Ausgabe: Fr, 1.01.18 Abgabe: Fr, 19.01.17 Besprechung: Mi, 4.01.18

Mehr

Elektrodynamik (T3p)

Elektrodynamik (T3p) Zusatzaufgaben zur Vorlesung Elektrodynamik (T3p) SoSe 5 Beachten Sie, dass die nachfolgenden Aufgaben nur als zusätzliche Übung und nicht als potenzielle Klausuraufgaben angesehen werden sollten! Aufgabe

Mehr

6.4 Wellen in einem leitenden Medium

6.4 Wellen in einem leitenden Medium 6.4. WELLEN IN EINEM LEITENDEN MEDIUM 227 6.4 Wellen in einem leitenden Medium Unter einem leitenden Medium verstehen wir ein System, in dem wir keine ruhenden Ladungen berücksichtigen, aber Ströme, die

Mehr

1 Elektromagnetische Wellen im Vakuum

1 Elektromagnetische Wellen im Vakuum Technische Universität München Christian Neumann Ferienkurs Elektrodynamik orlesung Donnerstag SS 9 Elektromagnetische Wellen im akuum Zunächst einige grundlegende Eigenschaften von elektromagnetischen

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

Wechselwirkung von Strahlung mit Materie 1. Einleitung. 2. Dipolstrahlung KAPITEL H

Wechselwirkung von Strahlung mit Materie 1. Einleitung. 2. Dipolstrahlung KAPITEL H 104 KAPITEL H Wechselwirkung von Strahlung mit Materie 1. Einleitung In der Elektrodynamik wird der Einfluß der Materie auf die Strahlung mit Hilfe der Stoffkonstanten ε r und µ r berücksichtigt, wobei

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester / Anwesenheitsübung -.November Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe ( ) ( Punkte) Eine harmonische elektromagnetische

Mehr

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte)

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte) Aufgabe K5: Kurzfragen (9 = 9 Punkte) Beantworten Sie nur, was gefragt ist. (a) Wie transformiert das Vektorpotential bzw. das magnetische Feld unter Eichtransformationen? Wie ist die Coulomb-Eichung definiert?

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Ferienkurs Theoretische Physik 3: Elektrodynamik. Ausbreitung elektromagnetischer Wellen

Ferienkurs Theoretische Physik 3: Elektrodynamik. Ausbreitung elektromagnetischer Wellen Ferienkurs Theoretische Physik 3: Elektrodynamik Ausbreitung elektromagnetischer Wellen Autor: Isabell Groß Stand: 21. März 2012 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Homogene Maxwell-Gleichungen

Mehr

7. Elektromagnetische Wellen (im Vakuum)

7. Elektromagnetische Wellen (im Vakuum) 7. Elektromagnetische Wellen (im Vakuum) Wir betrachten das elektromagnetische Feld bei Abwesenheit von Ladungen und Strömen und untersuchen die Lösungen der Maxwellschen Gleichungen. 7.1 Wellengleichungen

Mehr

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.)

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.) Datum: 05.04.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt., 97%)

Mehr

Elektromagnetische Wellen in Materie

Elektromagnetische Wellen in Materie Elektromagnetische Wellen in Materie Wir haben bis jetzt elektromagnetische Wellen nur im Vakuum behandelt, dabei haben wir die Ladungs- und Stromdichten ρ und j gleich Null gesetzt. In einem Medium werden

Mehr

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11 Elektromagnetische Felder und Wellen: Klausur Frühjahr 2006 1 Elektromagnetische Felder und Wellen Klausur Frühjahr 2006 Aufgabe 1 (3 Punkte) Eine Leiterschleife mit dem Mittelpunkt r L = 2a e z und Radius

Mehr

Physik 4, Übung 2, Prof. Förster

Physik 4, Übung 2, Prof. Förster Physik 4, Übung, Prof. Förster Christoph Hansen Emailkontakt 4. April 03 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit.

