Theoretische Physik C Elektrodynamik
|
|
|
- Käte Lang
- vor 7 Jahren
- Abrufe
Transkript
1 Universität Karlsruhe (TH WS 27/8 Theoretische Physik C Elektrodynamik V: Prof Dr D Zeppenfeld, Ü: Dr S Gieseke Klausur Nr 2 Name/Matrikelnummer/Übungsgruppe: Σ Aufgabe : Vergütungsschicht 4] Die ebene Grenzfläche zwischen zwei Medien mit Brechungsindex n und n 3 soll mit einer dünnen Schicht eines Mediums n 2 der Dicke d vergütet werden Die Schicht soll bewirken, dass ein monochromatischer Lichtstrahl der Wellenlänge λ beim Übergang von Medium nach Medium 3 nicht reflektiert wird, falls er senkrecht auf die Grenzfläche trifft Nehmen Sie an, dass es sich bei allen Medien um Isolatoren handelt Weiterhin sind die Permeabilitäten überall gleich (µ = µ 2 = µ 3 = µ Bestimmen Sie d und den Brechungsindex n 2 aus den Randbedingungen an den Grenzflächen Aufgabe 2: Felder im Medium = 8] Im folgenden Bild ist ein Zylinder dargestellt, der entweder homogen polarisiert ( X = P oder magnetisiert ist ( X = M Rechts daneben sind dazugehörige elektromagnetische Feldlinien skizziert Es gebe keine freien Ladungen oder Ströme X (a Welches der Felder E, D ist dargestellt, falls X = P? (b Welches der Felder B, H ist dargestellt, falls X = M? Begründen Sie die Antwort in beiden Fällen direkt durch die Maxwell Gleichungen und die entsprechenden Randbedingungen (bw
2 2 Theoretische Physik C Universität Karlsruhe, WS 27/8 Aufgabe 3: Magnetfeld einer azimuthalsymmetrischen Stromdichte = 4] Gegeben ist die Stromdichte j in Kugelkoordinaten j(r,θ,ϕ = j R r sinθ cosθ Θ(R re ϕ, mit der Stufenfunktion Θ(x unde ϕ = ( sinϕ, cosϕ, (a Berechnen Sie das Vektorpotential A(r für r > R Zeigen Sie, dass A(r die Form A(r = A r k sinθ cosθe ϕ hat Hinweis: r r = l l= m= l 4π 2l + wobei r < = min ( r, r, r > = max ( r, r (b Bestimmen Sie das B Feld für r > R r l < r l+ > Y lm (θ,ϕ Y lm (θ,ϕ, Aufgabe 4: Geboostete Wellen = 4] In einem Inertialsystem K misst ein Beobachter das elektromagnetische Feld E(x, t = E e x cos(k x, B(x, t = B e y cos(k x, wobei k µ = (ω/c,,, k, x µ = (ct,x und B = E /c Ein zweiter Beobachter bewegt sich mit einem System K parallel zur y Achse von K mit der Geschwindigkeit v > und misst die elektromagnetischen Felder E und B (a Bestimmen Sie E und B in K (b Drücken Sie das Quadrat des Feldstärketensors F µν F µν durch E und B aus (c Bestimmen Sie den Ausdruck E 2 B 2 c 2 im bewegten System K Formelsammlung Kugelflächenfunktionen: Y = 3 3, Y = 4π 4π cosθ, Y = 8π sinθeiϕ, Y 2 = 5 Y 2 = 8π sinθ cosθeiϕ, Y 22 = 4 ( 5 3 4π 2 cos2 θ 2 5 2π sin2 θe 2iϕ, Y l, m = ( m Y lm Rotation des Feldes A = (Ar, A θ, A ϕ in Kugelkoordinaten: A =er r sinθ θ (sinθa ϕ A θ A r ]+e θ ϕ r sinθ ϕ ] r r (ra ϕ +e ϕ r r (ra θ A ] r θ Transformation von E und B Feld: ( E = γ E +v B γ2 ( β E β, B = γ γ + ( B v E c 2 γ2 ( β B β γ +,
3 Universität Karlsruhe (TH WS 27/8 Theoretische Physik C Elektrodynamik V: Prof Dr D Zeppenfeld, Ü: Dr S Gieseke Lösungen zur Klausur Nr 2 Aufgabe : Vergütungsschicht 4] Da die Wellen senkrecht zu den Grenzflächen einfallen, müssen wir nicht zwischen verschiedenen Polarisationsrichtungen unterscheiden In Medium liege E entlang der x Richtung Das Licht fällt entlang der positiven z Richtung auf die Schicht Mit µ = µ 2 = µ 3 = µ können wir direkt die Brechungsindices n i in die H Gleichungen einsetzen