Blatt 05.3: Green sche Funktionen

Größe: px
Ab Seite anzeigen:

Download "Blatt 05.3: Green sche Funktionen"

Transkript

1 Fakultät für Physik T: Klassische Mechanik, SoSe 06 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger Blatt 05.3: Green sche Funktionen Ausgabe: Freitag, ; Abgabe: Freitag, , 3:00 (b)[](e/m/a) bedeutet: Aufgabe (b) zählt Punkte und ist einfach/mittelschwer/anspruchsvoll Beispielaufgabe : Eigenschaften der δ-funktion [5] Punkte: (a)[](e); (b)[](e); [](E); (d)[](e); [](M). Zeigen Sie die folgenden Eigenschaften der δ-funktion: (a) δ(ax) = δ(x) a (b) dxf(x)δ (x) = f (0), wobei δ (x) die Ableitung der δ-funktion bezeichnet. Veranschaulichen Sie sich die Form von δ (x) wie folgt: berechnen und zeichnen Sie die Ableitung der Lorentz-Funktion δ ɛ (x), die im Limes ɛ 0 eine δ-funktion liefert: δ ɛ (x) = ɛ π, mit lim x + ɛ δ ɛ(x) = δ(x). () ɛ 0 Zeigen Sie, dass Integration der Darstellung () eine Ergebnis liefert, das für ɛ 0 die θ-funktion ergibt. Damit haben Sie gezeigt, dass θ (x) = δ(x) gilt. (d) Zeigen Sie mittels der Darstellung (), dass δ(x a ) = [δ(x a) + δ(x + a)]. Hinweis: a entwickeln Sie zunächst δ ɛ (x a ) für kleine ɛ/ a. Finden Sie eine Funktionen δ(x), für die dx δ(x) = gilt, aber für die die Gleichung dxf(x) δ(x) = f(0) nicht für beliebige f(x) gilt! Beispielaufgabe : Green sche Funktion des gedämpften freien Teilchens [0] Punkte: (a)[](e); (b)[](m); [](E); (d)[](a); [](E); (f)[](e); (g)[](m); (h)[](e). Eine freies gedämpftes Teilchen mit Masse m =, unter Einfluß einer externen Kraft F (t), gehorche der Bewegungsgleichung ẍ + γẋ = F (t). () (a) Bestimmen Sie die allgemeine Lösung x h (t) der zugehörigen homogenen Gleichung. (b) Die Green sche Funktion G des Teilchens erfüllt die Gleichung G + γġ = δ(t). Finden Sie mittels dem Ansatz G(t) = θ(t)g(t) eine stetige Lösung dieser Gleichung.