Mehr

Klassische Theoretische Physik III WS 2014/ Brewster-Winkel: (20 Punkte)

Klassische Theoretische Physik III WS 2014/ Brewster-Winkel: (20 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Phsik III WS 204/205 Prof Dr A Shnirman Blatt 3 Dr B Narohn Lösung Brewster-Winkel: 20 Punkte

Mehr

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 4 Thema: Elektromagnetische Schwingungen, elektromagnetische Wellen und Spezielle Relativitätstheorie Technische Universität München 1 Fakultät für

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Matrikelnummer: Klausurnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe

Mehr

Elektromagnetische Wellen in Materie

Elektromagnetische Wellen in Materie Elektromagnetische Wellen in Materie Wir haben bis jetzt elektromagnetische Wellen nur im Vakuum behandelt, dabei haben wir die Ladungs- und Stromdichten ρ und j gleich Null gesetzt. In einem Medium werden

Mehr

Ferienkurs der Experimentalphysik II Musterlösung Übung 3

Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Michael Mittermair 29. August 213 1 Aufgabe 1 Wie groß ist die Leistung, die von einem geladenen Teilchen mit der Ladung q abgestrahlt wird, das

Mehr

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.)

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.) Datum: 18.04.2018 Elektromagnetische Felder & Wellen Frühjahrssemester 2018 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Für das

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesh 7. März 200 Inhaltsverzeihnis Wellen. Wellen im Vakuum........................... 2.. Lösung der Wellengleihung................. 2..2 Energietransport / Impuls

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Optische Systeme (3. Vorlesung)

Optische Systeme (3. Vorlesung) 3.1 Optische Systeme (3. Vorlesung) Uli Lemmer 06.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 3.2 1. Grundlagen der Wellenoptik 1.1 Die Helmholtz-Gleichung 1.2 Lösungen der Helmholtz-Gleichung:

Mehr

Q 1. d 2 e x. welche den Zusammenhang zwischen Stromdichte und Ladungsdichte beschreibt. Da die Stromdichte hier nur eine x-komponente besitzt, gilt

Q 1. d 2 e x. welche den Zusammenhang zwischen Stromdichte und Ladungsdichte beschreibt. Da die Stromdichte hier nur eine x-komponente besitzt, gilt Elektromagnetische Felder Wellen: Lösung zur Klausur Herbst 999 Aufgabe Das Potential einer Punktladungen Q am Ort r lautet V { r} = Q 4πɛɛ 0 r r Hier soll das Potential einer gegebenen Raumladung ρ v

Mehr

Aufgabenblatt zum Seminar 13 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 13 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 3 PHYS7357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 5. 7. 9 Aufgaben. Zwei gleiche

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 12-13 Prof. Dr. Alexander Mirlin Blatt 10

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2008-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen Vorbereitung zur Klausur Elektromagnetische Felder und Wellen 1/50 J. Mähnß Stand: 9. August 2016 c J. Mähnß 2/50 Maxwellgleichungen Maxwellgleichungen allgemein 3/50 ( B = µ 0 j V + ε ) E 0 t E = B t

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Musterlösung Montag 14. März 2011 1 Maxwell Wir bilden die Rotation der Magnetischen Wirbelbleichung mit j = 0: ( B) = +µµ 0 ɛɛ 0 ( E) t und verwenden wieder die Vektoridenditäet

Mehr

ÜBUNGEN UR THEORETISCHEN PHYSIK C Bewertungsschema für Bachelor Punkte Note < 6 5. 6-7.5 4.7 8-9.5 4. -.5 3.7-3.5 3.3 4-5.5 3. 6-7.5.7 8-9.5.3 3-3.5. 3-33.5.7 34-35.5.3 36-4. nicht bestanden bestanden

Mehr

Zwischenprüfung. 1 Mathematische Grundlagen (35 Pkt.)

Zwischenprüfung. 1 Mathematische Grundlagen (35 Pkt.) Datum: 13.4.216 Elektromagnetische Felder & Wellen Frühjahrssemester 216 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung 1 Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Für das

Mehr

Inhaltsverzeichnis. 1 Reexions- und Brechungsgesetz. 1.1 Einführung

Inhaltsverzeichnis. 1 Reexions- und Brechungsgesetz. 1.1 Einführung Inhaltsverzeichnis 1 Reexions- und Brechungsgesetz 1 1.1 Einführung...................................................... 1 1.2 Snelliussches Brechungsgesetz............................................

