Zwischenprüfung. Mathematische Grundlagen (35 Pkt.)

Größe: px
Ab Seite anzeigen:

Download "Zwischenprüfung. Mathematische Grundlagen (35 Pkt.)"

Transkript

1 Datum: Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt., 97%) Für das Betragsquadrat c 2 einer komplexen Zahl c = u + iv mit u, v R gilt c 2 = 1 2 (c + c ), c 2 = c c, c 2 = u 2 v 2, 2. (1 Pkt., 52%) Für das Betragsquadrat a + b 2 der Summe zweier komplexer Zahlen a, b C gilt a + b 2 = a 2 + b 2 + 2ab, a + b 2 = a 2 + b 2, a + b 2 = a 2 + b 2 2Re(ab ), Unterschrift Student/-in: 1

2 2 Seite für Ihre Notizen. Wird nicht bewertet!

3 3. (1 Pkt., 76%) Für den Imaginärteil einer komplexen Zahl c C gilt Im(c) = i 2 (c c ), Im(c) = 1 2 (c c ), Im(c) = i 2 (c c ), 4. (1 Pkt., 94%) Es gilt e iπ/4 = 1 2 (1 + i), e iπ/4 = 1 2 (1 i), e iπ/4 = 1 2 (1 + i) e iπ/4 = 1 2 (i 1). 5. (1 Pkt., 59%) Es gilt i = 2 1 (i 1), i = 1, i = 1 2 (1 + i), 6. (1 Pkt., 93%) Es gilt Re ( e iφ) = sin φ, Re ( e iφ) = sin φ, Re ( e iφ) = cos φ, Unterschrift Student/-in: 3

4 4 Seite für Ihre Notizen. Wird nicht bewertet!

5 7. (2 Pkt., 63%) Berechnen Sie die Ableitung f (x) der Funktion f(x) = 1 2x + 3(x 2) 2 4(1 2x) 3 am Punkt x = 1 d dx f(x) x=1 = (3 Pkt., 93%) Berechnen Sie die Ableitung f (x) der Funktion f(x) = sin(ax 2 + x) am Punkt x = 0 d dx f(x) x=0 = (4 Pkt., 22%) Das folgende bestimmte Integral der Funktion f(x) = e k2 r 2 mit r 2 = x 2 + y 2 lautet für k R dx dy f(x) = π/k (3 Pkt., 95%) Es gilt π dx cos x = (3 Pkt., 70%) Es gilt 0 π π dx cos 2 x = π. 12. (5 Pkt., 36%) Die Taylorreihe der Funktion f(x) = 1 + x 2 um x 0 = 0 lautet bis zur quadratischen Ordnung in x f(x) = x2 + O(x 4 ) the O(x4) is optional. Unterschrift Student/-in: 5

6 6 Seite für Ihre Notizen. Wird nicht bewertet!

7 13. (2 Pkt., 70%) Für den Einheitsvektor in radialer Richtung gilt n r = 2 r, n r = 2r, n r = 2, 14. (2 Pkt., 39%) Für den radialen Abstand vom Ursprung gilt r = r, r = 0, r = n r, sin x + cos y 15. (3 Pkt., 83%) Mit dem Laplace-Operator 2 gilt für das Vektorfeld F(x, y, z) = x 2 z 2 2 F = sin x cos y + 2, 2 F = ( sin x, 0, 2) T, 2 F = ( sin x cos y, 2, 2) T, 16. (2 Pkt., 68%) Mit dem Laplace-Operator 2 gilt für das skalare Feld f(r) = r 2 mit der Radiuskoordinate r = x 2 + y 2 + z 2 2 f(r) = 6, 2 f(r) ist nicht definiert, 2 f(r) = r, Unterschrift Student/-in: 7

8 8 Seite für Ihre Notizen. Wird nicht bewertet!

9 II Elektromagnetische Felder und Wellen (65 Pkt.) 1. (3 Pkt., 93%) Die Dispersionsrelation in einem Medium mit Brechungsindex n lautet k k = n2 ω2 c 2, k 2 x + k 2 y + k 2 z = n ω2 c 2, kx 2 + ky 2 + kz 2 = n 2 ω2, c 2 2. (3 Pkt., 93%) Die Wellenimpedanz Z eines Mediums ist definiert als Z = εµ, Z = 1 Z = εµ, µ0 µ ε 0 ε, 3. (3 Pkt., 66%) In einem Medium mit Brechungsindex n > 1 ist die Wellenlänge elektromagnetischer Strahlung länger als im Vakuum, kürzer als im Vakuum, identisch wie im Vakuum, 4. (3 Pkt., 73%) In einem Medium mit Materialparametern µ, ε > 1 ist die Ausbreitungsgeschwindigkeit einer monochromatischen elektromagnetischen Welle v = n c, v = 1 µ0 µε 0 ε, v = ε µ c, 5. (3 Pkt., 80%) Die (quellfreie) Wellengleichung für das reelle Magnetfeld im Vakuum lautet [ ] H(r, t) = 0, c 2 t [ k 2] H(r) = 0, [ ] H(r, t) = 0, c 2 t 2 Unterschrift Student/-in: 9

10 10 Seite für Ihre Notizen. Wird nicht bewertet!