2 Überprüfen Sie Ihr Resultat, indem Sie in der Green schen Funktion des übergedämpften harmonischen Oszillators (HO), G HO (t) = θ(t) eλ +t e λ t mit λ ± = γ γ λ + λ ± 4 ω 0 und γ > ω 0, den Grenzübergang ω 0 0 durchführen. (d) Wählen Sie nun für die Kraft in (a) einen Rechteckspuls folgender Form (mit ɛ > 0): 0 für t < 0 (Bereich I), F ɛ (t) = /ɛ für 0 t ɛ (Bereich II), 0 für ɛ < t (Bereich III). Skizzieren Sie den Kraftverlauf für verschiedenen Werte von ɛ und überlegen Sie sich, daß für ɛ 0 tatsächlich eine δ-funktion ( idealer Kraftstoß ) entsteht. Finden Sie eine stetige Lösung x(t) der Bewegungsgleichung (), die die Randbedingungen erfüllt, dass im gesamten Bereich I x(t) = ẋ(t) = 0 gilt. [Hinweis: bei t = 0 müssen die Lösungen der Bereiche I und II stetig ineinaner übergehen; dasselbe gilt bei t = ɛ für die Lösungen der Bereiche II und III.] Zeigen Sie, dass die Lösung x(t) im Limes ɛ 0 die Green sche Funktion G(t) aus ((b),) liefert. (f) Die δ-funktion läßt sich auch mittels anderer Formen für den Kraftpuls F ɛ (t) durch einen geeigneten Limes darstellen. Wiederholen Sie Teilaufgabe ((d)) für F α (t) = θ(t)αe αt (mit α > 0). Welcher Limes muss hier genommen werden, damit F α einen δ-puls darstellt? Das Teilchen sei beim Einschalten einer äußeren Kraft F (t) = θ(t)f(t) zur Zeit t = 0 am Ort x 0 ausgesetzt und habe die Geschwindigkeit ẋ 0. Geben Sie mittels der Green schen Funktion aus Teilaufgabe ((b)) die Lösung der Bewegungsgleichung für ein beliebiges f(t) an. (g) Auf das Teilchen, das zunächst bei x = 0 in Ruhe sei, wirke nun ab t = 0 die Kraft F (t) = θ(t)f 0 sin(ωt + φ). Finden Sie den Bewegungsverlauf x(t) des Teilchens für t > 0. (h) Diskutieren Sie das Resultat von (g) im Limes großer Zeiten, t /γ? Was ist dort der Mittelwert x, gemittelt über eine Periode der Antriebskraft? Diskutieren Sie (für beliebige Zeiten) auch den Fall φ = 0 im Limes schwacher Dämpfung, γ 0, und skizzieren Sie dafür die Geschwindigkeit ẋ(t). Warum wechselt diese niemals ihr Vorzeichen, obwohl die Kraft oszilliert? Beispielaufgabe 3: Testfragen [4] Punkte:.[](E);.[](E); 3.[](E); 4.[](E). Diese Fragen prüfen, ob Sie einfache, grundlegende Konzepte der Vorlesung verstanden haben. Sie sollten sie ohne längeres nachdenken oder nachschlagen in ein paar Minuten beantworten können.. Skizzieren Sie die Resonanzkurve eines schwach gedämpften harmonischen Oszillators.. Was ist eine Greensche Funktion? Wie kann mit ihrer Hilfe die Lösung einer Differentialgleichung für beliebige Inhomogenitäten gefunden werden? 3. Wie findet man die Richtung einer Zwangskraft?

3 4. Was ist dxδ(x) sin(x); dxδ(x) cos(x); dxδ (x) sin(x); dxδ (x) cos(x)? [Gesamtpunktzahl Beispielaufgaben: 9] Hausaufgabe : Fourier-Transfomation [5] Punkte: (a)[](e)+[](s,bonus); (b)[](e); [](E); (d)[](e). Die Fourier-Transformierte f(ω) = F[f(t)](ω) ist definiert durch: F[f(t)](ω) = f(ω) = f(t) = dt e iωt f(t) (3) dω π e iωt f(ω). (4) (a) Finden Sie F [ ] t +a (ω), für a R. Hinweis: Spalten Sie die komplexe Exponentialfunktion in trigonometrische Funktionen auf und benutzen Sie Integraltabellen (z.b. Bronstein). [Alternativ: (Bonus) [](S) Berechnen Sie das Fourier-Integral mittels Konturintegration!] Zeigen Sie, dass die Rücktransformation Ihres Ergebnisses für f(ω) wieder liefert. t +a (b) Finden Sie F [θ(t)e γt sin Ωt] (ω) für γ > 0. Ableitung im Orginalbereich: Zeigen Sie durch Ableitung von Gl. (4), dass [ ] d n f(t) F (ω) = ( iω) n f(ω). dt n Hinweis: Benutzen Sie die Integraldarstellung der δ-funktion. (d) Ableitung im Bildbereich: Zeigen Sie durch Ableitung von Gl. (3), dass F [t n f(t)] (ω) = ( i) n dn f(ω) dω n. Hausaufgabe : Kritisch gedämpfter Oszillator mit Rechteck-Antriebspuls [9] Punkte: (a)[3](m); (b)[](m); [](E); (d)[](e); [](M); (f)[](a,bonus). (a) Für den kritisch gedämpften harmonischen Oszillator, ẍ + γẋ + γ x = f(t), (5) werde die Antriebskraft zum Zeitpunkt t = 0 eingeschaltet und sei danach konstant, f(t) = θ(t)f. Finden Sie die Lösung der Bewegungsgleichung mit den Anfangsbedingungen x(t) = 0 und ẋ(t) = 0 für t < 0. Hinweise: Die allgemeine homogene Lösung hat die Form x h (t) = (A+Bt)e γt. Nutzen Sie als partikuläre Lösung die asymptotische Lösung von (5) für t. Finden Sie ferner die Lösung x(t) für den Fall, dass für t < 0 eine konstant treibende Kraft f wirkt, die zum Zeitpunkt t = 0 ausgeschaltet wird, also f(t) = fθ( t). 3