Mehr

1 Induktion und Verschiebungsstrom

1 Induktion und Verschiebungsstrom Elektrodynamik 1 INDUKTION UND VERSCHIEBUNGSSTROM Bemerkung: Aufgaben 1- sind hier in SI-Einheiten gelöst! 1 Induktion und Verschiebungsstrom Ein unendlich langes, gerades Kabel führt einen langsam veränderlichen

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Wellen, Dispersion, Brechnung, stehende Wellen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 7. Feb. 016 Bernoulli-Gleichung Die Reynoldszahl

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektroagnetische Schwingungen und Wellen Elektroagnetischer Schwingkreis Schaltung it Kondensator C und Induktivität L. Kondensator wird periodisch aufgeladen und entladen. Tabelle 6.1: Vergleich elektroagnetischer

Mehr

Vorlesung Physik für Pharmazeuten und Biologen

Vorlesung Physik für Pharmazeuten und Biologen Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung

Mehr

11.1 Wellenausbreitung 11.2 Wellengleichung 11.3 Interferenzen und Gruppengeschwindigkeit

11.1 Wellenausbreitung 11.2 Wellengleichung 11.3 Interferenzen und Gruppengeschwindigkeit Inhalt Wellenphänomene. Wellenausbreitung. Wellengleichung.3 Interferenzen und Gruppengeschwindigkeit Wellenphänomene Wellen sind ein weiteres wichtiges physikalisches Phänomen Anwendungen: Radiowellen

Mehr

Physik B2.

Physik B2. Physik B2 https://e3.physik.tudortmund.de/~suter/vorlesung/physik_a2_ws17/physik_a2_ws17.html 1 Wellen Welle = Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( S)

Sessionsprüfung Elektromagnetische Felder und Wellen ( S) Vorname Name Nummer, ITET email@student.ethz.ch Lfd.Nr.: /150 Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10S) 14. August 2017, 14:00-17:00 Uhr, HIL C15/D15 Prof. Dr. L. Novotny Bitte

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( )

Sessionsprüfung Elektromagnetische Felder und Wellen ( ) Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10) 21. August 2015, 14-17 Uhr, HIL F15 Prof. Dr. L. Novotny Bitte beachten Sie: Diese Prüfung besteht aus 3 Aufgaben und hat 3 beidseitig

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 14. 07. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 14. 07.

Mehr

Probeklausur zur Experimentalphysik 3

Probeklausur zur Experimentalphysik 3 Probeklausur zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 21/211 7. Januar 211 Musterlösung Aufgabe 1 (12 Punkte) Eine transversale elektromagnetische Welle im Vakuum sei zirkular polarisiert:

Mehr

10. Wellenpakete im Vakuum

10. Wellenpakete im Vakuum 0. Wellenpakete im Vakuum 0. Informationsübertragung durch elektromagnetische Wellen Ein wichtiger Anwendungsbereich elektromagnetischer Strahlung ist die Informationsübertragung. Monochromatische ebene

Mehr

10. Wellenpakete im Vakuum

10. Wellenpakete im Vakuum ω m. Wellenpakete im Vakuum. Informationsübertragung durch elektromagnetische Wellen Ein wichtiger Anwendungsbereich elektromagnetischer Strahlung ist die Informationsübertragung. Monochromatische ebene

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

Zusätzliche Aspekte der Absorbtion und Emission von Photonen

Zusätzliche Aspekte der Absorbtion und Emission von Photonen Vorlesung 9 Zusätzliche Aspekte der Absorbtion und Emission von Photonen Plancksche Verteilung und thermisches Gleichgewicht: Wir betrachten ein Medium aus Atomen. Die Atome wechselwirken nicht direkt

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr Elektromagnetische Felder und Wellen: zur Klausur Frühjahr 2005 1 Aufgabe 1 Wie lautet das elektrostatische Potential V ( r), das durch die Raumladungsdichte ϱ( r) = ϱ 0 e k xxik y y erzeugt wird, wenn

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion

Mehr

Übungen zur Quantentheorie (Lehramt) WS 2006/07

Übungen zur Quantentheorie (Lehramt) WS 2006/07 Übungen zur Quantentheorie Lehramt) WS 2006/07 Lesender: Prof. M. Müller-Preußker Übungen: Dr. J. Käppeli Lösungsbeispiele zur 1. Serie Marcus Petschlies 1 Ebene Wellen 1 1.a) Allgemeine Lösung der Wellengleichung

Mehr

1 Maxwellgleichungen (S.2) 2 Kontinuitätsgleichung (S.29) 3 Poynting-Vektor (S.33) 4 Grenzbedingungen (S.38) 5 Potentiale statischer Felder (S.

