Theoretische Physik C Elektrodynamik

Größe: px
Ab Seite anzeigen:

Download "Theoretische Physik C Elektrodynamik"

Transkript

1 Universität Karlsruhe (TH WS 27/8 Theoretische Physik C Elektrodynamik V: Prof Dr D Zeppenfeld, Ü: Dr S Gieseke Klausur Nr 2 Name/Matrikelnummer/Übungsgruppe: Σ Aufgabe : Vergütungsschicht 4] Die ebene Grenzfläche zwischen zwei Medien mit Brechungsindex n und n 3 soll mit einer dünnen Schicht eines Mediums n 2 der Dicke d vergütet werden Die Schicht soll bewirken, dass ein monochromatischer Lichtstrahl der Wellenlänge λ beim Übergang von Medium nach Medium 3 nicht reflektiert wird, falls er senkrecht auf die Grenzfläche trifft Nehmen Sie an, dass es sich bei allen Medien um Isolatoren handelt Weiterhin sind die Permeabilitäten überall gleich (µ = µ 2 = µ 3 = µ Bestimmen Sie d und den Brechungsindex n 2 aus den Randbedingungen an den Grenzflächen Aufgabe 2: Felder im Medium = 8] Im folgenden Bild ist ein Zylinder dargestellt, der entweder homogen polarisiert ( X = P oder magnetisiert ist ( X = M Rechts daneben sind dazugehörige elektromagnetische Feldlinien skizziert Es gebe keine freien Ladungen oder Ströme X (a Welches der Felder E, D ist dargestellt, falls X = P? (b Welches der Felder B, H ist dargestellt, falls X = M? Begründen Sie die Antwort in beiden Fällen direkt durch die Maxwell Gleichungen und die entsprechenden Randbedingungen (bw

2 2 Theoretische Physik C Universität Karlsruhe, WS 27/8 Aufgabe 3: Magnetfeld einer azimuthalsymmetrischen Stromdichte = 4] Gegeben ist die Stromdichte j in Kugelkoordinaten j(r,θ,ϕ = j R r sinθ cosθ Θ(R re ϕ, mit der Stufenfunktion Θ(x unde ϕ = ( sinϕ, cosϕ, (a Berechnen Sie das Vektorpotential A(r für r > R Zeigen Sie, dass A(r die Form A(r = A r k sinθ cosθe ϕ hat Hinweis: r r = l l= m= l 4π 2l + wobei r < = min ( r, r, r > = max ( r, r (b Bestimmen Sie das B Feld für r > R r l < r l+ > Y lm (θ,ϕ Y lm (θ,ϕ, Aufgabe 4: Geboostete Wellen = 4] In einem Inertialsystem K misst ein Beobachter das elektromagnetische Feld E(x, t = E e x cos(k x, B(x, t = B e y cos(k x, wobei k µ = (ω/c,,, k, x µ = (ct,x und B = E /c Ein zweiter Beobachter bewegt sich mit einem System K parallel zur y Achse von K mit der Geschwindigkeit v > und misst die elektromagnetischen Felder E und B (a Bestimmen Sie E und B in K (b Drücken Sie das Quadrat des Feldstärketensors F µν F µν durch E und B aus (c Bestimmen Sie den Ausdruck E 2 B 2 c 2 im bewegten System K Formelsammlung Kugelflächenfunktionen: Y = 3 3, Y = 4π 4π cosθ, Y = 8π sinθeiϕ, Y 2 = 5 Y 2 = 8π sinθ cosθeiϕ, Y 22 = 4 ( 5 3 4π 2 cos2 θ 2 5 2π sin2 θe 2iϕ, Y l, m = ( m Y lm Rotation des Feldes A = (Ar, A θ, A ϕ in Kugelkoordinaten: A =er r sinθ θ (sinθa ϕ A θ A r ]+e θ ϕ r sinθ ϕ ] r r (ra ϕ +e ϕ r r (ra θ A ] r θ Transformation von E und B Feld: ( E = γ E +v B γ2 ( β E β, B = γ γ + ( B v E c 2 γ2 ( β B β γ +,