4 (b) Lösen Sie Gl. (5), mit Randbedingungen x(t) = 0 und ẋ(t) = 0 für t < 0, für einen normierten Rechteckspuls der Form f T (t) = θ(t)θ(t t). Zeichnen Sie für γt die Lösung im T gesamten Bereich 0 < t <. Hinweis: das Ergebnis aus (a), ausgewertet bei t = T, dient als Anfangswert für den Bereich t > T. Zeigen Sie durch Einsetzen, dass G(t) = θ(t)e γt t die Green sche Funktion des kritisch gedämpften harmonischen Oszillators ist, d.h. folgende Gleichung erfüllt: [ d dt + γ d ] dt + γ G(t) = δ(t). (6) (d) Zeigen Sie, dass Ihr Ergebnis aus (b) im Limes T 0 die Green sche Funktion aus reproduziert. Warum ist das so? (f) Für einen beliebigen Antrieb f(t) lässt sich die Lösung von Gl. (5) schreiben als x(t) = x h (t) + x p (t), mit x p (t) = dt G(t t ) f(t ). Nutzen Sie nun diese Form, um die in (b) geforderte Lösung nochmal zu berechnen. (Bonus) Alternative Berechnung der Green schen Funktion: Finden Sie durch Fourier-Transformation der Bewegungsgleichung in zunächst die Fourier-Transformierte G(ω), und finden Sie dann G(t), indem Sie das Fourier-Integral mittels Konturintegration berechnen. Hausaufgabe 3: Lagrange-Gleichungen erster Art: Massepunkt auf Kugel [8] Punkte: (a)[](e); (b)[](a); [](E); (d)[](m); [](E). Ein Massepunkt mit Masse m werde zum Zeitpunkt t = 0 auf die Oberfläche einer am Ursprung zentrierten Kugel mit Radius R gesetzt, an einen Punkt r(0) mit Kugelkoordinaten r(0) = R, θ(0) = θ 0 < π/ und φ(0) = 0. Er gleite anschließend unter dem Einfluß der Schwerkraft, K = mge z, reibungslos auf der Kugeloberfläche nach unten. Dabei übt diese auf ihn eine Zwangskraft Z aus, die sein Einsinken in die Kugel verhindert. Mit zunehmender Gleitgeschwindigkeit nimmt die vom Massenpunkt empfundene, nach aussen gerichtete Zentrifugalkraft zu, und die Zwangskraft somit ab. Wenn letztere gleich Null wird, hebt der Massepunkt von der Kugeloberfläche ab. Finden den Winkel θ c, bei dem dies geschieht, indem Sie die Zwangskraft mittels Lagrange-Gleichungen der. Art behandeln. Gegen Sie dabei wie folgt vor: (a) Geben Sie die Zwangsbedingung g(r) = 0 an, die gilt, solange sich die Masse auf der Kugeloberfläche befindet. Geben Sie die Lagrange-Gleichungen erster Art an und zeigen Sie, dass die Zwangskraft die Form Z = λ(t)r hat. (b) Um die Lagrange-Gleichungen explizit zu lösen, nutzen wir Kugelkoordinaten: r = e x r cos φ sin θ + e y r sin φ sin θ + e z r cos θ e r = e x cos φ sin θ + e y sin φ sin θ + e z cos θ e θ = e x cos φ cos θ + e y sin φ cos θ e z sin θ e φ = e x sin φ + e y cos φ. Drücken Sie r in Kugelkoordinaten aus. Zeigen Sie dazu zuerst, dass ė r = θe θ + φ sin θe φ ; ė θ = θe r + φ cos θe φ ; ė φ = φ(sin θe r + cos θe θ ) 4

