Name: Gruppe: Matrikel-Nummer:
|
|
|
- Jobst Solberg
- vor 9 Jahren
- Abrufe
Transkript
1 Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit: 10 Minuten Gesamtpunktzahl: 36 Punkte + Bonuspunkte Schreiben Sie bitte auf jedes Blatt, das Sie abgeben, Ihren Namen. Erlaubte Hilfsmittel: Ein beidseitig handbeschriebenes Blatt sowie die mathematische Formelsammlung von Bronstein. Name: Gruppe: Matrikel-Nummer: Nur für Diplomstudiengang: Brauchen Sie einen Schein? (JA / NEIN ) Aufgabe Bonus Punkte Korrektur
2
3 Aufgabe 1 : Kleine Schwingungen (10 Punkte) Im Schwerefeld der Erde sei eine Punktmasse m [mit Koordinaten (x,z )] über einen masselosen Faden der Länge l [mit Ausschlagswinkel θ] an einer Punktmasse 3m [mit Koordinaten (x 1,z 1 )] aufgehängt, die sich reibungsfrei auf einer Parabel der Form z 1 = 1 l x 1 bewegt (siehe Skizze). Ziel dieser Aufgabe ist es, die Eigenfrequenzen kleiner Schwingungen dieses Systems zu bestimmen. Betrachten Sie somit im Folgenden ausschliesslich den Limes θ 1, und wählen Sie q 1 := x 1 und q := lθ als verallgemeinerte Koordinaten. z x (x 1, z 1 ) 3m θ l (x, z ) m (a) ( Punkte) Drücken Sie x 1, z 1, x und z sowie ẋ 1, ż 1, ẋ und ż durch q 1 und q sowie q 1 und q aus. [Hinweis: Entwickeln Sie sinθ und cos θ bis zu (und einschließlich!) der zweiten Ordnung in θ.] (b) (3 Punkte) Zeigen Sie, dass die Lagrangefunktion L(q 1,q, q 1, q ) im Limes kleiner Schwingungen folgende Form hat: L = m [ 4 q 1 + q 1 q + q Ω (4q 1 + q l ) ], mit Ω = g/l. (1) [Hinweis: Terme höherer als quadratischer Ordnung in q 1, q, q 1 und q (d.h. Produkte von mehr als zwei dieser Variablen) sollten vernachlässigt werden.] (c) (3 Punkte) Nutzen Sie Matrixnotation, um die Eigenfrequenzen ω 1 und ω des Systems zu finden. (d) ( Punkte) Berechnen Sie die entsprechenden Eigenmoden und skizzieren Sie qualitativ die Eigenschwingungen als Funktion der Zeit für jede der beiden Eigenmoden.
4 Aufgabe : Stark gedämpfter harmonischer Oszillator (10 Punkte) Betrachten Sie einen stark gedämpften harmonischen Oszillator mit Antrieb f(t): [ t + γ t + ω0 ] x(t) = f(t), mit γ > ω0 > 0. () (a) (1 Punkt) Wie lautet die Differentialgleichung, durch welche die Greensche Funktion G(t) des gedämpften harmonischen Oszillators definiert ist? (b) ( Punkte) Zeigen Sie, dass der Ansatz 1 für t > 0, G(t) = θ(t)x h (t), mit θ(t) = 1/ für t = 0, 0 für t < 0, (3) die in Teilaufgabe (a) angegebene Gleichung erfüllt, falls x h (t) eine Lösung der entsprechenden homogenen Differentialgleichung ist und für t = 0 die Anfangsbedingungen x h (0) = 0, ẋ h (0) = 1 erfüllt. [Hinweis: hierfür ist es nicht nötig, x h (t) explizit zu konstruieren!] (c) ( Punkte) Machen Sie nun für die in Teilaufgabe (b) definierte homogene Lösung x h (t) den Ansatz x h (t) = c 1 e λ 1t + c e λ t (4) und bestimmen Sie die darin vorkommenden Konstanten. [Hinweis: bestimmen Sie zuerst c 1 und c mittels der Anfangsbedingungen, danach λ 1 und λ mittels der Differentialgleichung.] (d) (1 Punkt) Geben Sie eine Formel an, die für einen beliebigen Antrieb f(t) die Auslenkung x(t) [d.h. die allgemeine Lösung der Differentialgleichung ()] durch die Greensche Funktion G(t) ausdrückt. (e) (3 Punkte) Betrachten Sie nun einen Antrieb der Form f(t) = θ(t)f 0. Finden Sie mittels der Formel von Teilaufgabe (d), sowie Gleichungen (3) und (4) für G(t), den Wert x( ), den x(t) im Limes t annimmt. [Hinweis: Finden Sie das Ergebnis zunächst als Funktion von λ 1 und λ, und vereinfachen Sie es dann mittels der Resultate von Teilaufgabe (c).] (f) (1 Punkt) Interpretieren Sie das Ergebnis von Teilaufgabe (e) durch Vergleich der Antriebsund Rückstellkräfte.