Dann schreiben wir die einfallende Welle als (k E = E e x e i z ωt, B = n ( c E e y e i k z ωt Wir benutzen hier und im folgenden die Relation B = n c kk E Die reflektierte Welle läuft in e z Richtung und lautet dementsprechend E ( k = E e xe i z ωt, B = n ( c E e ye i k z ωt In Medium 2 haben wir auch eine einlaufende und eine reflektierte Welle, (k E2 = E 2 e x e i 2 z ωt, B2 = n ( 2 c E 2e y e i k 2 z ωt, E ( k 2 = E 2 e xe i 2 z ωt, B 2 = n ( 2 c E 2 e ye i k 2 z ωt In Medium 3 gibt es nur eine transmittierte Welle: (k E3 = E 3 e x e i 3 z ωt, B3 = n ( 3 c E 3e y e i k 3 z ωt An den Grenzschichten sollen die Parallelkomponenten von E und H Feld stetig sein Daraus erhalten wir vier Gleichungen Für die Grenzschicht 2: E + E = E 2 + E 2, n (E E = n 2(E 2 E 2, wobei wir direkt z = eingesetzt haben Für die Grenzschicht zwischen Medium 2 und 3 bekommen wir jeweils eine Phase dazu, E 2 e ik 2d + E 2 e ik 2d = E 3 e ik 3d, n 2 E 2 e ik 2d n 2 E 2 e ik 2d = n 3 E 3 e ik 3d Jetzt fordern wir E = Aus den 4 Gleichungen eliminieren wir zunächst (zb E und E 3 und haben damit ein relativ einfaches System von zwei Gleichungen für E 2, E 2, (n 2 n E 2 + (n 2 + n E 2 =, (n 2 n 3 e ik 2d E 2 (n 2 + n 3 e ik 2d E 2 =
4 2 Theoretische Physik C Universität Karlsruhe, WS 27/8 Wir interessieren uns für eine Bedingung an d und n 2 Daher fordern wir nur, dass dieses Gleichungssystem eine Lösung besitzt Die Koeffizientendeterminante muss also verschwinden Damit bekommen wir (n 2 n (n 2 + n 3 (n + n 2 (n 2 n 3 = e2ik 2d Da die linke Seite reell ist, muss auch die rechte Seite reell werden, also e ik 2d = ± Im Fall + bekommen wir die uninteressante Lösung n = n 3, also den Übergang zwischen zwei gleichen Medien ohne Reflexion Im anderen Fall bekommen wir und e 2ik 2d = k 2 d = (m + 2 π oder d = (2m + λ 2 4, (n 2 n (n 2 + n 3 = (n + n 2 (n 2 + n 3 n 2 = n n 3 Aus den Randbedingungen für die ebenen Wellen erhalten wir auch das Brechungsgesetz, in diesem Fall k 2 /k = n 2 /n und damit λ 2 = (n /n 2 λ 2 Damit lautet unser Ergebnis n 2 = n n 3, d = (2m + n n 2 λ 4 Aufgabe 2: Felder im Medium = 8] Das dargestellte Feld ist divergenzfrei, da die Anzahl der Feldlinien, die in ein Volumen hineinfließen auch wieder hinausfließt D(2 = σ Ohne Oberflächenladung ist = E (2, bzw D ( = ǫ /ǫ 2 D (2 Die Tangentialkomponente wird damit von innen nach aussen grösser (ǫ i > ǫ a, was auf der Skizze deutlich zu erkennen ist Es handelt sich also um das D Feld (a Für die dielektrische Verschiebung D = ǫ E + P gilt bei Abwesenheit von freien Ladungen D =, ist also divergenzfrei Während das elektrische Feld nicht divergenzfrei ist, E = P/ǫ, die Polarisationsladungen stellen neue Quellen für das elektrische Feld dar Weiterhin gilt beim Übergang von Medium ( nach (2 D ( die Senkrechtkomponente von D ( also stetig Während E (b Hier ist B divergenzfrei, denn es gilt immer B = = µ ( H + M Daraus ergibt sich auch, dass B and der Grenzfläche stetig ist Die Bedingung für die Tangentialkomponente ergibt sich aus der Rotationsgleichung Ohne Oberflächenströme ergibt sich hier, dass H stetig sein soll Damit muss aber B = µh einen Sprung machen, B ( = µ /µ 2 B (2 Auch hier wird die Tangentialkomponente dann von innen nach aussen grösser (µ i > µ a Es handelt sich hier also um das B Feld