5 Zeigen Sie, dass die Zerlegung der Lagrange-Gleichungen in Kugelkoordinaten folgende Gleichungen liefert: m( r r sin θ φ r θ ) + mg cos θ = λr (7) m(ṙ θ r sin θ cos θ φ + r θ) = mg sin θ (8) m(ṙ φ sin θ + r φ θ cos θ + r φ sin θ) = 0 (9) g(r) = 0. (0) (d) Vereinfachen Sie obiges Gleichungsystem, indem Sie die Zwangsbedingung g(r) = 0 nutzen und berücksichtigen, dass für die gegebenen Anfangsbedingungen der Winkel φ konstant bleibt, φ(t) = 0, sodass sich die Bewegung ausschließlich in der x-z-ebene abspielt. Finden Sie θ (t) als Funktion von θ(t) und θ 0, indem Sie die vereinfachte Gl. (8) integrieren und die Anfangsbedingung einsetzen. Finden Sie so die Zwangskraft Z als Funktion von θ. Wie lautet Sie bei t = 0? Bestimmen Sie den Winkel θ c, bei dem der Massepunkt abhebt. [Gesamtpunktzahl Hausaufgaben: ] 5

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

Mathematische Hilfsmittel

Mathematische Hilfsmittel Mathematische Hilfsmittel Koordinatensystem kartesisch Kugelkoordinaten Zylinderkoordinaten Koordinaten (x, y, z) (r, ϑ, ϕ) (r, ϕ, z) Volumenelement dv dxdydz r sin ϑdrdϑdϕ r dr dzdϕ Additionstheoreme:

Mehr

Physik für Elektroingenieure - Formeln und Konstanten

Physik für Elektroingenieure - Formeln und Konstanten Physik für Elektroingenieure - Formeln und Konstanten Martin Zellner 18. Juli 2011 Einleitende Worte Diese Formelsammlung enthält alle Formeln und Konstanten die im Verlaufe des Semesters in den Übungsblättern

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr KIT SS 0 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 0. August 0, 7-9 Uhr Aufgabe : Kurzfragen (+++4=0 Punkte (a Zwangsbedingungen beschreiben Einschränkungen

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Klausur zur Vorlesung E1 Mechanik (6 ECTS)

Klausur zur Vorlesung E1 Mechanik (6 ECTS) Ludwig Maximilians Universität München Fakultät für Physik Klausur zur Vorlesung E1 Mechanik WS 2013/2014 17. Feb. 2014 für Studierende im Lehramt und Nebenfach Physik (6 ECTS) Prof. J. Rädler, Prof. H.