11 6. (3 Pkt., 90%) Das komplexe elektrische Feld einer y-polarisierten und in x-richtung propagierenden monochromatischen ebenen Welle lautet 0 E(r) = E 0 0 e ikx, 1 0 E(r) = E 0 1 e iky, 0 0 E(r) = Re{E 0 1 e i(kx ωt) }, 0 7. (3 Pkt., 57%) Für die komplexen elektrischen und magnetischen Felder einer ebenen Welle gilt mit der Wellenimpedanz Z H(r) = 1 Z [k E(r)], [ H(r) = 1 k Z k ], E(r) H(r) = Z [ E(r)], 8. (3 Pkt., 89%) Betrachten Sie das komplexe elektrische Feld E(r) = (1 i)e 0 e ikr mit E 0 R 3. Wie lautet das dazugehörige reelle Feld? E(r, t) = E 0 [cos(kr ωt) sin(kr ωt)], E(r, t) = E 0 [cos(kr ωt) + sin(kr ωt)], E(r, t) = E 0 [ cos(kr ωt) + sin(kr ωt)], 9. (3 Pkt., 77%) Betrachten Sie das komplexe elektrische Feld E(r) = (1 i)e 0 e ikr mit E 0 R 3 im Vakuum. Wie lautet die Intensität in der Ebene z = 0? I(z = 0) = 1 Z 0 E 0 2, I(z = 0) = 1 2Z 0 E 0 2, I(z = 0) = 1 2Z 0 E 0 2 cos(kx), Unterschrift Student/-in: 11

12 12 Seite für Ihre Notizen. Wird nicht bewertet!

13 10. (4 Pkt., 52%) Wie lautet das komplexe elektrische Feld einer in der xz-ebene unter dem Winkel α zur z-achse propagierenden ebenen Welle, die in der xz-ebene polarisiert ist? x k α z cos α E = E 0 sin α e ik(x sin α+z cos α), 0 cos α E = E 0 0 e ik(y sin α+z cos α), sin α cos α E = E 0 0 e ik(x sin α+z cos α), sin α 11. (3 Pkt., 61%) Eine in der xz-ebene unter dem Winkel α zur z-achse propagierende ebenen Welle, deren Magnetfeld y-polarisiert ist, ist bezüglich einer Grenzfläche in der Ebene z = 0 s-polarisiert, p-polarisiert, zirkular polarisiert, 12. (3 Pkt., 67%) Die Polarisation der transmittierte Komponente einer auf eine Grenzfläche einfallenden s-polarisierten ebenen Welle ist s-polarisiert, p-polarisiert, abhängig von den Fresnel-Koeffizierten, Unterschrift Student/-in: 13

14 14 Seite für Ihre Notizen. Wird nicht bewertet!

15 13. Betrachten Sie eine ebene Welle vom Typ E(r) = E 0 e ikz (a) (3 Pkt., 70%) Für E 0 = (0, 0, 1) T gilt die Welle ist linear polarisiert, die Welle ist zirkular polarisiert, die Welle erfüllt die Maxwell schen Gleichungen nicht, (b) (3 Pkt., 83%) Für E 0 = (i, i, 0) T gilt die Welle ist linear polarisiert, die Welle ist zirkular polarisiert, die Welle erfüllt die Maxwell schen Gleichungen nicht, (c) (3 Pkt., 93%) Für E 0 = (1 i, 1 + i, 0) T gilt die Welle ist linear polarisiert, die Welle ist zirkular polarisiert, die Welle erfüllt die Maxwell schen Gleichungen nicht, 14. (3 Pkt., 70%) Ein elektromagnetischer Puls propagiere im Vakuum in positive x-richtung und sei y-polarisiert. In der Ebene x = 0 laute die y-komponente des Feldes E y (x = 0, t) = E 0 a 2 (x 0 + ct) 2 γ 2 cos(kct). An einem beliebigen Ort und zu einer beliebigen Zeit lautet die y-komponente des Feldes E y (x, t) = E 0 a 2 [x (x 0 +ct)] 2 γ 2 cos(kx kct), E 0 a 2 E y (x, t) = [x (x 0 cos(kx kct), ct)] 2 γ 2 E E y (x, t) = 0 a 2 [x (x 0 cos(kx + kct), +ct)] 2 γ 2 Unterschrift Student/-in: 15

16 16 Seite für Ihre Notizen. Wird nicht bewertet!