3 Universität Karlsruhe (TH WS 27/8 Theoretische Physik C Elektrodynamik V: Prof Dr D Zeppenfeld, Ü: Dr S Gieseke Lösungen zur Klausur Nr 2 Aufgabe : Vergütungsschicht 4] Da die Wellen senkrecht zu den Grenzflächen einfallen, müssen wir nicht zwischen verschiedenen Polarisationsrichtungen unterscheiden In Medium liege E entlang der x Richtung Das Licht fällt entlang der positiven z Richtung auf die Schicht Mit µ = µ 2 = µ 3 = µ können wir direkt die Brechungsindices n i in die H Gleichungen einsetzen Dann schreiben wir die einfallende Welle als (k E = E e x e i z ωt, B = n ( c E e y e i k z ωt Wir benutzen hier und im folgenden die Relation B = n c kk E Die reflektierte Welle läuft in e z Richtung und lautet dementsprechend E ( k = E e xe i z ωt, B = n ( c E e ye i k z ωt In Medium 2 haben wir auch eine einlaufende und eine reflektierte Welle, (k E2 = E 2 e x e i 2 z ωt, B2 = n ( 2 c E 2e y e i k 2 z ωt, E ( k 2 = E 2 e xe i 2 z ωt, B 2 = n ( 2 c E 2 e ye i k 2 z ωt In Medium 3 gibt es nur eine transmittierte Welle: (k E3 = E 3 e x e i 3 z ωt, B3 = n ( 3 c E 3e y e i k 3 z ωt An den Grenzschichten sollen die Parallelkomponenten von E und H Feld stetig sein Daraus erhalten wir vier Gleichungen Für die Grenzschicht 2: E + E = E 2 + E 2, n (E E = n 2(E 2 E 2, wobei wir direkt z = eingesetzt haben Für die Grenzschicht zwischen Medium 2 und 3 bekommen wir jeweils eine Phase dazu, E 2 e ik 2d + E 2 e ik 2d = E 3 e ik 3d, n 2 E 2 e ik 2d n 2 E 2 e ik 2d = n 3 E 3 e ik 3d Jetzt fordern wir E = Aus den 4 Gleichungen eliminieren wir zunächst (zb E und E 3 und haben damit ein relativ einfaches System von zwei Gleichungen für E 2, E 2, (n 2 n E 2 + (n 2 + n E 2 =, (n 2 n 3 e ik 2d E 2 (n 2 + n 3 e ik 2d E 2 =

4 2 Theoretische Physik C Universität Karlsruhe, WS 27/8 Wir interessieren uns für eine Bedingung an d und n 2 Daher fordern wir nur, dass dieses Gleichungssystem eine Lösung besitzt Die Koeffizientendeterminante muss also verschwinden Damit bekommen wir (n 2 n (n 2 + n 3 (n + n 2 (n 2 n 3 = e2ik 2d Da die linke Seite reell ist, muss auch die rechte Seite reell werden, also e ik 2d = ± Im Fall + bekommen wir die uninteressante Lösung n = n 3, also den Übergang zwischen zwei gleichen Medien ohne Reflexion Im anderen Fall bekommen wir und e 2ik 2d = k 2 d = (m + 2 π oder d = (2m + λ 2 4, (n 2 n (n 2 + n 3 = (n + n 2 (n 2 + n 3 n 2 = n n 3 Aus den Randbedingungen für die ebenen Wellen erhalten wir auch das Brechungsgesetz, in diesem Fall k 2 /k = n 2 /n und damit λ 2 = (n /n 2 λ 2 Damit lautet unser Ergebnis n 2 = n n 3, d = (2m + n n 2 λ 4 Aufgabe 2: Felder im Medium = 8] Das dargestellte Feld ist divergenzfrei, da die Anzahl der Feldlinien, die in ein Volumen hineinfließen auch wieder hinausfließt D(2 = σ Ohne Oberflächenladung ist = E (2, bzw D ( = ǫ /ǫ 2 D (2 Die Tangentialkomponente wird damit von innen nach aussen grösser (ǫ i > ǫ a, was auf der Skizze deutlich zu erkennen ist Es handelt sich also um das D Feld (a Für die dielektrische Verschiebung D = ǫ E + P gilt bei Abwesenheit von freien Ladungen D =, ist also divergenzfrei Während das elektrische Feld nicht divergenzfrei ist, E = P/ǫ, die Polarisationsladungen stellen neue Quellen für das elektrische Feld dar Weiterhin gilt beim Übergang von Medium ( nach (2 D ( die Senkrechtkomponente von D ( also stetig Während E (b Hier ist B divergenzfrei, denn es gilt immer B = = µ ( H + M Daraus ergibt sich auch, dass B and der Grenzfläche stetig ist Die Bedingung für die Tangentialkomponente ergibt sich aus der Rotationsgleichung Ohne Oberflächenströme ergibt sich hier, dass H stetig sein soll Damit muss aber B = µh einen Sprung machen, B ( = µ /µ 2 B (2 Auch hier wird die Tangentialkomponente dann von innen nach aussen grösser (µ i > µ a Es handelt sich hier also um das B Feld