5 Universität Karlsruhe WS 27/8 Theorie C 3 Aufgabe 3: Magnetfeld einer azimuthalsymmetrischen Stromdichte = 4] (a Wir berechnen direkt das Vektorpotential mit A(r = µ j(r 4π r r d3 r Wir setzen die Entwicklung von / r r nach Kugelflächenfunktionen (s Aufgabenblatt ein Da wir A nur für r > R suchen, gilt immer r> = r, r < = r Damit bekommen wir A(r = µ 2l + l,m r l+ Y lm(θ,ϕ d 3 r r l Ylm (θ,ϕ j(r =I Die Stufenfunktion beschränkt lediglich dier Integration Mit der Beobachtung 5 ( Y 2 (Ω + Y 2, (Ω = 8π sinθ cosθ e iϕ + e iϕ 5 = 2i sinθ cosθ sinϕ, 8π 5 Y 2 (Ω Y 2, (Ω = 2 sinθ cosθ cosϕ, 8π (Ω ist der Raumwinkel (θ,ϕ können wir den Integranden umformen, I = j R dr r l+3 R dω i(y 8π 2 (Ω + Y 2, (Ω 2 5 Y lm (Ω Y 2 (Ω Y 2, (Ω Das Integral über Ω lösen wir mit Hilfe der Orthogonalitätsrelation dω Y lm (ΩY l m (Ω = δ ll δ mm und erhalten insgesamt I = j R R l+4 2(l + 4 8π 5 i(δ l,2 δ m, + δ l,2 δ m, (δ l,2 δ m, δ l,2 δ m, Setzen wir nun in A(r ein, so bleiben uns wegen der Kronecker Symbole jeweils nur zwei Terme aus der Summe, beide mit l = 2 Das ergibt A(r = j R µ R π 5 5 r 3 A(r hat also die gesuchte Form i(y 2 (Ω + Y 2, (Ω (Y 2 (Ω Y 2, (Ω = j µ R 5 6r 3 2 sinθ cosθ sinϕ 2 sinθ cosθ cosϕ A(r = j µ R 5 3r 3 sinθ cosθe ϕ = A r 3 sinθ cosθe ϕ
6 4 Theoretische Physik C Universität Karlsruhe, WS 27/8 (b Wir berechnen B(r in Kugelkoordinaten direkt aus B = A in Kugelkoordinaten Da A(r = (,, A ϕ (r,θ tragen nur zwei Terme zur Rotation bei, B =er r sinθ θ (sinθa ϕ e θ r r (ra ϕ ( A 2 sinθ cos 2 θ =e r r sinθ r 3 + sin3 θ A r 3 e θ r = j µ R 5 ( (3 cos 2 3r 4 θ e r + 2 sinθ cosθe θ ( 2 sinθ cosθ r 3 Aufgabe 4: Geboostete Wellen = 4] (a k x ist ein Lorentz Skalar, also k x = k x Dav parallel zur y Achse,v = ve y giltv B = undv E = Damit ergibt sich für E einfach E = γ E = γe cos(k x e x Für B brauchen wire y e x = e z Wir erhalten durch Einsetzen in die Transformationsformeln (s Aufgabenblatt zunächst B = cos(k x γb e y + γ ve e z c 2 γ2 v 2 ] γ + c 2 B e y = B cos(k x (γ γ2 β 2 ] e y + γβe z γ + Weiterhin ist = {}}{ γ 2 ( β 2 γ + γ γ2 β 2 γ + = γ(γ + γ2 β 2 = γ + γ + Also bleibt als Ergebnis B = B cos(k x ] e y + γβe z (b Es gilt F µν F µν = F µν g µρ g νσ F ρσ = F F + F i g ρ + g iσ F ρσ + F i g iρ g σ + = F ρσ + F i j Die Vorzeichen kommen aus den Termen des metrischen Tensors, die in der Summe beitragen Weiterhin ist (F i 2 = (E i 2 /c und (F i j 2 = (B K 2 Damit ergibt sich für die 4 Terme F µν F µν = ( E/c 2 ( E/c 2 + 2( B 2 = 2 c 2 ( E 2 B 2 c 2 g iρ g jσ F ρσ (c Da F µν F µν ein Lorentz Skalar ist, muss gelten, dass Wir können die Probe machen: sowie E 2 B 2 c 2 = cos 2 (k x E 2 B 2 c 2 = E 2 B 2 c 2 E 2 B 2 c 2 = cos 2 (k x γ 2 E 2 E2 c 2 ( + γ2 β 2 c 2 E 2 E2 c 2 c2 ] ] =, = E 2 cos2 (k x γ 2 ( β 2 = =
16 Elektromagnetische Wellen
16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass
Brewster-Winkel - Winkelabhängigkeit der Reflexion.
5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation
WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B
Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und
Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern
Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der
Aufgabe K5: Kurzfragen (9 1 = 9 Punkte)
Aufgabe K5: Kurzfragen (9 = 9 Punkte) Beantworten Sie nur, was gefragt ist. (a) Wie transformiert das Vektorpotential bzw. das magnetische Feld unter Eichtransformationen? Wie ist die Coulomb-Eichung definiert?