1 Maxwellgleichungen (S.2) 2 Kontinuitätsgleichung (S.29) 3 Poynting-Vektor (S.33) 4 Grenzbedingungen (S.38) 5 Potentiale statischer Felder (S. Maxwellgleichungen (S.) Differentialform rot E = B rot H = J + D div D = η div B = 0 Integralform Ed r = Ḃdf F (F ) (F ) (V ) (V ) Hd r = ( J + D)df(= I) F Dd f = V Bd f = 0 ηdv(= Q) Kontinuitätsgleichung

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch 25. März 2010 Inhaltsverzeichnis 1 Photoeffekt 1 2 Comptoneffekt 3 3 Bragg Streuung 4 4 Strahlungsgesetze 5 1 Photoeffekt Der Photoeffekt wurde erstmals 1839

Mehr

Zwischenprüfung. 3. (2 Pkt.) Formulieren Sie beide Lösungen in der Polardarstellung mit Polarwinkel in Einheiten von π im Bereich [ π, π]

Zwischenprüfung. 3. (2 Pkt.) Formulieren Sie beide Lösungen in der Polardarstellung mit Polarwinkel in Einheiten von π im Bereich [ π, π] Datum: 10.04.2019 Elektromagnetische Felder & Wellen Frühjahrssemester 2019 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Wir betrachten

Mehr

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael

Martinovsky Nicole. Schwarzmann Tobias. Thaler Michael Themen: Unbestimmtheitsrelationen, Materiewellen, Materieteilchen als Welle, Wellenfunktion, Dispersionsrelation, Wellenpaket, Wahrscheinlichkeitsinterpretation, Materie-Quanteninterferenz Martinovsky

Mehr

THEORETISCHE PHYSIK C NACHKLAUSUR Prof. Dr. J. Kühn Dienstag, 27.4.2 Dr. S. Uccirati 7:3-2:3 Uhr Bewertungsschema für Bachelor Punkte Note < 4 5. 4-5.5 4.7 6-7.5 4. 8-9.5 3.7 2-2.5 3.3 22-23.5 3. 24-25.5

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Elektromagnetische Wellen Im Gegensatz zu Schallwellen sind elektromagnetische Wellen nicht an ein materielles Medium gebunden -- sie können sich auch in einem perfekten Vakuum ausbreiten. Sie sind auch

Mehr

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen Theoretischen Physik II SS 7 Klausur I - Aufgaben und Lösungen Aufgabe Elektrostatik Im Mittelpunkt einer leitenden und geerdeten Hohlkugel RadiusR) befindet sich eine kleine Kugel mit homogener Ladungsverteilung

Mehr

Wellen und Quanten Formelsammlung

Wellen und Quanten Formelsammlung Wellen und Quanten Formelsammlung Licht als elektromagnetische Welle Wellengleichungen E = ε 0 ε r µ 0 2 E t 2 () B = ε 0 ε r µ 0 2 B t 2 (2) Wellenfunktion E( r, t) = E 0 cos(ωt k r + ϕ) (3) Wellenzahl

Mehr

1.4 Elektromagnetische Wellen an Grenzflächen

1.4 Elektromagnetische Wellen an Grenzflächen 1.4 Elektromagnetische Wellen an Grenzflächen A Stetigkeitsbedingungen Zwei homogen isotrope optische Medien, die D εe, B µh und j σe mit skalaren Konstanten ε, µ, σ erfüllen, mögen sich an einer Grenzfläche

Mehr

Musterlösung 02/09/2014

Musterlösung 02/09/2014 Musterlösung 0/09/014 1 Streuexperimente (a) Betrachten Sie die Streuung von punktförmigen Teilchen an einer harten Kugel vom Radius R. Bestimmen Sie die Ablenkfunktion θ(b) unter der Annahme, dass die