5 Universität Karlsruhe WS 27/8 Theorie C 3 Aufgabe 3: Magnetfeld einer azimuthalsymmetrischen Stromdichte = 4] (a Wir berechnen direkt das Vektorpotential mit A(r = µ j(r 4π r r d3 r Wir setzen die Entwicklung von / r r nach Kugelflächenfunktionen (s Aufgabenblatt ein Da wir A nur für r > R suchen, gilt immer r> = r, r < = r Damit bekommen wir A(r = µ 2l + l,m r l+ Y lm(θ,ϕ d 3 r r l Ylm (θ,ϕ j(r =I Die Stufenfunktion beschränkt lediglich dier Integration Mit der Beobachtung 5 ( Y 2 (Ω + Y 2, (Ω = 8π sinθ cosθ e iϕ + e iϕ 5 = 2i sinθ cosθ sinϕ, 8π 5 Y 2 (Ω Y 2, (Ω = 2 sinθ cosθ cosϕ, 8π (Ω ist der Raumwinkel (θ,ϕ können wir den Integranden umformen, I = j R dr r l+3 R dω i(y 8π 2 (Ω + Y 2, (Ω 2 5 Y lm (Ω Y 2 (Ω Y 2, (Ω Das Integral über Ω lösen wir mit Hilfe der Orthogonalitätsrelation dω Y lm (ΩY l m (Ω = δ ll δ mm und erhalten insgesamt I = j R R l+4 2(l + 4 8π 5 i(δ l,2 δ m, + δ l,2 δ m, (δ l,2 δ m, δ l,2 δ m, Setzen wir nun in A(r ein, so bleiben uns wegen der Kronecker Symbole jeweils nur zwei Terme aus der Summe, beide mit l = 2 Das ergibt A(r = j R µ R π 5 5 r 3 A(r hat also die gesuchte Form i(y 2 (Ω + Y 2, (Ω (Y 2 (Ω Y 2, (Ω = j µ R 5 6r 3 2 sinθ cosθ sinϕ 2 sinθ cosθ cosϕ A(r = j µ R 5 3r 3 sinθ cosθe ϕ = A r 3 sinθ cosθe ϕ