XII. Elektromagnetische Wellen in Materie
XII. Elektromagnetische Wellen in Materie Unten den wichtigsten Lösungen der makroskopischen Maxwell-Gleichungen (XI.1) in Materie sind die (fortschreitenden) Wellen. Um die zugehörigen Wellengleichungen
Elektromagnetische Felder und Wellen: Klausur
Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe
Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen
Theoretischen Physik II SS 007 Klausur II - Aufgaben und Lösungen Aufgabe Hohlleiter Gegeben sei ein in z-richtung unendlich langer, gerader Hohlleiter (Innenradius R/3, Außenradius R), der einen Stromfaden
Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz
Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt
2.2 4-Stromdichte [Griffiths , Jackson 11.9]
Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte
Energietransport durch elektromagnetische Felder
Übung 6 Abgabe: 22.04. bzw. 26.04.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Energietransport durch elektromagnetische Felder
Einführung in die theoretische Physik II Sommersemester 2015
Einführung in die theoretische Physik II Sommersemester 25 [email protected] Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene
Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte)
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III (Theorie Elektrodynamik) WS 1-13 Prof. Dr. Alexander Mirlin Musterlösung:
Übungen zu Physik 1 für Maschinenwesen
Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung
Elektromagnetische Felder und Wellen: Klausur
Elektromagnetische Felder und Wellen: Klausur 2009-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe
3. Erhaltungsgrößen und die Newton schen Axiome
Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray [email protected] 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:
Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst
Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst 26 1 Aufgabe 1 Eine Punkladung Q soll durch eine Kugel mit Radius a und der Oberflächenladung ϱ SO ersetzt werden. Wie groß muss ϱ SO gewählt
Induktion, Polarisierung und Magnetisierung
Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser
Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x),
UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Elektrodynamik Übungsblatt 5 Musterlösungen 13 Aufgabe (a) Der Ausgangspunkt für diese Aufgabe sind die Maxwell-Gleichungen a ( a A b b A a ) = 4π c
Theoretische Physik I: Weihnachtszettel Michael Czopnik
Theoretische Physik I: Weihnachtszettel 21.12.2012 Michael Czopnik Aufgabe 1: Rudolph und der Weihnachtsmann Der Weihnachtsmann (Masse M) und sein Rentier Rudolph (Masse m) sind durch ein Seil mit konstanter
Ferienkurs Theoretische Physik 3: Elektrodynamik. Ausbreitung elektromagnetischer Wellen
Ferienkurs Theoretische Physik 3: Elektrodynamik Ausbreitung elektromagnetischer Wellen Autor: Isabell Groß Stand: 21. März 2012 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Homogene Maxwell-Gleichungen
Formelsammlung Elektrodynamik
Formelsammlung Elektrodynamik SS 2006 RWTH Aachen Prof. Kull Skript Simon Sawallich Inhaltsverzeichnis 1 Allgemeines 3 1.1 Funktionen............................................ 3 Trigonometrische Funktionen..................................