5 Aufgabe 3 : Tunnel durch die Erde (6 Punkte + Bonuspunkte) Betrachten Sie einen Tunnel durch die Erde, der zwei Punkte auf der Erdoberfläche verbindet (siehe Skizze). Der Tunnelverlauf sei so gewählt, dass er die Zeit T minimiert, in der eine am Tunneleingang mit Anfangsgeschwindigkeit Null losrollende Punktmasse m den Tunnel unter Einfluss der Gravitation durchrollt. Ziel dieser Aufgabe ist es, mittels der Variationsmethode eine Gleichung zu finden, die den Verlauf r = r(φ) dieses Tunnels bestimmt, wobei r den Abstand zum Erdmittelpunkt bezeichnet. Das Gravitationspotential im Inneren eines homogenen massiven Körpers ist dabei durch V (r) = αr gegeben. (Reibung und Corioliskräfte sind zu vernachlässigen). (a) (3 Punkte) Zeigen Sie, dass man das zu minimerende Funktional als T = T[r(φ)] = dφ r + r v(r) y φ x = r sinφ, y = r cos φ, mit r = dr dφ, (5) schreiben kann, wobei v(r) die Geschwindigkeit der Punktmasse bezeichnet. [Hinweis: Drücken Sie zunächst das Wegelement ds durch r, dr und dφ aus.] Drücken Sie v(r) durch die Gesamtenergie E des Teilchens aus. (b) ( Punkte) Da der Integrand (F ) in Gl. (5) nicht explizit von der Integrationsvariable φ abhängt, existiert eine φ-unabhängige Erhaltungsgröße, F F r r = konstant. Nutzen Sie dies um die folgende Differentialgleichung für den Tunnel herzuleiten: r 4 = c (E αr)(r + r ) mit c = konst. (c) (1 Punkt) Bestimmen Sie durch Integration der Differentialgleichung aus (b) einen Integralausdruck für die Bahnkurve φ = φ(r). (d) Bonusaufgabe ( Bonuspunkte): Wir betrachten nun das gleiche Problem für eine große Hängebrücke zwischen zwei hohen Türmen auf der Erdoberfläche. Was ändert sich in Ihren Gleichungen? Vollziehen sie den Grenzübergang zu gewöhnlichen Brachistochrone im konstanten Schwerefeld. r x
6 Aufgabe 4 : Kanonische Transformation für geladenes Teilchen im Magnetfeld (10 Punkte) Die Lagrange-Funktion für ein geladenes Teilchen (Masse m = 1, Ladung e = 1) in der q 1 -q - Ebene, senkrecht zu einem homogenen Magnetfeld der Stärke B, lautet L = 1 [ q 1 + q + (q 1 q q q 1 )B ] (6) (a) ( Punkte) Zeigen Sie, ausgehend von L, dass die Hamilton-Funktion folgende Form hat: H(q 1,q ;p 1,p ) = 1 (p 1 + q B/) + 1 (p q 1 B/). (7) (b) ( Punkte) Betrachten Sie nun eine kanonische Transformation von den alten Variablen (q 1,q,p 1,p ) zu neuen Variablen (Q 1,Q,P 1,P ), gegeben durch q 1 = 1 [ ] P1 sinq 1 + P, p 1 = α [ ] P1 cos Q 1 Q, (8a) α q = 1 [ ] P1 cos Q 1 + Q, p = α [ ] P 1 sinq 1 + P. (8b) α Berechnen Sie die Poisson-Klammern {q 1,p 1 } Q,P. Ist Ihr Ergebnis konsistent mit der Behauptung, dass die Transformation (8) kanonisch ist? (c) ( Punkte) Wählen Sie nun α = B. Zeigen Sie, dass die Hamilton-Funktion, ausgedrückt durch die neuen Variablen, H(q 1,q ;p 1,p ) =: H(Q1,Q ;P 1,P ), die Form H = ωp 1 hat, und bestimmen Sie ω. (d) ( Punkte) Lösen Sie die kanonischen Hamilton-Gleichungen für die neuen Variablen als Funktion der Zeit, mit den Anfangsbedingungen P 1 (0) = α r / und Q 1 (0) = Q (0) = P (0) = 0 bei t = 0 (r ist eine Konstante). (e) ( Punkte) Bestimmen Sie, durch Einsetzen des Ergebnisses von Teilaufgabe (d) in Gl. (8), die Bahn des Teilchens, q 1 (t) und q (t), und skizzieren Sie diese Bahn qualitativ in der q 1 -q - Ebene. Was ist die physikalische Bedeutung des Parameters r?