17 15. Eine ebene Welle propagiere unter dem Winkel α zur x-achse auf eine Grenzfläche bei x = 0 zu. Im Bereich x > 0 sei der Brechungsindex n 2, im Bereich x < 0 sei er n 1 > n 2. Es entsteht eine reflektierte Welle mit Wellenvektor k refl und eine gebrochene Welle mit Wellenvektor k refr, wie unten skizziert. n 2 n 1 k in x α γ β k refr k refl z (a) (2 Pkt., 99%) Es gilt α > β, α < β, α = β, (b) (2 Pkt., 78%) Es gilt α > γ, α < γ, α = γ, (c) (2 Pkt., 59%) Es kommt zu Totalreflexion wenn gilt α > arcsin (n 2 /n 1 ), α > arcsin (n 1 /n 2 ), α > arcsin (n 2 n 1 ), (d) (2 Pkt., 87%) Wir bezeichnen die x-komponente des Vektors k mit k x. Es gilt k in,x = k refl,x, k in,x = (n 1 /n 2 )k refl,x, k in,x = (n 2 /n 1 )k refl,x, (e) (2 Pkt., 83%) Wir bezeichnen die z-komponente des Vektors k mit k z. Es gilt k in,z < k refr,z, k in,z = (n 2 /n 1 )k refl,x, k in,z = k refr,z, Unterschrift Student/-in: 17

18 18 Seite für Ihre Notizen. Wird nicht bewertet!

19 16. An Grenzflächen gilt allgemein aufgrund der Randbedingungen in Abwesenheit von Oberflächenladungen und -strömen (a) (2 Pkt., 77%) (b) (2 Pkt., 72%) Parallel- und Normalkomponente des D-Feldes sind an Grenzflächen erhalten, die Parallelkomponente des D-Feldes ist an Grenzflächen erhalten, die Normalkomponente des D-Feldes ist an Grenzflächen erhalten, Parallel- und Normalkomponente des B-Feldes sind an Grenzflächen erhalten, die Normalkomponente des B-Feldes ist an Grenzflächen erhalten, die Parallelkomponente des B-Feldes ist an Grenzflächen erhalten, 17. (2 Pkt., 72%) Die Fresnel schen Reflexions- und Transmissionskoeffizienten sind stets reellwertig, sind stets positiv, können komplexwertig sein, Ende der Prüfungsfragen. Unterschrift Student/-in: 19

20 20 Seite für Ihre Notizen. Wird nicht bewertet!

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.)

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.) Datum: 18.04.2018 Elektromagnetische Felder & Wellen Frühjahrssemester 2018 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Für das

Mehr

Zwischenprüfung. 1 Mathematische Grundlagen (35 Pkt.)

Zwischenprüfung. 1 Mathematische Grundlagen (35 Pkt.) Datum: 13.4.216 Elektromagnetische Felder & Wellen Frühjahrssemester 216 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung 1 Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Für das

Mehr

Zwischenprüfung. 3. (2 Pkt.) Formulieren Sie beide Lösungen in der Polardarstellung mit Polarwinkel in Einheiten von π im Bereich [ π, π]

Zwischenprüfung. 3. (2 Pkt.) Formulieren Sie beide Lösungen in der Polardarstellung mit Polarwinkel in Einheiten von π im Bereich [ π, π] Datum: 10.04.2019 Elektromagnetische Felder & Wellen Frühjahrssemester 2019 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Wir betrachten

Mehr

Strahlungsdruck, Potentiale

Strahlungsdruck, Potentiale Übung 7 Abgabe: 29.04. bzw. 03.05.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Strahlungsdruck, Potentiale 1 Der Brewsterwinkel

Mehr

Polarisationszustände, Polarisation von Materie

Polarisationszustände, Polarisation von Materie Übung 5 Abgabe: 31.03. bzw. 04.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisationszustände, Polarisation von Materie 1

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 14. 07. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 14. 07.

Mehr

Evaneszente Felder und Energietransport

Evaneszente Felder und Energietransport Übung 6 Abgabe: 17.04. bzw. 20.04.2018 Elektromagnetische Felder & Wellen Frühjahrssemester 2018 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Evaneszente Felder und Energietransport 1 Oberflächenwellen

Mehr

Polarisationszustände, Polarisation von Materie

Polarisationszustände, Polarisation von Materie Übung 5 Abgabe: 3.3. bzw. 4.3.27 Elektromagnetische Felder & Wellen Frühjahrssemester 27 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisationszustände, Polarisation von Materie Polarisationszustände

Mehr

Energietransport durch elektromagnetische Felder

Energietransport durch elektromagnetische Felder Übung 6 Abgabe: 22.04. bzw. 26.04.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Energietransport durch elektromagnetische Felder

Mehr

Energietransport und Intensität

Energietransport und Intensität Übung 6 Abgabe: 7.4. bzw..4.5 Elektromagnetische Felder & Wellen Frühjahrssemester 5 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Energietransport und Intensität Energieerhaltung an Grenzflächen

Mehr

Evaneszente Felder und Energietransport

Evaneszente Felder und Energietransport Übung 6 Abgabe: 7.4. bzw. 2.4.28 Elektromagnetische Felder & Wellen Frühjahrssemester 28 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Evaneszente Felder und Energietransport Oberflächenwellen