Mehr

5.6. Wellen in Materie (mit Absorption) rot E= B rot H = E E rot rot E= µ rot H = µ E E da rot rot=grad div. e i k r t E x =E 0 x cos k r t x

5.6. Wellen in Materie (mit Absorption) rot E= B rot H = E E rot rot E= µ rot H = µ E E da rot rot=grad div. e i k r t E x =E 0 x cos k r t x 5.6. Wellen in Materie (mit Absorption) Bisher hatten wir ebene Wellen als Lösung der Wellengleichung. E= E 0 e i k r t E x =E 0 x cos k r t x Da die Energiedichte proportional zum Quadrat der elektrischen

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik

Ferienkurs Experimentalphysik II Elektrodynamik Ferienkurs Experimentalphysik II Elektrodynamik Lennart Schmidt 07.09.2011 Inhaltsverzeichnis 1 Zeitlich veränderliche Felder 3 1.1 Induktion.................................... 3 1.2 Die Maxwell-Gleichungen...........................

Mehr

Lehrstuhl für Technische Elektrophysik Technische Universität München

Lehrstuhl für Technische Elektrophysik Technische Universität München Lehrstuhl für Technische Elektrophysik Technische Universität München Tutorübungen zu "Elektromagnetische Feldtheorie II" (Prof. Wachutka) SS9 Blatt 1 Aufgabe: Ebene Wellen Im Vakuum, daß heißt die Leitfähigkeit

Mehr

Aufgaben zur Experimentalphysik II: Elektromagnetische Schwingungen und Wellen

Aufgaben zur Experimentalphysik II: Elektromagnetische Schwingungen und Wellen Aufgaben zur Experimentalphysik II: Elektromagnetische Schwingungen und Wellen Musterlösung William Hefter - 10/09/009 1. Elektromagnetische Schwingungen 1. Die dafür benötigte Zeit ist t = T 4, wobei

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Ferienkurs Elektrodynamik WS11/12 - Zeitabhängige Elektromagnetische Felder

Ferienkurs Elektrodynamik WS11/12 - Zeitabhängige Elektromagnetische Felder Ferienurs Eletrodynami WS11/12 - Zeitabhängige Eletromagnetische Felder Isabell Groß, Martin Ibrügger, Marus Krottenmüller 21. März 2012 TU München Inhaltsverzeichnis 1 Potentiale in der Eletrodynami 1

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

Felder und Wellen Übung 11 WS 2018/2019

Felder und Wellen Übung 11 WS 2018/2019 Christoph Füllner Felder und Wellen Übung 11 WS 2018/2019 Institute of Photonics and Quantum Electronics (IPQ), Department of Electrical Engineering and Information Technology (ETIT) KIT The Research University

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name : Matrikelnummer : 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: Gesamtpunktzahl: Note: Einverständniserklärung Ich bin damit einverstanden, dass die Prüfungsergebnisse unter

Mehr

a) Zeigen Sie, dass es sich um ein Orthonormalsystem handelt und diskutieren Sie die geraden und ungeraden Anteile.

a) Zeigen Sie, dass es sich um ein Orthonormalsystem handelt und diskutieren Sie die geraden und ungeraden Anteile. Elektromagnetische Wellen 141372 Wintersemester 2016/2017 Prof. Thomas Mussenbrock ID 1/131 Website: http://www.ei.rub.de/studium/lehrveranstaltungen/694/ Übungsaufgaben Aufgabe 1 Diskutieren Sie den Helmholtz-Zerlegungssatz.

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Teil IV. Elektromagnetische Strahlung im Vakuum. 9. Das elektromagnetische Feld im Vakuum E = 0; B = 0; t ; t. (9.1) ( B) = ( t 2. (9.2) t = t B. t 2.