6 4 Theoretische Physik C Universität Karlsruhe, WS 27/8 (b Wir berechnen B(r in Kugelkoordinaten direkt aus B = A in Kugelkoordinaten Da A(r = (,, A ϕ (r,θ tragen nur zwei Terme zur Rotation bei, B =er r sinθ θ (sinθa ϕ e θ r r (ra ϕ ( A 2 sinθ cos 2 θ =e r r sinθ r 3 + sin3 θ A r 3 e θ r = j µ R 5 ( (3 cos 2 3r 4 θ e r + 2 sinθ cosθe θ ( 2 sinθ cosθ r 3 Aufgabe 4: Geboostete Wellen = 4] (a k x ist ein Lorentz Skalar, also k x = k x Dav parallel zur y Achse,v = ve y giltv B = undv E = Damit ergibt sich für E einfach E = γ E = γe cos(k x e x Für B brauchen wire y e x = e z Wir erhalten durch Einsetzen in die Transformationsformeln (s Aufgabenblatt zunächst B = cos(k x γb e y + γ ve e z c 2 γ2 v 2 ] γ + c 2 B e y = B cos(k x (γ γ2 β 2 ] e y + γβe z γ + Weiterhin ist = {}}{ γ 2 ( β 2 γ + γ γ2 β 2 γ + = γ(γ + γ2 β 2 = γ + γ + Also bleibt als Ergebnis B = B cos(k x ] e y + γβe z (b Es gilt F µν F µν = F µν g µρ g νσ F ρσ = F F + F i g ρ + g iσ F ρσ + F i g iρ g σ + = F ρσ + F i j Die Vorzeichen kommen aus den Termen des metrischen Tensors, die in der Summe beitragen Weiterhin ist (F i 2 = (E i 2 /c und (F i j 2 = (B K 2 Damit ergibt sich für die 4 Terme F µν F µν = ( E/c 2 ( E/c 2 + 2( B 2 = 2 c 2 ( E 2 B 2 c 2 g iρ g jσ F ρσ (c Da F µν F µν ein Lorentz Skalar ist, muss gelten, dass Wir können die Probe machen: sowie E 2 B 2 c 2 = cos 2 (k x E 2 B 2 c 2 = E 2 B 2 c 2 E 2 B 2 c 2 = cos 2 (k x γ 2 E 2 E2 c 2 ( + γ2 β 2 c 2 E 2 E2 c 2 c2 ] ] =, = E 2 cos2 (k x γ 2 ( β 2 = =

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

Brewster-Winkel - Winkelabhängigkeit der Reflexion.

Brewster-Winkel - Winkelabhängigkeit der Reflexion. 5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte)

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte) Aufgabe K5: Kurzfragen (9 = 9 Punkte) Beantworten Sie nur, was gefragt ist. (a) Wie transformiert das Vektorpotential bzw. das magnetische Feld unter Eichtransformationen? Wie ist die Coulomb-Eichung definiert?

Mehr

XII. Elektromagnetische Wellen in Materie

XII. Elektromagnetische Wellen in Materie XII. Elektromagnetische Wellen in Materie Unten den wichtigsten Lösungen der makroskopischen Maxwell-Gleichungen (XI.1) in Materie sind die (fortschreitenden) Wellen. Um die zugehörigen Wellengleichungen

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen Theoretischen Physik II SS 007 Klausur II - Aufgaben und Lösungen Aufgabe Hohlleiter Gegeben sei ein in z-richtung unendlich langer, gerader Hohlleiter (Innenradius R/3, Außenradius R), der einen Stromfaden

Mehr

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt

Mehr

2.2 4-Stromdichte [Griffiths , Jackson 11.9]

2.2 4-Stromdichte [Griffiths , Jackson 11.9] Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte

Mehr

Energietransport durch elektromagnetische Felder

Energietransport durch elektromagnetische Felder Übung 6 Abgabe: 22.04. bzw. 26.04.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Energietransport durch elektromagnetische Felder

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 [email protected] Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III (Theorie Elektrodynamik) WS 1-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2009-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray [email protected] 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst

Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst Elektromagnetische Felder und Wellen: Lösung zur Klausur Herbst 26 1 Aufgabe 1 Eine Punkladung Q soll durch eine Kugel mit Radius a und der Oberflächenladung ϱ SO ersetzt werden. Wie groß muss ϱ SO gewählt

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x),

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x), UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Elektrodynamik Übungsblatt 5 Musterlösungen 13 Aufgabe (a) Der Ausgangspunkt für diese Aufgabe sind die Maxwell-Gleichungen a ( a A b b A a ) = 4π c

Mehr

Theoretische Physik I: Weihnachtszettel Michael Czopnik

Theoretische Physik I: Weihnachtszettel Michael Czopnik Theoretische Physik I: Weihnachtszettel 21.12.2012 Michael Czopnik Aufgabe 1: Rudolph und der Weihnachtsmann Der Weihnachtsmann (Masse M) und sein Rentier Rudolph (Masse m) sind durch ein Seil mit konstanter