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Theoretische Physik C Elektrodynamik

Theoretische Physik C Elektrodynamik Universität Karlsruhe (TH WS 27/8 Theoretische Physik C Elektrodynamik V: Prof Dr D Zeppenfeld, Ü: Dr S Gieseke Klausur Nr 2 Name/Matrikelnummer/Übungsgruppe: 2 3 4 Σ Aufgabe : Vergütungsschicht 4] Die

Mehr

1 Elektromagnetische Wellen im Vakuum

1 Elektromagnetische Wellen im Vakuum Technische Universität München Christian Neumann Ferienkurs Elektrodynamik orlesung Donnerstag SS 9 Elektromagnetische Wellen im akuum Zunächst einige grundlegende Eigenschaften von elektromagnetischen

Mehr

Polarisierung und Magnetisierung

Polarisierung und Magnetisierung Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische

Mehr

Ferienkurs Experimentalphysik III - Optik

Ferienkurs Experimentalphysik III - Optik Ferienkurs Experimentalphysik III - Optik Max v. Vopelius, Matthias Brasse 23.02.09 Inhaltsverzeichnis 1 Wellen 1 1.1 Allgemeines zu Wellen.................................... 1 1.1.1 Wellengleichung für

Mehr

Klassische Theoretische Physik III WS 2014/ Brewster-Winkel: (20 Punkte)

Klassische Theoretische Physik III WS 2014/ Brewster-Winkel: (20 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Phsik III WS 204/205 Prof Dr A Shnirman Blatt 3 Dr B Narohn Lösung Brewster-Winkel: 20 Punkte

Mehr

Wellenleiter und Resonatoren

Wellenleiter und Resonatoren Übung 1 Abgabe: 01.06. bzw. 05.06.018 Elektromagnetische Felder & Wellen Frühjahrssemester 018 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Wellenleiter und Resonatoren 1 Koaxialleitung (50 Pkt.)

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 214/215 Thomas Maier, Alexander Wolf Lösung 1 Wellengleichung und Polarisation Aufgabe 1: Wellengleichung Eine transversale elektromagnetische Welle im Vakuum

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( S)

Sessionsprüfung Elektromagnetische Felder und Wellen ( S) Vorname Name Nummer, ITET email@student.ethz.ch Lfd.Nr.: /150 Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10S) 14. August 2017, 14:00-17:00 Uhr, HIL C15/D15 Prof. Dr. L. Novotny Bitte

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

7. Elektromagnetische Wellen (im Vakuum)

7. Elektromagnetische Wellen (im Vakuum) 7. Elektromagnetische Wellen (im Vakuum) Wir betrachten das elektromagnetische Feld bei Abwesenheit von Ladungen und Strömen und untersuchen die Lösungen der Maxwellschen Gleichungen. 7.1 Wellengleichungen

Mehr

Inhaltsverzeichnis. 1 Reexions- und Brechungsgesetz. 1.1 Einführung

Inhaltsverzeichnis. 1 Reexions- und Brechungsgesetz. 1.1 Einführung Inhaltsverzeichnis 1 Reexions- und Brechungsgesetz 1 1.1 Einführung...................................................... 1 1.2 Snelliussches Brechungsgesetz............................................

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( L)

Sessionsprüfung Elektromagnetische Felder und Wellen ( L) Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10L) 22. August 2013, 14-17 Uhr, HIL F41 Prof. Dr. L. Novotny Bitte Beachten Sie: Diese Prüfung besteht aus 5 Aufgaben und hat 3 beidseitig

Mehr

1 Die Fresnel-Formeln

1 Die Fresnel-Formeln 1 Die Fresnel-Formeln Im Folgenden werden die Bezeichnungen aus dem Buch Optik von Eugene Hecht 5. Auflage, Oldenburg verwendet, aus dem auch die Bilder stammen. In der Vorlesung wurden andere Bezeichnungen

Mehr

Ebene elektromagnetische Wellen

Ebene elektromagnetische Wellen Kapitel 5 Ebene elektromagnetische Wellen 5.1 Ebene Wellen in nichtleitendem Medium Eine sehr wichtige Folgerung aus den Maxwell-Gleichungen ist die Existenz von Wellen, die den Energietransport beschreiben.

Mehr

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

Elektro- und Magnetostatik

Elektro- und Magnetostatik Übung 1 Abgabe: 1.3. bzw. 5.3.219 Elektromagnetische Felder und Wellen Frühjahrssemester 219 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Elektro- und Magnetostatik In dieser Übung befassen wir

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr Elektromagnetische Felder und Wellen: zur Klausur Frühjahr 2005 1 Aufgabe 1 Wie lautet das elektrostatische Potential V ( r), das durch die Raumladungsdichte ϱ( r) = ϱ 0 e k xxik y y erzeugt wird, wenn

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Matrikelnummer: Klausurnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Montag

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Montag Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Montag Inhaltsverzeichnis Technische Universität München 1 Elektromagnetische Wellen 1 1.1 Maxwell-Gleichungen im Medium......................