Grundlagen der Physik 2 Schwingungen und Wärmelehre
(c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti [email protected] Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in
Elektromagnetische Felder und Wellen: Lösung zur Klausur
Elektromagnetische Felder und Wellen: zur Klausur 2011-2 1 Aufgabe 1 Ein unendlich langer gerader Hohlzylinder (r 1, r 2 > r 1 ) führt die homogene Stromdichte j parallel zur z-achse in positiver Richtung.
Leiterschleifen und Rahmenantennen als Sendeantennen
Leiterschleifen und Rahmenantennen als Sendeantennen Dipl.-Phys. Jochen Bauer 4.2.212 Zusammenfassung Die geschlossene Leiterschleife und die Rahmenantenne mit Gesamtabmessungen von wesentlich kleiner
Transmission und Reflexion von elektromagnetischen Wellen an Halbleiterschichtstrukturen ( Fortgeschrittenenpraktikum 3 )
AG Festkörpertheorie Fachbereich Physik Transmission und Reflexion von elektromagnetischen Wellen an Halbleiterschichtstrukturen ( Fortgeschrittenenpraktikum 3 ) 1. Aufgabenstellung Untersuchung des Transmissions-
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009
Elektromagnetische Felder und Wellen: Lösung zu Klausur t = ε 0 εe 0 ω cos{ωt + kx}.
Elektromagnetische Felder und Wellen: zu Klausur 2012-2 1 Aufgabe 1 ( 6 Punkte) In einem Material mit Dielektrizitätszahl ε wird das elektrische Feld E = E 0 sin{ωt + kx} e x gemessen. Welche Stromdichte
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.
Aufgabe 1 ( 5 Punkte)
Elektromagnetische Felder und Wellen: zur Klausur 2016-1 1 Aufgabe 1 ( 5 Punkte) Eine monochromatische Welle mit Kreisfrequenz ω befindet sich in einem ungeladenem, anisotropen Medium, in dem µ = 1 und
1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen
Klausur Klasse 2 Licht als Wellen (Teil ) 2.2.204 (90 min) Name:... Hilfsmittel: alles veroten. Die Aildung zeigt den Strahlenverlauf eines einfarigen Lichtstrahls durch eine Glasplatte, ei dem Reflexion
Elektromagnetische Felder und Wellen
Elektromagnetische Felder und Wellen Name : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Gesamtpunktzahl:
κ Κα π Κ α α Κ Α
κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ
Ferienkurs Teil III Elektrodynamik
Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................
Aufgabe 2.1: Wiederholung: komplexer Brechungsindex
Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: [email protected] / [email protected] Blatt 2, Besprechung: 23.04.2014 / 30.04.2014
2 Grundgrößen und -gesetze der Elektrodynamik
Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:
Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung
Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen
T6 Elektrodynamik in Materie
T6 Elektrodynamik in Materie T6. Die phänomenologischen Maxwell Gleichungen Wir wollen hier den Einfluss von Materie auf makroskopische elektromagnetische Phänomene beschreiben. Wir betrachten zunächst
Aufgabe Summe max. P Punkte
Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,
= 6,63 10 J s 8. (die Plancksche Konstante):
35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese
3.4 Gradient, Divergenz, Rotation in anderen Koordinaten
3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div
IO2. Modul Optik. Refraktion und Reflexion
IO2 Modul Optik Refraktion und Reflexion In der geometrischen Optik sind die Phänomene der Reflexion sowie der Refraktion (Brechung) von enormer Bedeutung. Beide haben auch vielfältige technische Anwendungen.