Name: Gruppe: Matrikel-Nummer:
Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober
Repetitorium C: Variationsrechnung, Noether-Theorem
Fakultät für Phsik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.phsik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/
Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte
T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach [email protected] Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.
Blatt 10. Hamilton-Formalismus- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus
Klausur zur T1 (Klassische Mechanik)
Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte
Übungen zu Theoretischer Mechanik (T1)
Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 08 Übungen zu Theoretischer Mechanik T Übungsblatt 8, Besprechung ab 04.06.08 Aufgabe 8. Lineare
Ferienkurs Mechanik: Probeklausur
Ferienkurs Mechanik: Probeklausur Simon Filser 5.9.09 1 Kurze Fragen Geben Sie möglichst kurze Antworten auf folgende Fragen: a) Ein Zug fährt mit konstanter Geschwindigkeit genau von Norden nach Süden.
Übungen zu Lagrange-Formalismus und kleinen Schwingungen
Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf
Blatt 05.2: Green sche Funktionen
Fakultät für Physik T: Klassische Mechanik, SoSe 05 Dozent: Jan von Delft Übungen: Katharina Stadler, Frauke Schwarz, Dennis Schimmel, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5t/
Nachklausur: T1: Theoretische Mechanik
Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/
INSTITUT FÜR THEORETISCHE PHYSIK. Prof. Dr. U. Motschmann Dr. M. Feyerabend. Theoretische Mechanik SS 2017
INSTITUT FÜR THEORETISCHE PHYSIK Prof. Dr. U. Motschmann Dr. M. Feyerabend Theoretische Mechanik SS 2017 Klausurvorbereitung Bearbeitungszeit: 180 Minuten 1. Wissensfragen (20 Punkte) Benennen Sie alle
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort
Blatt 11.1: Fourier-Integrale, Differentialgleichungen
Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt.:
Blatt 05.3: Green sche Funktionen
Fakultät für Physik T: Klassische Mechanik, SoSe 06 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/
7 Die Hamilton-Jacobi-Theorie
7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir
Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr
KIT SS 05 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 7. Juli 05, 6-8 Uhr Aufgabe : Kurzfragen (+4++3=0 Punkte) (a) Zwangsbedingungen beschreiben Einschränkungen
(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve.
PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 7 WS 007/008 0.. 007. Lenz scher Vektor. Für die Bahn eines Teilchens der Masse m im Potential U(r) = α/r definieren wir mit
Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13
Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten
4. Hamiltonformalismus
4. Hamiltonormalismus Für die praktische Lösung von Problemen bietet der Hamiltonormalismus meist keinen Vorteil gegenüber dem Lagrangeormalismus. Allerdings bietet der Hamiltonormalismus einen direkten
Theoretische Physik I/II
Theoretische Physik I/II Prof. Dr. M. Bleicher Institut für Theoretische Physik J. W. Goethe-Universität Frankfurt Aufgabenzettel XI 27. Juni 2011 http://th.physik.uni-frankfurt.de/ baeuchle/tut Lösungen
(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010
Übungsaufgaben zur Hamilton-Mechanik
Übungsaufgaben zur Hamilton-Mechanik Simon Filser 24.9.09 1 Parabelförmiger Draht Auf einem parabelförmig gebogenen Draht (z = ar² = a(x² + y²), a = const), der mit konstanter Winkelgeschwindigkeit ω 0
Klausur zu Theoretische Physik 2 Klassische Mechanik
Klausur zu Theoretische Physik 2 Klassische Mechanik 1. August 216 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 25 Punkten. Die Klausur
Fallender Stein auf rotierender Erde
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen
Theoretische Physik I: Weihnachtszettel Michael Czopnik
Theoretische Physik I: Weihnachtszettel 21.12.2012 Michael Czopnik Aufgabe 1: Rudolph und der Weihnachtsmann Der Weihnachtsmann (Masse M) und sein Rentier Rudolph (Masse m) sind durch ein Seil mit konstanter
Bewegung auf Paraboloid 2
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 8 vom 17.06.13 Abgabe: 24.06. Aufgabe 34 4 Punkte Bewegung auf Paraboloid 2 Ein Teilchen der Masse m bewege sich reibungsfrei unter
Klausur zu Theoretische Physik 2 Klassische Mechanik
Klausur zu Theoretische Physik Klassische Mechanik 30. September 016 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 5 Punkten. Die Klausur
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 4 - Angabe Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit
Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.
Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,
Theoretische Physik 2 (Theoretische Mechanik)
Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)
1 Lagrange-Formalismus
Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz
Hauptklausur: T1: Theoretische Mechanik
Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/
Repetitorium B: Lagrangesche Mechanik
Fakultät für Physik T: Klassische Mechanik, SoSe 06 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-uenchen.de/lehre/vorlesungen/sose_6/t_theor_echanik/
Theoretische Physik 2 (Theoretische Mechanik)
Theoretische Physik 2 (Theoretische Mechanik Prof. Dr. Th. Feldmann 21. Januar 2014 Kurzzusammenfassung Vorlesung 23 vom 21.1.2014 Satz von Liouville Der Fluß eines Hamilton schen Systems im Phasenraum
Blatt 12.3: Fourier-Integrale, Differentialgleichungen
Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/
Blatt 09.2: Variationsrechnung II
Fakultät für Physik T1: Klassische Mechanik, SoSe 016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/
Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )
Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.
Repetitorium A: Newtonsche Mechanik, Schwingungen
Faultät für Physi T: Klassische Mechani, SoSe 5 Dozent: Jan von Delft Übungen: Katharina Stadler, Fraue Schwarz, Dennis Schimmel, Luas Weidinger http://homepages.physi.uni-muenchen.de/~vondelft/lehre/5t/
Aufgaben zur Klausurvorbereitung
Universität des Saarlandes Fakultät 7 Physik und Mechatronik Prof. Dr. L. Santen Fachrichtung 7.1 Theoretische Physik Mail: [email protected] Web: http://www.uni-saarland.de/fak7/santen/ Saarbrücken,
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 3 - Lösung Technische Universität München 1 Fakultät für Physik 1 Gleiten und Zwangsbedingungen Wir betrachten einen Block der Masse m 1 auf einem Keil der
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius
Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme
Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General
Theoretische Physik: Mechanik
Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe
Blatt 1. Kinematik- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die
Ferienkurs Theoretische Mechanik Sommer 2010 Newton/Koordinaten/Dgl s
Fakultät für Physik Friedrich Wulschner Technische Universität München Vorlesung Montag Ferienkurs Theoretische Mechanik Sommer 2010 Newton/Koordinaten/Dgl s Inhaltsverzeichnis 1 Newtons 3 Axiome 2 2 Lösungsverfahren
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das
Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur September 2015, Uhr. Aufgabe Punkte Zeichen
KIT SS 205 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur 2 22. September 205, 2-4 Uhr Name Matrikelnummer Code für Ergebnisse Aufgabe Punkte Zeichen / 0 2 / 5 3
Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]
Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.
Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06
Übungen zu: Theoretische Physik I klassische Mechanik W 3 Tobias Spranger - Prof. Tom Kirchner WS 5/6 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 5 Übungsblatt 6 Lösungsvorschlag 3 ufgaben,
Blatt 03.1: Scheinkräfte
Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/
Lösung der harmonischen Oszillator-Gleichung
Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................
Ferienkurs Experimentalphysik 1
Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2014/2015 1 Seite 2 Inhaltsverzeichnis 3 Energie, Arbeit und Leistung 3 3.1 Energie.................................. 3 3.2 Arbeit...................................
2. Klausur zur Vorlesung Theoretische Physik A Universität Karlsruhe WS 2004/05
. Klausur zur Vorlesung Theoretische Physik A Universität Karlsruhe WS 004/05 Prof. Dr. Gerd Schön Dr. Matthias Eschrig Dauer: Stunden Gesamtpunktzahl: 30 Punkte + 5 Zusatzpunkte Hinweise: Beginnen Sie
Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06
Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 005 Übungsblatt 7 Lösungsvorschlag 4 Aufgaben,
Ferienkurs Theoretische Mechanik Sommer 2010 Hamiltonformalismus und Schwingungssysteme
Fakultät für Physik Christoph Schnarr & Michael Schrapp Technische Universität München Übungsblatt 3 - Lösungsvorschlag Ferienkurs Theoretische Mechanik Sommer 00 Hamiltonformalismus und Schwingungssysteme
M. 59 Perle auf rotierendem Draht (F 2018)
M. 59 Perle auf rotierendem Draht (F 8) Eine Perle der Masse m bewegt sich reibungslos auf einem mit konstanter Winkelgeschwindigkeit ω um die z-achse rotierenden Draht. Für die Belange dieser Aufgabe
Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 28. Juli 2014, Uhr
KIT SS 4 Klassische Theoretische Physik II V: Prof Dr M Mühlleitner, Ü: Dr M auch Klausur Lösung 8 Juli 4, 7-9 Uhr Aufgabe : Kurzfragen (+++=8 Punkte (a Verallgemeinerte Koordinaten sind Koordinaten, die
Klassische Theoretische Physik II (Theorie B) Sommersemester 2016
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD
Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W.
Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W. Lang Lösungen der Klausur vom 4. September 009 Aufgabe : Pendelnde Hantel
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 3 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zweiteilchenproblem im Lagrange-Formalismus Betrachten Sie ein System aus zwei
Hamilton-Jacobi-Theorie
Hamilton-Jacobi-Theorie Bewegungsgleichungen werden einfacher, wenn alle (!) neuen Koordinaten zyklisch sind. Dies ist insbesondere dann der Fall, wenn eine zeitabhängige kanonische Transformation existiert,
Theorie B: Klassische Mechanik
Theorie B: Klassische Mechanik Kirill Melnikov TTP KIT Einführung Alle Informationen zu dieser Veranstaltung finden Sie auf http://www.ttp.kit.edu/courses/ss018/theob/start Vorlesungen: Freitags, 9.45-11.15
Klassische Theoretische Physik II
SoSe 2019 Klassische Theoretische Physik II Vorlesung: Prof. Dr. K. Melnikov Übung: Dr. M. Jaquier, Dr. R. Rietkerk Übungsblatt 6 Ausgabe: 31.05 Abgabe: 07.06 @ 09:45 Uhr Besprechung: 11.06 Auf Lösungen
Hauptklausur: T1: Theoretische Mechanik
Fakultät für Physik T: Klassische Mechanik, SoSe 06 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/
Übungen zu Lagrange-Formalismus und kleinen Schwingungen
Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der
Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik!
Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Bewegungsgleichung: Dämpfungsrate: Einheit: Kreisfrequenz des Oszillators:
Zusammenfassung. 1. Starre Körper: Zwei Koordinatensysteme (L und K). Die Bewegung im K-system ist eine Rotation.