Mehr

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen

Vorbereitung zur Klausur Elektromagnetische Felder und Wellen Vorbereitung zur Klausur Elektromagnetische Felder und Wellen 1/50 J. Mähnß Stand: 9. August 2016 c J. Mähnß 2/50 Maxwellgleichungen Maxwellgleichungen allgemein 3/50 ( B = µ 0 j V + ε ) E 0 t E = B t

Mehr

Abstrahlung von Quellen, Green sche Funktionen

Abstrahlung von Quellen, Green sche Funktionen Übung 7 Abgabe: 24.4. bzw. 27.4.218 Elektroagnetische Felder & Wellen Frühjahrsseester 218 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Abstrahlung von Quellen, Green sche Funktionen 1 Nahfeld

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( )

Sessionsprüfung Elektromagnetische Felder und Wellen ( ) Name Student xx-xxx-xxx, Deartement name@student.ethz.ch Lfd.Nr.: 1/6 Sessionsrüfung Elektromagnetische Felder und Wellen (227-0052-10) 4. Februar 2015, 9-12 Uhr, ETF C1 Prof. Dr. L. Novotny Bitte Beachten

Mehr

Klausur Theoretische Elektrotechnik A Aufgabe 1 (25 Punkte)

Klausur Theoretische Elektrotechnik A Aufgabe 1 (25 Punkte) Klausur A Aufgabe 1 25 Punkte) 1. Leiten Sie die Wellengleichung für eine eindimensionale ebene Welle mit x = y = ) aus den Maxwellschen Gleichungen für den zeitharmonischen Fall her. Betrachtet wird zunächst

Mehr

Elektromagnetische Eigenschaften von Metallen, Potentiale

Elektromagnetische Eigenschaften von Metallen, Potentiale Übung 8 Abgabe: 02.05. bzw. 05.05.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Elektromagnetische Eigenschaften von Metallen, Potentiale

Mehr

Elektromagnetische Felder und Wellen: Lösung zu Klausur t = ε 0 εe 0 ω cos{ωt + kx}.

Elektromagnetische Felder und Wellen: Lösung zu Klausur t = ε 0 εe 0 ω cos{ωt + kx}. Elektromagnetische Felder und Wellen: zu Klausur 2012-2 1 Aufgabe 1 ( 6 Punkte) In einem Material mit Dielektrizitätszahl ε wird das elektrische Feld E = E 0 sin{ωt + kx} e x gemessen. Welche Stromdichte

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2008-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

Dipolstrahlung und Antennen II

Dipolstrahlung und Antennen II Übung 1 Abgabe: 14.5. bzw. 17.5 Elektromagnetische Felder & Wellen Frühjahrssemester 219 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Dipolstrahlung und Antennen II 1 Abstrahlung einer Dipolschleife

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( )

Sessionsprüfung Elektromagnetische Felder und Wellen ( ) Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10) 21. August 2015, 14-17 Uhr, HIL F15 Prof. Dr. L. Novotny Bitte beachten Sie: Diese Prüfung besteht aus 3 Aufgaben und hat 3 beidseitig

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch. März 00 Maxwellgleichungen a) Leiten Sie aus den Maxwellgleichungen im Vakuum die Wellengleichung im Vakuum her. Zeigen Sie, dass E, B und k senkrecht aufeinander

Mehr

Name der Prüfung: Elektromagnetische Felder und Wellen

Name der Prüfung: Elektromagnetische Felder und Wellen K L A U S U R D E C K B L A T T Name der Prüfung: Elektromagnetische Felder und Wellen Datum und Uhrzeit: 09.08.2017, 10:00 Uhr Bearbeitungszeit: 120 min: Institut: Institut für Optoelektronik Prüfer:

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Die Ladung in dem Raumbereich resultiert aus der Raumladungsdichte

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Die Ladung in dem Raumbereich resultiert aus der Raumladungsdichte Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst 27 Aufgabe Im freien Raum wird das elektrische Feld E E x a ) 2 ey gemessen. Wie groß ist die elektrische Ladung in einem würfelförmigen

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 17. 07. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 17. 07.