10.1 Ampère sches Gesetz und einfache Stromverteilungen
1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte
VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme
V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot
4 Grenzflächen, Leiter und das elektrostatische Randwertproblem
4 Grenzflächen, Leiter und das elektrostatische Randwertproblem Bei der Berechnung elektrostatischer Felder und Potentiale mussten wir bisher voraussetzen, dass wir die Ladungsverteilungen im gesamten
Name: Gruppe: Matrikel-Nummer:
Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:
5.9.301 Brewsterscher Winkel ******
5.9.301 ****** 1 Motivation Dieser Versuch führt vor, dass linear polarisiertes Licht, welches unter dem Brewsterwinkel auf eine ebene Fläche eines durchsichtigen Dielektrikums einfällt, nur dann reflektiert
FK Experimentalphysik 3, Lösung 3
1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl
19.3 Oberflächenintegrale
19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,
Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen
Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung
Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren
Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.
Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik
Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik, [email protected] Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed [email protected] 1 WS 2015/16
Polarisation durch Reflexion
Version: 27. Juli 2004 Polarisation durch Reflexion Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene, optische
FK Ex 4 - Musterlösung Dienstag
FK Ex 4 - Musterlösung Dienstag Snellius Tarzan wird in einem ruhigen See am Punkt J von einem Krokodil angegriffen. Jane, die sich an Land mit gezücktem Buschmesser am Punkt T befindet, möchte ihm zu
Elektromagnetische Felder und Wellen: Lösung zur Klausur E x = E 0 cos 2 { ωz c ωt }
Elektromagnetische Felder und Wellen: zur Klausur 202- Aufgabe ( 6 Punkte) Gegeben ist das H-Feld einer elektromagnetischen Welle als H = H 0 exp{i(ωt kz)} e y + ih exp{i(ωt kz)} e x Geben Sie die Polarisation
Lösung zum Parabolspiegel
Lösung zum Parabolspiegel y s 1 s 2 Offensichtlich muss s = s 1 + s 2 unabhängig vom Achsenabstand y bzw. über die Parabelgleichung auch unabhängig von x sein. f F x s = s 1 + s 2 = f x + y 2 + (f x) 2
Name: Gruppe: Matrikel-Nummer:
Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und
Experimentalphysik II Elektromagnetische Schwingungen und Wellen
Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung
Felder und Wellen WS 2016/2017
Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro
Aufgaben zur Wechselspannung
Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles
Klassische Theoretische Physik: Elektrodynamik
Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 [email protected] Website: www.astro.uni-bonn.de/tp-l
Induktion, Polarisierung und Magnetisierung
Übung 2 Abgabe: 11.3. bzw. 15.3.216 Elektromagnetische Felder & Wellen Frühjahrssemester 216 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser
Einheit 7: Elektromagnetische Feldenergie
Einheit 7: Elektromagnetische Feldenergie Lösungen L_07_1) Ableitung des Energiesatzes der Elektrodynamik: a) Weise mit Hilfe der differentiellen Maxwell-Gleichungen folgenden Zusammenhang nach: linke
Theoretische Physik I: Lösungen Blatt Michael Czopnik
Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin
Thomas Windel (Autor) Entwicklung einer planaren Messmethode zur Bestimmung von optischen Modenfeldern
Thomas Windel (Autor) Entwicklung einer planaren Messmethode zur Bestimmung von optischen Modenfeldern https://cuvillier.de/de/shop/publications/083 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier,
Optik Licht als elektromagnetische Welle
Optik Licht als elektromagnetische Welle k kx kx ky 0 k z 0 k x r k k y k r k z r y Die Welle ist monochromatisch. Die Wellenfronten (Punkte gleicher Wellenphase) stehen senkrecht auf dem Wellenvektor
Ferienkurs Experimentalphysik III - Optik
Ferienkurs Experimentalphysik III - Optik Max v. Vopelius, Matthias Brasse 26.02.09 Inhaltsverzeichnis 1 Interferenz 1 1.1 Interferenz durch Mehrfachreflexion.......................... 1 1.1.1 Interferenz
4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.