Mehr

Ferienkurs Theoretische Physik 3: Elektrodynamik. Ausbreitung elektromagnetischer Wellen

Ferienkurs Theoretische Physik 3: Elektrodynamik. Ausbreitung elektromagnetischer Wellen Ferienkurs Theoretische Physik 3: Elektrodynamik Ausbreitung elektromagnetischer Wellen Autor: Isabell Groß Stand: 21. März 2012 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Homogene Maxwell-Gleichungen

Mehr

Formelsammlung Elektrodynamik

Formelsammlung Elektrodynamik Formelsammlung Elektrodynamik SS 2006 RWTH Aachen Prof. Kull Skript Simon Sawallich Inhaltsverzeichnis 1 Allgemeines 3 1.1 Funktionen............................................ 3 Trigonometrische Funktionen..................................

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti [email protected] Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2011-2 1 Aufgabe 1 Ein unendlich langer gerader Hohlzylinder (r 1, r 2 > r 1 ) führt die homogene Stromdichte j parallel zur z-achse in positiver Richtung.

Mehr

Leiterschleifen und Rahmenantennen als Sendeantennen

Leiterschleifen und Rahmenantennen als Sendeantennen Leiterschleifen und Rahmenantennen als Sendeantennen Dipl.-Phys. Jochen Bauer 4.2.212 Zusammenfassung Die geschlossene Leiterschleife und die Rahmenantenne mit Gesamtabmessungen von wesentlich kleiner

Mehr

Transmission und Reflexion von elektromagnetischen Wellen an Halbleiterschichtstrukturen ( Fortgeschrittenenpraktikum 3 )

Transmission und Reflexion von elektromagnetischen Wellen an Halbleiterschichtstrukturen ( Fortgeschrittenenpraktikum 3 ) AG Festkörpertheorie Fachbereich Physik Transmission und Reflexion von elektromagnetischen Wellen an Halbleiterschichtstrukturen ( Fortgeschrittenenpraktikum 3 ) 1. Aufgabenstellung Untersuchung des Transmissions-

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Elektromagnetische Felder und Wellen: Lösung zu Klausur t = ε 0 εe 0 ω cos{ωt + kx}.

Elektromagnetische Felder und Wellen: Lösung zu Klausur t = ε 0 εe 0 ω cos{ωt + kx}. Elektromagnetische Felder und Wellen: zu Klausur 2012-2 1 Aufgabe 1 ( 6 Punkte) In einem Material mit Dielektrizitätszahl ε wird das elektrische Feld E = E 0 sin{ωt + kx} e x gemessen. Welche Stromdichte

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

Aufgabe 1 ( 5 Punkte)

Aufgabe 1 ( 5 Punkte) Elektromagnetische Felder und Wellen: zur Klausur 2016-1 1 Aufgabe 1 ( 5 Punkte) Eine monochromatische Welle mit Kreisfrequenz ω befindet sich in einem ungeladenem, anisotropen Medium, in dem µ = 1 und

Mehr

1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen

1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen Klausur Klasse 2 Licht als Wellen (Teil ) 2.2.204 (90 min) Name:... Hilfsmittel: alles veroten. Die Aildung zeigt den Strahlenverlauf eines einfarigen Lichtstrahls durch eine Glasplatte, ei dem Reflexion

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Gesamtpunktzahl:

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: [email protected] / [email protected] Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

T6 Elektrodynamik in Materie

T6 Elektrodynamik in Materie T6 Elektrodynamik in Materie T6. Die phänomenologischen Maxwell Gleichungen Wir wollen hier den Einfluss von Materie auf makroskopische elektromagnetische Phänomene beschreiben. Wir betrachten zunächst

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

IO2. Modul Optik. Refraktion und Reflexion

IO2. Modul Optik. Refraktion und Reflexion IO2 Modul Optik Refraktion und Reflexion In der geometrischen Optik sind die Phänomene der Reflexion sowie der Refraktion (Brechung) von enormer Bedeutung. Beide haben auch vielfältige technische Anwendungen.