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( S)

Sessionsprüfung Elektromagnetische Felder und Wellen ( S) Vorname Name Matrikelnummer, Departement Mail@Address.com Lfd.Nr.: x/total Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10S) 07. Februar 2017, 09:00-12:00 Uhr, LFW B 1 Prof. Dr. L. Novotny

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester / Anwesenheitsübung -.November Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe ( ) ( Punkte) Eine harmonische elektromagnetische

Mehr

FK Ex 4 - Musterlösung Montag

FK Ex 4 - Musterlösung Montag FK Ex 4 - Musterlösung Montag 1 Wellengleichung Leiten Sie die Wellengleichungen für E und B aus den Maxwellgleichungen her. Berücksichtigen Sie dabei die beiden Annahmen, die in der Vorlesung für den

Mehr

Elektromagnetische Felder und Wellen: Klausur Herbst

Elektromagnetische Felder und Wellen: Klausur Herbst Elektromagnetische Felder und Wellen: Klausur Herbst 2006 1 Aufgabe 1 (2 Punkte) Eine Punkladung Q soll durch eine Kugel mit Radius a und der Oberflächenladung ϱ SO ersetzt werden. Wie groß muss ϱ SO gewählt

Mehr

= p. sin(δ/2) = F (1 p 1) δ =2arcsin. λ 2m = ± δ. λ = λ 0 ± δ ) 4πm +1

= p. sin(δ/2) = F (1 p 1) δ =2arcsin. λ 2m = ± δ. λ = λ 0 ± δ ) 4πm +1 Übungsblatt 05 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt 01., 07. und 08.07.00 1 Aufgaben 1. Das Fabry Perot Interferometer als Filter Ein Fabry Perot Interferometer der optischen

Mehr

2x x 2 sin z x 2 y cos z. 3 (2x + x 2 sin z + x 2 y cos z)

2x x 2 sin z x 2 y cos z. 3 (2x + x 2 sin z + x 2 y cos z) Elektromagnetische Felder Lösung zur Klausur om 9. März 22. a) δ(r) = für r und f(r) δ(r) dr = f() b) Normalkomponenten on D für σ = sowie on B Tangentialkomponenten on H für K = sowie on E c) Richtungsableitung:

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

1.4 Elektromagnetische Wellen an Grenzflächen

1.4 Elektromagnetische Wellen an Grenzflächen 1.4 Elektromagnetische Wellen an Grenzflächen A Stetigkeitsbedingungen Zwei homogen isotrope optische Medien, die D εe, B µh und j σe mit skalaren Konstanten ε, µ, σ erfüllen, mögen sich an einer Grenzfläche

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name : Matrikelnummer : 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: Gesamtpunktzahl: Note: Einverständniserklärung Ich bin damit einverstanden, dass die Prüfungsergebnisse unter

Mehr

Elektro- und Magnetostatik

Elektro- und Magnetostatik Übung 1 Abgabe: 3.3. bzw. 7.3.217 Elektromagnetische Felder & Wellen Frühjahrssemester 217 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Elektro- und Magnetostatik 1 Mathematische Grundlagen (3

Mehr

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11 Elektromagnetische Felder und Wellen: Klausur Frühjahr 2006 1 Elektromagnetische Felder und Wellen Klausur Frühjahr 2006 Aufgabe 1 (3 Punkte) Eine Leiterschleife mit dem Mittelpunkt r L = 2a e z und Radius

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 08.03. bzw. 12.03.2019 Elektromagnetische Felder & Wellen Frühjahrssemester 2019 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2011-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Aufgabe 1 ( 4 Punkte)

Aufgabe 1 ( 4 Punkte) Elektromagnetische Felder und Wellen: zu Klausur 203-2 Aufgabe ( 4 Punkte) Eine kreisförmige Scheibe vom Radius R rotiert mit Umfangsgeschwindigkeit v. Wie groß ist v an einem beliebigen Punkt auf der

Mehr

n 2 2 n n 2 1 cos 2 {θ} = n 1 cos{θ} 1 r 1 + r

n 2 2 n n 2 1 cos 2 {θ} = n 1 cos{θ} 1 r 1 + r Elektromagnetische Felder und Wellen: zur Klausur Frühjahr 22 Aufgabe 3 Punkte) Das elektrische Feld liegt parallel zur Grenzfläche, also ist die Welle TE- polarisiert Der Reflektionsfaktor ist laut Skript

Mehr

Sessionsprüfung Elektromagnetische Felder und Wellen ( S)

Sessionsprüfung Elektromagnetische Felder und Wellen ( S) Vorname Name Nummer, ITET email@student.ethz.ch Lfd.Nr.: /161 Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10S) 11. August 2018, 09:00-12:00 Uhr, HIL G15 Prof. Dr. L. Novotny Bitte beachten

Mehr

Wellenleiter und Resonatoren

Wellenleiter und Resonatoren Übung Abgabe: 03.06. bzw. 07.06.06 Elektromagnetische Felder & Wellen Frühjahrssemester 06 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Wellenleiter und Resonatoren Numerische Apertur eines Wellenleiters

Mehr

Ferienkurs Theoretische Physik 3: Elektrodynamik. Ausbreitung elektromagnetischer Wellen

Ferienkurs Theoretische Physik 3: Elektrodynamik. Ausbreitung elektromagnetischer Wellen Ferienkurs Theoretische Physik 3: Elektrodynamik Ausbreitung elektromagnetischer Wellen Autor: Isabell Groß Stand: 21. März 2012 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Homogene Maxwell-Gleichungen

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

a) Zeigen Sie, dass es sich um ein Orthonormalsystem handelt und diskutieren Sie die geraden und ungeraden Anteile.

a) Zeigen Sie, dass es sich um ein Orthonormalsystem handelt und diskutieren Sie die geraden und ungeraden Anteile. Elektromagnetische Wellen 141372 Wintersemester 2016/2017 Prof. Thomas Mussenbrock ID 1/131 Website: http://www.ei.rub.de/studium/lehrveranstaltungen/694/ Übungsaufgaben Aufgabe 1 Diskutieren Sie den Helmholtz-Zerlegungssatz.