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall 4. Lösung einer Differentialgleichung. Ordnung mit konstanten Koeffizienten a) Homogene Differentialgleichungen y'' + a y' + b y = 0 (**) Ansatz: y = e µx, also y' = µ e µx und y'' = µ e µx eingesetzt

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg Hauptprüung Fachhochschulreie 3 Baden-Württemberg Augabe 3 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com Dezember 3 3. Das Schaubild einer Funktion

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV

ERGEBNISSE TECHNISCHE MECHANIK III-IV ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern SS 213, 23.7.213 1. Aufgabe: (TMIII) y C z x A ω B D b r a Im skizzierten System dreht sich die KurbelAB (Länger)

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2 Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Regelungstechnik 2 Inhalt der Übungen: 1. Grundlagen (Wiederholung RT1) 2. Störgrößenaufschaltung 3. Störgrößennachbildung

Mehr

Formelsammlung für Automatisierungstechnik 1 & 2

Formelsammlung für Automatisierungstechnik 1 & 2 Formelsammlung für Automatisierungstechnik & 2 Aus Gründen der Vereinheitlichung, der gleichen Chancen bw. um etwaigen Diskussionen vorubeugen, sind als Prüfungsunterlagen für die Vorlesungsklausuren aus

Mehr

Numerische Integration

Numerische Integration Numerische Integration Die einfachste Anwendung des Integrals ist wohl die Beantwortung der Frage nach der Fläche zwischen dem Graphen einer Funktion und der Achse über einem gegebenen Intervall ('Quadraturaufgabe').

Mehr

Abitur 2011, Analysis I

Abitur 2011, Analysis I Abitur, Analysis I Teil. f(x) = x + 4x + 5 Maximale Definitionsmenge: D = R \ {,5} Ableitung: f (4x + 5) (x + ) 4 8x + 8x (x) = (4x + 5) = (4x + 5) = (4x + 5). F(x) = 4 x (ln x ); D F = R + F (x) = 4 x

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

3. Stochastische Prozesse (Version 1.6.06)

3. Stochastische Prozesse (Version 1.6.06) Statistische Physik, G Schön, Universität Karlsruhe 33 3 Stochastische Prozesse (Version 606) 3 Begriffe, elementare Eigenschaften Definition: Wir betrachten eine kontinuierliche [oder diskrete] stochastische

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Experimentalphysik I: Lösung Übungsklausur

Experimentalphysik I: Lösung Übungsklausur Experimentalphysik I: Lösung Übungsklausur 3. Januar 1 1 (5 Punkte) Eine Punktmasse, welche sich zum Zeitpunkt t = am Koordinatenursprung befindet, bewegt sich mit der Geschwindigkeit v = α cos t δ βt

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Technik der Fourier-Transformation

Technik der Fourier-Transformation Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +

Mehr

Fourier - Transformation

Fourier - Transformation Fourier - Transformation Kurzversion 2. Sem. Prof. Dr. Karlheinz Blankenbach Hochschule Pforzheim, Tiefenbronner Str. 65 75175 Pforzheim Überblick / Anwendungen / Motivation: Die Fourier-Transformation

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Hanser Fachbuchverlag, 1999, ISBN 3-446-21066-0

Hanser Fachbuchverlag, 1999, ISBN 3-446-21066-0 *UXQGODJHQGHU3K\VLN Vorlesung im Fachbereich VI der Universität Trier Fach: Geowissenschaften Sommersemester 2001 'R]HQW 'U.DUO0ROWHU 'LSORP3K\VLNHU )DFKKRFKVFKXOH7ULHU 7HO )D[ (0DLOPROWHU#IKWULHUGH,QIRV]XU9RUOHVXQJXQWHUKWWSZZZIKWULHUGHaPROWHUJGS

Mehr

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist?

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist? Tutor: Martin Friesen, martin.friesen@gmx.de Klausurvorbereitung - Lösungsvorschläge- Funktionentheorie Hier eine kleine Sammlung von Klausurvorbereitungsaufgaben vom Sommersemester 008 aus der Vorlesung

Mehr

Schwingungen und komplexe Zahlen

Schwingungen und komplexe Zahlen Schwingungen und komplexe Zahlen Andreas de Vries FH Südwestfalen University of Applied Sciences, Haldener Straße 82, D-5895 Hagen, Germany e-mail: de-vries@fh-swf.de Hagen, im Mai 22 (Erste Version: November

Mehr

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt.