Zusammenfassung 1. Starre Körper: Zwei Koordinatensysteme (L und K). Die Bewegung im K-system ist eine Rotation. Z P r x 3 K-System x 2 R O R c x 1 L-System Y 2. Die kinetische Energie des Körpers und
Es kann günstig sein, Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a
V.3.4 Kanonische Transformationen Es kann günstig sein Koordinatentransformationen im Phasenraum durchzuführen. V.3.4 a Koordinatentransformation im Phasenraum Wir betrachten eine allgemeine Koordinatentransformation
Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06
Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 25/6 Dörte Hansen Seminar 1 Dissipative Kräfte I Reibung Wenn wir in der theoretischen Mechanik die Bewegung eines Körpers beschreiben wollen,
Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H
Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k
Ferienkurs Theoretische Mechanik Frühjahr 2009
Physik Departent Technische Universität München Ahed Oran Blatt 5 Ferienkurs Theoretische Mechanik Frühjahr 009 Hailton Mechanik Lösungen) 1 Poisson-Klaern *) I Folgenden bezeichnen l i, i 1,, 3 die Koponenten
Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus
Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und
Theoretische Mechanik
Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 008 Theoretische Mechanik 4. Übung Lösungen 4. Spezielle Kraftgesetze Lösen Sie die
Hamilton-Mechanik. Inhaltsverzeichnis. 1 Einleitung. 2 Verallgemeinerter oder kanonischer Impuls. Simon Filser
Hamilton-Mechanik Simon Filser 4.9.09 Inhaltsverzeichnis 1 Einleitung 1 Verallgemeinerter oder kanonischer Impuls 1 3 Hamiltonfunktion und kanonische Gleichungen 4 Die Hamiltonfunktion als Energie und
Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 2
Prof. C. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 2 Aufgabe 5: otierendes Bezugssystem : das nertialsystem, : das rotierende System. d r = d r +
Musterlösungen. Theoretische Physik I: Klassische Mechanik
Blatt 1 4.01.013 Musterlösungen Theoretische Physik I: Klassische Mechanik Prof. Dr. G. Alber MSc Nenad Balanesković Hamilton-Funktion 1. Betrachten Sie zwei Massenpunktem 1 undm die sich gemäß dem Newtonschen
2.9 Gedämpfter Harmonischer Oszillator
72 KAPITEL 2. DYNAMIK EINES MASSENPUNKTES 2.9 Gedämpfter Harmonischer Oszillator In diesem Abschnitt wollen wir die Bewegung eines Massenpunktes betrachten, der sich in einer Raumrichtung x in einer Harmonischen
2ml2 folgt die Form der Phasenraumtrajektorien zu
PDDr.S.Mertens Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt WS 8/9 3..9. Phasenraumportrait eines Fadenpendels. Eine Masse m sei an einer masselosen Stange der Länge l aufgehängt,
TECHNISCHE MECHANIK III (DYNAMIK)
Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:
Nachklausur: T1: Theoretische Mechanik
Fakultät für Physik T: Klassische Mechanik, SoSe 205 Dozent: Jan von Delft Übungen: Katharina Stadler, Frauke Schwarz, Dennis Schimmel, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5t/
5. Vorlesung Wintersemester
5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 013 Übung 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit
Klausur zur Vorlesung E1: Mechanik für Lehramtskandidaten und Nebenfächler (6 ECTS)
Fakultät für Physik der LMU 13.02.2012 Klausur zur Vorlesung E1: Mechanik für Lehramtskandidaten und Nebenfächler (6 ECTS) Wintersemester 2011/2012 Prof. Dr. Joachim O. Rädler, PD Dr. Bert Nickel und Dr.
Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: , Abgabe am )
Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: 7.9.11, Abgabe am 14.9.11) Beispiel 1: Stoß in der Ebene [3 Punkte] Betrachten Sie den elastischen Stoß dreier Billiardkugeln A, B und C
Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.
1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der
Übungen zum Ferienkurs Theoretische Mechanik
Übungen zum Ferienkurs Theoretische Mechanik Lagrange un Hamilton Mechanik Übungen, ie mit einem Stern markiert sin, weren als besoners wichtig erachtet. 2.1 3D Faenpenel Betrachten Sie ein Faenpenel er