Mehr

Aufgabe 1 ( 3 Punkte)

Aufgabe 1 ( 3 Punkte) Elektromagnetische Felder und Wellen: Klausur 2016-2 1 Aufgabe 1 ( 3 Punkte) Welche elektrische Feldstärke benötigt man, um ein Elektron (Masse m e, Ladung q = e) im Schwerefeld der Erde schweben zu lassen?

Mehr

Elektrodynamik (T3p)

Elektrodynamik (T3p) Zusatzaufgaben zur Vorlesung Elektrodynamik (T3p) SoSe 5 Beachten Sie, dass die nachfolgenden Aufgaben nur als zusätzliche Übung und nicht als potenzielle Klausuraufgaben angesehen werden sollten! Aufgabe

Mehr

ÜBUNGEN UR THEORETISCHEN PHYSIK C Bewertungsschema für Bachelor Punkte Note < 6 5. 6-7.5 4.7 8-9.5 4. -.5 3.7-3.5 3.3 4-5.5 3. 6-7.5.7 8-9.5.3 3-3.5. 3-33.5.7 34-35.5.3 36-4. nicht bestanden bestanden

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 017/18 Klassische Theoretische Physik III (Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 10 Ausgabe: Fr, 1.01.18 Abgabe: Fr, 19.01.17 Besprechung: Mi, 4.01.18

Mehr

Aufgabenblatt zum Seminar 13 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 13 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 3 PHYS7357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 5. 7. 9 Aufgaben. Zwei gleiche

Mehr

3 Elektromagnetische Felder an Grenzflächen

3 Elektromagnetische Felder an Grenzflächen 3 Elektromagnetische Felder an Grenzflächen 3. Stetigkeitsbedingungen Im vorherigen Kapitel haben wir die Ausbreitung von von Licht in homogenen Materialien betrachtet. Wir wenden uns nun dem Verhalten

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr 2007 Aufgabe In einem { verlustlosen Medium der Brechzahl n breitet sich eine ebene Welle gemäß exp i ωt )} k r aus. Für den Wellenvektor

Mehr

Elektromagnetische Feldtheorie 2

Elektromagnetische Feldtheorie 2 Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 09 Elektromagnetische Feldtheorie 2 Donnerstag, 06. 08. 2009, 12:00 13:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2014-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Gesamtpunktzahl:

Mehr

Optische Systeme (3. Vorlesung)

Optische Systeme (3. Vorlesung) 3.1 Optische Systeme (3. Vorlesung) Uli Lemmer 06.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 3.2 1. Grundlagen der Wellenoptik 1.1 Die Helmholtz-Gleichung 1.2 Lösungen der Helmholtz-Gleichung:

Mehr

Vorlesung Physik für Pharmazeuten PPh Optik

Vorlesung Physik für Pharmazeuten PPh Optik Vorlesung Physik für Pharmazeuten PPh - 10 Optik 02.07.2007 Wiederholung : Strom und Magnetismus B = µ 0 N I l Ampère'sche Gesetz Uind = d ( BA) dt Faraday'sche Induktionsgesetz v F L = Q v v ( B) Lorentzkraft

Mehr

XII. Elektromagnetische Wellen in Materie

XII. Elektromagnetische Wellen in Materie XII. Elektromagnetische Wellen in Materie Unten den wichtigsten Lösungen der makroskopischen Maxwell-Gleichungen (XI.1) in Materie sind die (fortschreitenden) Wellen. Um die zugehörigen Wellengleichungen

Mehr

IO2. Modul Optik. Refraktion und Reflexion

IO2. Modul Optik. Refraktion und Reflexion IO2 Modul Optik Refraktion und Reflexion In der geometrischen Optik sind die Phänomene der Reflexion sowie der Refraktion (Brechung) von enormer Bedeutung. Beide haben auch vielfältige technische Anwendungen.