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem 4 Grenzflächen, Leiter und das elektrostatische Randwertproblem Bei der Berechnung elektrostatischer Felder und Potentiale mussten wir bisher voraussetzen, dass wir die Ladungsverteilungen im gesamten

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

5.9.301 Brewsterscher Winkel ******

5.9.301 Brewsterscher Winkel ****** 5.9.301 ****** 1 Motivation Dieser Versuch führt vor, dass linear polarisiertes Licht, welches unter dem Brewsterwinkel auf eine ebene Fläche eines durchsichtigen Dielektrikums einfällt, nur dann reflektiert

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.

Mehr

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik, [email protected] Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed [email protected] 1 WS 2015/16

Mehr

Polarisation durch Reflexion

Polarisation durch Reflexion Version: 27. Juli 2004 Polarisation durch Reflexion Stichworte Erzeugung von polarisiertem Licht, linear, zirkular und elliptisch polarisiertes Licht, Polarisator, Analysator, Polarisationsebene, optische

Mehr

FK Ex 4 - Musterlösung Dienstag

FK Ex 4 - Musterlösung Dienstag FK Ex 4 - Musterlösung Dienstag Snellius Tarzan wird in einem ruhigen See am Punkt J von einem Krokodil angegriffen. Jane, die sich an Land mit gezücktem Buschmesser am Punkt T befindet, möchte ihm zu

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur E x = E 0 cos 2 { ωz c ωt }

Elektromagnetische Felder und Wellen: Lösung zur Klausur E x = E 0 cos 2 { ωz c ωt } Elektromagnetische Felder und Wellen: zur Klausur 202- Aufgabe ( 6 Punkte) Gegeben ist das H-Feld einer elektromagnetischen Welle als H = H 0 exp{i(ωt kz)} e y + ih exp{i(ωt kz)} e x Geben Sie die Polarisation

Mehr

Lösung zum Parabolspiegel

Lösung zum Parabolspiegel Lösung zum Parabolspiegel y s 1 s 2 Offensichtlich muss s = s 1 + s 2 unabhängig vom Achsenabstand y bzw. über die Parabelgleichung auch unabhängig von x sein. f F x s = s 1 + s 2 = f x + y 2 + (f x) 2

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 [email protected] Website: www.astro.uni-bonn.de/tp-l

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.3. bzw. 15.3.216 Elektromagnetische Felder & Wellen Frühjahrssemester 216 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Einheit 7: Elektromagnetische Feldenergie

Einheit 7: Elektromagnetische Feldenergie Einheit 7: Elektromagnetische Feldenergie Lösungen L_07_1) Ableitung des Energiesatzes der Elektrodynamik: a) Weise mit Hilfe der differentiellen Maxwell-Gleichungen folgenden Zusammenhang nach: linke

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

Thomas Windel (Autor) Entwicklung einer planaren Messmethode zur Bestimmung von optischen Modenfeldern

Thomas Windel (Autor) Entwicklung einer planaren Messmethode zur Bestimmung von optischen Modenfeldern Thomas Windel (Autor) Entwicklung einer planaren Messmethode zur Bestimmung von optischen Modenfeldern https://cuvillier.de/de/shop/publications/083 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier,

Mehr

Optik Licht als elektromagnetische Welle

Optik Licht als elektromagnetische Welle Optik Licht als elektromagnetische Welle k kx kx ky 0 k z 0 k x r k k y k r k z r y Die Welle ist monochromatisch. Die Wellenfronten (Punkte gleicher Wellenphase) stehen senkrecht auf dem Wellenvektor

Mehr

Ferienkurs Experimentalphysik III - Optik

Ferienkurs Experimentalphysik III - Optik Ferienkurs Experimentalphysik III - Optik Max v. Vopelius, Matthias Brasse 26.02.09 Inhaltsverzeichnis 1 Interferenz 1 1.1 Interferenz durch Mehrfachreflexion.......................... 1 1.1.1 Interferenz

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Theoretische Physik II Elektrodynamik Blatt 9. k (

Theoretische Physik II Elektrodynamik Blatt 9. k ( PDDr. S.Mertens M. Hummel Theoretische Physik II Elektrodynamik Blatt 9 SS 29.6.29. Energie und Impuls elektromagnetischer Wellen. Eine transversale elektromagnetische 4Pkt.) Welle in einem nicht leitenden,

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

Fresnelsche Formeln und Polarisation

Fresnelsche Formeln und Polarisation Physikalisches Praktikum für das Hauptfach Physik Versuch 25 Fresnelsche Formeln und Polarisation Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer [email protected]

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses.

Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses. Schriftliche Abiturprüfung 2005 Seite 1 Hinweise: Zugelassene Hilfsmittel: Taschenrechner Die Aufgaben umfassen 5 Seiten. Die Zahlenwerte benötigter Konstanten sind nach der Aufgabe III zusammengefasst.

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

Kapitel 4. Lorentz-Tensoren

Kapitel 4. Lorentz-Tensoren Kapitel 4 Lorentz-Tensoren Nach Möglichkeit versucht man, die Gesetze der Physik so aufzustellen, dass sie in allen Inertialsystemen die gleiche Form haben, also forminvariant unter Translationen und Rotationen

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

Physikalische Anwendungen II

Physikalische Anwendungen II Physikalische Anwendungen II Übungsaufgaben - usterlösung. Berechnen Sie den ittelwert der Funktion gx = x + 4x im Intervall [; 4]! ittelwert einer Funktion: f = b fxdx b a a ḡ = 4 x + 4x dx = [ ] 4 4

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Klassische Elektrodynamik

Klassische Elektrodynamik Theoretische Physik Band 3 Walter Greiner Klassische Elektrodynamik Institut für Festkörperphysik Fachgebiet Theoretische Physik Technische Hochschule Darmstadt Hochschulstr. 6 1P iu Verlag Harri Deutsch

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektrodynamik Magnetostatik 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Permanentmagnete und Polstärke 2 2 Magnetfelder stationärer Ströme 3 2.1 Magnetfeldstärke

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 06.

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Tutorium Physik 2. Optik

Tutorium Physik 2. Optik 1 Tutorium Physik 2. Optik SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 11. OPTIK - REFLEXION 11.1 Einführung Optik:

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Höhere Mathematik III

Höhere Mathematik III Blatt 4 Universität Stuttgart Fachbereich Mathematik Höhere Mathematik III el, kyb, mecha, phys Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math.. Sanei ashani 1.11.14 Vortragsübungen (Musterlösungen)

Mehr

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 4/5 r. Hanna Peywand Kiani 6..5 Anleitung zu Blatt 6 Analysis III für Studierende der Ingenieurwissenschaften Bereichsintegrale, Transformationssatz,

Mehr

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde. 2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD Optik Brechungszahl eines Prismas Durchgeführt am 17.05.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer II Inhaltsverzeichnis 1

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Wellen an Grenzflächen

Wellen an Grenzflächen Wellen an Grenzflächen k ey k e α α k ex k gy β k gx k g k r k rx k ry Tritt ein Lichtstrahl in ein Medium ein, so wird in der Regel ein Teil reflektiert, und ein Teil wird in das Medium hinein gebrochen.

Mehr

Metamaterialien mit negativem Brechungsindexeffekt. Vortrag im Rahmen des Hauptseminars SS2008 Von Vera Eikel

Metamaterialien mit negativem Brechungsindexeffekt. Vortrag im Rahmen des Hauptseminars SS2008 Von Vera Eikel Metamaterialien mit negativem Brechungsindexeffekt Vortrag im Rahmen des Hauptseminars SS8 Von Vera Eikel Brechungsindex n 1 n Quelle: http://www.pi.uni-stuttgart.de Snellius sches Brechungsgesetz: sin

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

Elektrizität und Magnetismus

Elektrizität und Magnetismus Grundlagen- und Orientierungsprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 2010 Elektrizität und Magnetismus Donnerstag, 05. 08. 2010, 8:30 10:30 Uhr Zur Beachtung: Zugelassene Hilfsmittel:

Mehr