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt. PARAMETERFUNKTIONEN Zwei Beispiele: gsave currentpoint translate 21 4 div setlin 1 1 x = 2t 2 1 y = t < t

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

Titel: Fouriertransformation. Titel-Kürzel: FT. Autoren: Ulrich Gysel, gys, Niklaus Schmid, sni; Koautoren: G. Lekkas Version-v2.0: 31.

Titel: Fouriertransformation. Titel-Kürzel: FT. Autoren: Ulrich Gysel, gys, Niklaus Schmid, sni; Koautoren: G. Lekkas Version-v2.0: 31. Titel: Titel-Kürzel: FT Autoren: Ulrich Gysel, gys, Niklaus Schmid, sni; Koautoren: G. Lekkas Version-v2.: 3. Oktober 25 Lernziele: Sie wissen, warum bei aperiodischen Signalen nicht mehr mit der Fourierreihe,

Mehr

Blatt 5. - Lösungsvorschlag

Blatt 5. - Lösungsvorschlag Fautät für Physi der LMU München Lehrstuh für Kosoogie, Prof Dr V Muhanov Übungen zu Kassischer Mechani (T) i SoSe Batt 5 - Lösungsvorschag Aufgabe 5 Binäres Sternsyste a) Wieviee Freiheitsgrade hat das

Mehr

Serie 1. D-BAUG Analysis II FS 2015 Dr. Meike Akveld. 1. Beschreiben und zeichnen Sie das Niveaulinienportrait folgender Funktionen:

Serie 1. D-BAUG Analysis II FS 2015 Dr. Meike Akveld. 1. Beschreiben und zeichnen Sie das Niveaulinienportrait folgender Funktionen: D-BAUG Analysis II FS 2015 Dr. Meike Akveld Serie 1 1. Beschreiben und zeichnen Sie das Niveaulinienportrait folgender Funktionen: a) f : R 2 R, (x, y) f(x, y) := x2 4 + y2 b) g : R 2 R, (x, y) g(x, y)

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Praktikumsbericht: Stoßgesetze 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Die Zykloide 4 2. Das Trägheitsmoment

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Untersuchung des mathematischen Pendels

Untersuchung des mathematischen Pendels Untersuchung des mathematischen Pendels Thomas Bächler, Markus Lange-Hegermann, Marcel Wallraff Aachen, 7. Mai 7 Einführung Im folgenden Abschnitt wird eine kurze Voruntersuchung des mathematischen Pendel

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 6: Verlustleistung und Kühlung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 6: Verlustleistung und Kühlung Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Technische Universität München Arcisstraße 21 D 8333 München Email: eal@ei.tum.de Internet: http://www.eal.ei.tum.de Prof. Dr.-Ing. Ralph

Mehr

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement Kapitel 4 Arbeit und Energie 4.1 Ein Ausflug in die Vektoranalysis 4.1.1 Linienelement Das Linienelement dr längs einer Kurve im Raum lautet (Siehe Abb. 4.1): ds dr = d dy dz (4.1) y dr d dy dz z Abbildung

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

Bestimmung von Federkonstanten

Bestimmung von Federkonstanten D. Samm 2014 1 Bestimmung von Federkonstanten 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden.

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. Analysis A Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. a) Bei Verabreichung des Medikaments mithilfe einer Spritze wird die Wirkstoffmenge im Blut

Mehr

Simulation elektrischer Schaltungen

Simulation elektrischer Schaltungen Simulation elektrischer Schaltungen mittels Modizierter Knotenanalyse Teilnehmer: Artur Stephan Andreas Dietrich Thomas Schoppe Maximilian Gruber Jacob Zschuppe Sven Wittig Gruppenleiter: René Lamour Heinrich-Hertz-Oberschule,