Mehr

Klausur TET A. 1. August Name: Vorname: Matrikel-Nr.: Prüfungsnr.: Aufgabe HÜ Summe. Punkte

Klausur TET A. 1. August Name: Vorname: Matrikel-Nr.: Prüfungsnr.: Aufgabe HÜ Summe. Punkte UNIVERSITÄT PADERBORN Fakultät EIM Institut für Elektrotechnik und Informationstechnik Fachgebiet Prof. Dr.-Ing. R. Schuhmann Klausur TET A 1. August 2007 Name: Vorname: Matrikel-: Prüfungsnr.: Aufgabe

Mehr

Q 1. d 2 e x. welche den Zusammenhang zwischen Stromdichte und Ladungsdichte beschreibt. Da die Stromdichte hier nur eine x-komponente besitzt, gilt

Q 1. d 2 e x. welche den Zusammenhang zwischen Stromdichte und Ladungsdichte beschreibt. Da die Stromdichte hier nur eine x-komponente besitzt, gilt Elektromagnetische Felder Wellen: Lösung zur Klausur Herbst 999 Aufgabe Das Potential einer Punktladungen Q am Ort r lautet V { r} = Q 4πɛɛ 0 r r Hier soll das Potential einer gegebenen Raumladung ρ v

Mehr

Elektromagnetische Welle, Wellengleichung, Polarisation

Elektromagnetische Welle, Wellengleichung, Polarisation Aufgaben 4 Elektromagnetische Wellen Elektromagnetische Welle, Wellengleichung, Polarisation Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können.

Mehr

Felder und Wellen Übung 13 WS 2018/2019

Felder und Wellen Übung 13 WS 2018/2019 Christoph Füllner Felder und Wellen Übung 13 WS 2018/2019 Institute of Photonics (IPQ), Department of Electrical Engineering and Information Technology (ETIT) KIT The Research University in the Helmholtz

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst 2004 1 Aufgabe 1 Im Zentrum einer metallischen Hohlkugel mit Innenradius R 2 und Außenradius R 3 > R 2 befindet sich eine weitere metallische

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Hecht, Perez, Tipler, Gerthsen

Mehr

Green sche Funktionen, Dipolfelder

Green sche Funktionen, Dipolfelder Übung 8 Abgabe: 6.5. bzw..5.26 Elektromagnetische Felder & Wellen Frühjahrssemester 26 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Green sche Funktionen, Dipolfelder Nah- und Fernfelder des

Mehr

Elektromagnetische Felder Klausur 26. Februar 2002

Elektromagnetische Felder Klausur 26. Februar 2002 1. Im Inneren einer Kugel vom Radius R herrsche die kugelsymmetrische Ladungsverteilung ρ( r) = ar. (a) Wie groß ist die Gesamtladung Q? (b) Bestimmen Sie das elektrische Feld E im gesamten Raum aus dem

Mehr

Aufgabe 1 ( 3 Punkte)

Aufgabe 1 ( 3 Punkte) Elektromagnetische Felder und Wellen: zur Klausur 206-2 Aufgabe ( 3 Punkte) Welche elektrische Feldstärke benötigt man, um ein Elektron (Masse m e, Ladung q = e) im Schwerefeld der Erde schweben zu lassen?

Mehr

6.4 Wellen in einem leitenden Medium

6.4 Wellen in einem leitenden Medium 6.4. WELLEN IN EINEM LEITENDEN MEDIUM 227 6.4 Wellen in einem leitenden Medium Unter einem leitenden Medium verstehen wir ein System, in dem wir keine ruhenden Ladungen berücksichtigen, aber Ströme, die

Mehr

wobei A die Amplitude der einlaufenden Welle, B diejenige der reflektierten, und C die Amplitude der transmittierten Welle bezeichnen.

wobei A die Amplitude der einlaufenden Welle, B diejenige der reflektierten, und C die Amplitude der transmittierten Welle bezeichnen. Dieter Suter - 359 - Physik B2 6.2. Reflexion und Brechung 6.2.1. Reflexion: Grundlagen Z: Reflexion in 1D Transmission hergeleitet: Grenzflächen sind hierbei Punkte, an denen sich der Wellenwiderstand

Mehr

Einführungsvorlesung: Optische Wellenleiter

Einführungsvorlesung: Optische Wellenleiter Einführungsvorlesung: Optische Wellenleiter Priv.-Doz. Dr. Axel Pelster 1. Strahlenoptik. Wellenoptik.1. Dielektrischer Wellenleiter.. Stufenfaser Optische Wellenleiter Axel Pelster 1 Lichtwellenleiter

Mehr

Abbildung 1: Zu Aufgabe 1. (a) Geben Sie das Potential der Ladungsverteilung im Punkt P mit dem Ortsvektor r an.

Abbildung 1: Zu Aufgabe 1. (a) Geben Sie das Potential der Ladungsverteilung im Punkt P mit dem Ortsvektor r an. Aufgabe 1 (6 Pkt.) Vier positive Punktladungen im Vakuum gleicher Größe Q sitzen in der Ebenze z = 0 eines kartesischen Koordinatensystems auf den Ecken eines Quadrats, nämlich in den Punkten a x = a e

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch. März 00 Inhaltsverzeichnis Wellen. Wellen im Vakuum............................. Lösung der Wellengleichung................... Energietransport / Impuls - der

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel 2.Transatlantische Vorlesung aus Oaxaca, Mexiko, 20. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg

Mehr