Teil IV. Elektromagnetische Strahlung im Vakuum. 9. Das elektromagnetische Feld im Vakuum E = 0; B = 0; t ; t. (9.1) ( B) = ( t 2. (9.2) t = t B. t 2. 9. Das eletromagnetische Feld im Vauum 9.1 Homogene Wellengleichungen Im Vauum ρ = 0; j = 0 lauten die Maxwell-Gleichungen Teil IV = 0; B = 0; = B t ; B = ɛ 0 µ 0 t. 9.1 letromagnetische Strahlung im Vauum

Mehr

n 2 2 n n 2 1 cos 2 {θ} = n 1 cos{θ} 1 r 1 + r

n 2 2 n n 2 1 cos 2 {θ} = n 1 cos{θ} 1 r 1 + r Elektromagnetische Felder und Wellen: zur Klausur Frühjahr 22 Aufgabe 3 Punkte) Das elektrische Feld liegt parallel zur Grenzfläche, also ist die Welle TE- polarisiert Der Reflektionsfaktor ist laut Skript

Mehr

1.4. Das freie quantenmechanische Elektron

1.4. Das freie quantenmechanische Elektron 1.4. Das freie quantenmechanische Elektron 1.4.3. Dispersionsrelation Damit ist die Basis gelegt, um sich mit den grundlegenden Eigenschaften eines quantenmechanischen Teilchens vertraut zu machen. Die

Mehr

Vorlesung 18. Spontane Abstrahlung, Multipolentwicklung

Vorlesung 18. Spontane Abstrahlung, Multipolentwicklung Vorlesung 8 Spontane Abstrahlung, Multipolentwiclung Wir betrachten das Wasserstoffatom im P -Zustand. Falls wir ein Wasserstoffatom in Isolation betrachten, ist der P -Zustand stabil. Wie wir aber schon

Mehr

Ebene elektromagnetische Wellen

Ebene elektromagnetische Wellen Kapitel 5 Ebene elektromagnetische Wellen 5.1 Ebene Wellen in nichtleitendem Medium Eine sehr wichtige Folgerung aus den Maxwell-Gleichungen ist die Existenz von Wellen, die den Energietransport beschreiben.

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

Wir betrachten hier den Polarisationszustand einer Normalmode

Wir betrachten hier den Polarisationszustand einer Normalmode Kapitel 5 Die Polarisation elektromagnetischer Wellen 5.1 Einführung Der zeitliche Verlauf des reellen elektrischen Feldvektors E r r,t) bestimmt den Polarisationszustand des Feldes. Wir betrachten hier

Mehr

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN 1 PHYSIK FÜR MASCHINENBAU SCHWINUNEN UND WELLEN Vorstellung: Professor Kilian Singer und Dr. Sam Dawkins (Kursmaterie teilweise von Dr. Saskia Kraft-Bermuth) EINFÜHRUN Diese Vorlesung behandelt ein in

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr 2007 Aufgabe In einem { verlustlosen Medium der Brechzahl n breitet sich eine ebene Welle gemäß exp i ωt )} k r aus. Für den Wellenvektor

Mehr

Aufgabe 1 (2+8=10 Punkte)

Aufgabe 1 (2+8=10 Punkte) Klausur zu Theoretische Physik 3 Elektrodynamik 21. März 217 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 6 Aufgaben mit insgesamt 5 Punkten. Die Klausur ist

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

;magnetische Feldkonstanten ε. π c 2 V m ;Dielektrizitätskonstanten Teilchendichte der Sortei

;magnetische Feldkonstanten ε. π c 2 V m ;Dielektrizitätskonstanten Teilchendichte der Sortei Symbolverzeichnis j H D E B ρ magnetische Feldstärke Stromdichte ( äußere Ströme ) elektrische Verschiebung elektrische Feldstärke magn. Induktion äußere Ladung, wenn betrachtetes Volumen groß genug ist

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

Freie Elektronen Laser. Energieübertrag Verstärkungsbereiche Der SASE Prozeß

Freie Elektronen Laser. Energieübertrag Verstärkungsbereiche Der SASE Prozeß Energieübertrag Verstärkungsbereiche Der SASE Prozeß Laser - FEL Laser Pump Laser Lasermedium FEL einlaufende Welle FEL Strahl Elektronenstrahl Undulator Dipol magnet Röntgenphysik 147 FEL Energieübertrag

Mehr

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 4 PD Dr. B. arozhny, P. Schad Lösungsvorschlag.

Mehr

Elektromagnetische Feldtheorie 2

Elektromagnetische Feldtheorie 2 Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 09 Elektromagnetische Feldtheorie 2 Donnerstag, 06. 08. 2009, 12:00 13:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript

Mehr