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

6 Die Synchronmaschine

6 Die Synchronmaschine Universität Stuttgart Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow 6.1.2 Prinzip 6 Die Synchronmaschine 6.1 Einführung Rotor 6.1.1 Anwendung und Einsatz Herausragende

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Kurzeinführung zum Plotten in Maple

Kurzeinführung zum Plotten in Maple Kurzeinführung zum Plotten in Maple Dies ist eine sehr kurze Einführung, die lediglich einen Einblick in die Visualisierung von Funktionen und Mengen gestatten soll und keinesfalls um Vollständigkeit bemüht

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik Abitur 008 LA / AG II. Abenteuerspielplatz Der Gemeinderat beschlie t, einen eher langweiligen Spielplatz zu einem Abenteuerspielplatz umzugestalten. Das Motto lautet Auf hoher See. Daher soll ein Piratenschiff

Mehr

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichtung Technik Freitag, 29. Mai 2009, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

VORBEREITUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER

VORBEREITUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER VORBEREITUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER FREYA GNAM, TOBIAS FREY 1. EMITTERSCHALTUNG DES TRANSISTORS 1.1. Aufbau des einstufigen Transistorverstärkers. Wie im Bild 1 der Vorbereitungshilfe wird

Mehr

Kapitel 8. Haftung und Reibung

Kapitel 8. Haftung und Reibung Kapitel 8 Haftung und Reibung 8 192 Haftung Haftung (Haftreibung) ufgrund der Oberflächenrauhigkeit bleibt ein Körper im leichgewicht, solange die Haftkraft H kleiner ist als der renzwert H 0.Der Wert

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007.

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007. Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #29 am 19.06.2007 Vladimir Dyakonov Induktionsspannung Bewegung der Leiterschleife im homogenen

Mehr

EigenMath Howto. Beispiele: Was erhält man, wenn man 100 mal die Zahl 2 mit sich multipliziert? Antwort 1267650600228229401496703205376

EigenMath Howto. Beispiele: Was erhält man, wenn man 100 mal die Zahl 2 mit sich multipliziert? Antwort 1267650600228229401496703205376 EigenMath Howto EigenMath ist ein kleines Programm, das als 'Taschenrechner' für die Mathematik der Oberstufe verwendet werden kann. Es ist viel weniger mächtig als die großen Brüder Sage, Maxima, Axiom

Mehr

Eingangstest Mathematik Musterlösungen

Eingangstest Mathematik Musterlösungen Fakultät für Technik Eingangstest Mathematik Musterlösungen 00 Fakultät für Technik DHBW Mannheim . Arithmetik.. (4 Punkte) Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren und

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:

Mehr

Mathematik. Prüfungen am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport

Mathematik. Prüfungen am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jahrgangsstufe 10 Mathematik Schriftliche Prüfung Schuljahr: 003/004 Schulform: Allgemeine Arbeitshinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

1.3 Ein paar Standardaufgaben

1.3 Ein paar Standardaufgaben 1.3 Ein paar Standardaufgaben 15 1.3 Ein paar Standardaufgaben Einerseits betrachten wir eine formale und weitgehend abgeschlossene mathematische Theorie. Sie bildet einen Rahmen, in dem man angewandte

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technoloie Institut für Theorie der Kondensierten Materie Übunen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS -3 Prof. Dr. Alexander Mirlin Blatt 4 Dr. Ior

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

MATHEMATIK IN KUNST UND NATUR. Fibonacci Zahlen und der goldene Schnitt

MATHEMATIK IN KUNST UND NATUR. Fibonacci Zahlen und der goldene Schnitt MATHEMATIK IN KUNST UND NATUR Fibonacci Zahlen und der goldene Schnitt BEGLEITVORTRAG ZUR AUSSTELLUNG MATHEMATIK ZUM ANFASSEN DES MATHEMATIKUMS GIEßEN AN DER HOCHSCHULE PFORZHEIM Prof. Dr. Kirsten Wüst

Mehr