4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet
Theoretische Physik II Elektrodynamik Blatt 9. k (
PDDr. S.Mertens M. Hummel Theoretische Physik II Elektrodynamik Blatt 9 SS 29.6.29. Energie und Impuls elektromagnetischer Wellen. Eine transversale elektromagnetische 4Pkt.) Welle in einem nicht leitenden,
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden
Fresnelsche Formeln und Polarisation
Physikalisches Praktikum für das Hauptfach Physik Versuch 25 Fresnelsche Formeln und Polarisation Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer [email protected]
2. Klausur zur Theoretischen Physik I (Mechanik)
2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie
4. Übungsblatt zur Mathematik I für Maschinenbau
Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen
Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses.
Schriftliche Abiturprüfung 2005 Seite 1 Hinweise: Zugelassene Hilfsmittel: Taschenrechner Die Aufgaben umfassen 5 Seiten. Die Zahlenwerte benötigter Konstanten sind nach der Aufgabe III zusammengefasst.
Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik
Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in
Kapitel 4. Lorentz-Tensoren
Kapitel 4 Lorentz-Tensoren Nach Möglichkeit versucht man, die Gesetze der Physik so aufzustellen, dass sie in allen Inertialsystemen die gleiche Form haben, also forminvariant unter Translationen und Rotationen
1 Anregung von Oberflächenwellen (30 Punkte)
1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit
2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1
. H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1
Physikalische Anwendungen II
Physikalische Anwendungen II Übungsaufgaben - usterlösung. Berechnen Sie den ittelwert der Funktion gx = x + 4x im Intervall [; 4]! ittelwert einer Funktion: f = b fxdx b a a ḡ = 4 x + 4x dx = [ ] 4 4
3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]
3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche
Klassische Elektrodynamik
Theoretische Physik Band 3 Walter Greiner Klassische Elektrodynamik Institut für Festkörperphysik Fachgebiet Theoretische Physik Technische Hochschule Darmstadt Hochschulstr. 6 1P iu Verlag Harri Deutsch
Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair
Ferienkurs Experimentalphysik II Elektrodynamik Magnetostatik 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Permanentmagnete und Polstärke 2 2 Magnetfelder stationärer Ströme 3 2.1 Magnetfeldstärke
Elektrizitätslehre und Magnetismus
Elektrizitätslehre und Magnetismus Othmar Marti 19. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 06.
Klassische Theoretische Physik II (Theorie B) Sommersemester 2016
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD
Tutorium Physik 2. Optik
1 Tutorium Physik 2. Optik SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 11. OPTIK - REFLEXION 11.1 Einführung Optik:
1 Vorlesungen: und Vektor Rechnung: 1.Teil
1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg
Höhere Mathematik III
Blatt 4 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math.. Sanei ashani 1.11.14 Vortragsübungen (Musterlösungen)
Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 4/5 r. Hanna Peywand Kiani 6..5 Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Bereichsintegrale, Transformationssatz,
Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.
2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion
UNIVERSITÄT BIELEFELD
UNIVERSITÄT BIELEFELD Optik Brechungszahl eines Prismas Durchgeführt am 17.05.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer II Inhaltsverzeichnis 1
Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras
Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst
Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel
11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen
Wellen an Grenzflächen
Wellen an Grenzflächen k ey k e α α k ex k gy β k gx k g k r k rx k ry Tritt ein Lichtstrahl in ein Medium ein, so wird in der Regel ein Teil reflektiert, und ein Teil wird in das Medium hinein gebrochen.
Metamaterialien mit negativem Brechungsindexeffekt. Vortrag im Rahmen des Hauptseminars SS2008 Von Vera Eikel
Metamaterialien mit negativem Brechungsindexeffekt Vortrag im Rahmen des Hauptseminars SS8 Von Vera Eikel Brechungsindex n 1 n Quelle: http://www.pi.uni-stuttgart.de Snellius sches Brechungsgesetz: sin
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode
Quantisierung des elektromagnetischen Feldes
18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das
Elektrizität und Magnetismus
Grundlagen- und Orientierungsprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 2010 Elektrizität und Magnetismus Donnerstag, 05. 08. 2010, 8:30 10:30 Uhr Zur Beachtung: Zugelassene Hilfsmittel:
