6 Symmetrische Matrizen und quadratische Formen

Größe: px
Ab Seite anzeigen:

Download "6 Symmetrische Matrizen und quadratische Formen"

Transkript

1 Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische Formen.4 Definite Matrizen Wir hatten positiv und negativ definite Matrizen definiert und auch das Determinantenkriterium für positiv definite Matrizen angegeben. Ein eigenes Determinantenkriterium für negativ definite Matrizen ist dabei nicht nötig, da eine symmetrische Matrix A genau dann negativ definit ist, wenn A positiv definit ist. Auf welchen der beiden Fälle man testen muss läßt sich dabei am Vorzeichen von a ablesen. 7 Orthogonale Matrizen Bereits in hatten wir den Begriff einer orthogonalen Matrix eingeführt. Wir hatten auch verschiedene Beschreibung für die Orthogonalität einer Matrix A gesehen A ist orthogonal A t A = AA t = Die Spalten von A sind eine Orthonormalbasis des R n Für alle x, y R n gilt (Ax) (Ay) = x y. In diesem Abschnitt interessiert uns vor allem der letztgenannte Aspekt. Mit x = y folgt für eine orthogonale n n Matrix A auch Ax = (Ax) (Ax) = x x = x für jedes x R n, d.h. die Matrix A erhält die Länge von Vektoren. Weiter folgt, dass eine orthogonale Matrix A auch den Winkel φ zwischen Vektoren x, y R n erhält, denn dieser bestimmt sich ja durch die Formel x y = x y cos φ, und da A Länge und Skalarprodukt nicht ändert, haben wir auch (Ax) (Ay) = Ax Ay cos φ. -

2 Mathematik für Ingenieure II, SS 9 Freitag. Orthogonale Matrizen sind also die linearen Abbildungen, die Längen und Winkel erhalten. Nehmen wir verschiebungen hinzu, so ergeben sich die sogenannten Bewegungen, dies sind die Abbildungen der Form f : R n R n ; x Ax + u mit einer orthogonalen n n Matrix A und einem Vektor u R n. Die Bewegungen sind gerade diejenigen Transformationen unter denen sich die Gesetze der klassischen Mechanik nicht ändern. Wir halten zwei Grundtatsachen über orthogonale Matrizen fest: Satz 7. (Eigenwerte und Determinante orthogonaler Matrizen) Sei A eine orthogonale n n Matrix. Dann gelten: (a) Ist λ C ein komplexer Eigenwert von A, so ist λ =. (b) Es gilt det A = oder det A =. Beweis: Die Aussage (a) wollen wir hier glauben. Aussage (b) folgt aus der Rechnung = det() = det(aa t ) = det(a) det(a t ) = det(a) = det A = ±. Die Bewegungen f(x) = Ax + u bei denen A eine orthogonale Matrix mit det A = ist nennt man auch eigentliche Bewegungen. Dies sind diejenigen Bewegungen, die sich tatsächlich physikalisch realisieren lassen. Die Bewegungen mit det A = haben immer einen Spiegelungsanteil. 7. Spiegelungen Wir werden jetzt einen speziellen Typ orthogonaler Abbildungen untersuchen, die Spiegelung an einer Hyperebene. Im zweidimensionalen Fall n = sind dies Geradenspiegelungen und im dreidimensionalen Fall n = handelt es sich um Ebenenspiegelungen. Da die Dimension für diese Überlegungen keine Rolle spielt, wollen wir hier gleich den n-dimensionalen Fall behandeln, und eine Hyperebene des R n war dann definitionesgemäß ein (n )-dimensionaler affiner Teilraum des R n. Im letzten Semester hatten wir im Abschnitt. über die Hessesche Normalform bereits die auch hier nützliche Beschreibung von Hyperebenen kennengelernt. Jede solche Hyperebene ließ sich in Hessescher Normalform als E = {x R n u x = c} schreiben, wobei c R ist und u ein senkrecht auf E stehender Vektor der Länge u = ist, ein sogenannter Normalenvektor auf E. Da wir hier an orthogonalen Matrizen, also an linearen Abbildungen, interessiert sind, brauchen wir Hyperebenen durch den Nullpunkt, also c =. -

3 Mathematik für Ingenieure II, SS 9 Freitag. Eine Hyperebene durch den Nullpunkt läßt sich somit in der Form x u E = {x R n u x = } λ u beschreiben, wobei u ein Normalenvektor auf E ist. Wir wollen die Spiegelung S an der Hyperebene E berechnen. Sei also x R n. Dann schreiben wir x x = x + λu E mit einem Vektor x E und einem λ R. Beim Spiegeln an E bleibt der Anteil x von Sx x in E erhalten während der zu E senkrechte Anteil λu zu λu wird, d.h. insgesamt wird der Punkt x auf Sx = x λu abgebildet. Den zu u parallelen Anteil λu hatten wir auch bereits im des letzten Semesters ausgerechnet, wegen u = ist λ = u x, also λu = (u x)u. Für das Bild von x unter der Spiegelung folgt die Spiegelungsformel Sx = x λu = x + λu λu = x λu = x (u x)u. Damit haben wir die Spiegelung an E berechnet. Auch als Matrix bezüglich der kanonischen Basis des R n läßt sich S leicht berechnen, es ist ja Sx = x (u x)u = x u(u x)u = x uu t x = ( uu t )x, als Matrix ist also S = uu t. Wir wollen zwei Beispiele rechnen. Sei g die Gerade ( ) {( ) t g := = t R} 4 4t im R. Senkrecht auf dem Richtungsvektor steht beispielsweise ( ) 4 v = Für die Spiegelungsmatrix ergibt sich S = uu t = 5 vvt = ( 4 5 Als ein zweites Beispiel betrachte die Ebene und normiert u = v v = 5 v = ( ) (4 ) = ( 5 9 ). ) ( 7 = ). E := {(x, y, z) R x + y z = } -

4 Mathematik für Ingenieure II, SS 9 Freitag. im R. Dann steht der Vektor v = (,, ) senkrecht auf E, und wegen v = ist u := v = ein Normalenvektor von E. Als die Spiegelungsmatrix an der Ebene E ergibt sich S = uu t = 4 4 = Die Formel für Spiegelungen an Ebenen die nicht durch den Nullpunkt gehen läßt sich auf unsere Spiegelungsformel zurückführen. Angenommen die Hyperebene E R n ist in Hessescher Normalform als E = {x R n u x = c} gegeben, wobei u ein Normalenvektor auf E ist und c R ist. Wähle dann irgendeinen Punkt x E, also u x = c. Die Spiegelung kann man dann realisieren, indem zuerst x nach verschoben wird, dann an der zu E parallelen Hyperebene durch gespiegelt wird, und anschließend wieder nach x zurückgeschoben wird. Die zu E parallele Hyperebene durch hat dabei auch den Normalenvektor u. Wie sieht das als Formel aus? Sei x R n. Beim Verschieben geht x auf x x, und beim Spiegeln an der parallelen Hyperebene geht dieser Punkt auf x x (u (x x ))u = x x (u x)u + (u x )u = x x (u x)u + cu. Dann wird zurückgeschoben und als Spiegelung ergibt sich wobei S = uu t ist. 7. Drehungen S c x = x (u x)u + cu = Sx + cu, Die wohl wichtigste Sorte othogonaler Matrizen sind die Drehungen. Wir werden diese im zwei und im dreidimensionalen Fall behandeln. In Dimension kennen wir uns dabei bereits bestens aus, die Drehung um einen Winkel φ wird durch die Matrix ( ) cos φ sin φ D(φ) = sin φ cos φ beschrieben, wie wir schon in Abschnitt 7. im letzten Semester eingesehen haben. Im zweidimensionalen Fall kennen wir damit bereits alle orthogonalen Matrizen, es gilt nämlich: Satz 7. (Orthogonale Matrizen) Ist A eine orthogonale Matrix, so ist A im Fall det A = eine Drehung und im Fall det A = eine Spiegelung. -4

5 Mathematik für Ingenieure II, SS 9 Freitag. Interessanter ist der dreidimensionale Fall. Hier reicht es zur Beschreibung einer Drehung nicht mehr aus, einen Winkel anzugeben. Neben dem Winkel benötigen wir auch noch die Drehachse, also die Ursprungsgerade um die herum die Drehung stattfindet. Die Achse sei dabei durch einen Vektor u der Länge gegeben. Als ein Beispiel wollen wir einmal die Drehung um die durch u := φ u gegebene Achse mit dem Drehwinkel φ = π/ berechnen. Eine einfache Strategie ist es eine positiv orientierte Orthogonalbasis zu suchen so, dass die Drehachse u zur x-achse wird. Wir suchen also eine Orthogonalbasis u, u, u des R mit u = u. Die Basis soll positiv sein, und nach. aus dem letzten Semester bedeutet dies einfach det(u, u, u ) =. Für den Vektor u nehmen wir einfach irgendeinen auf u senkrechten Vektor der Länge, beispielsweise u := Für den dritten Basisvektor können wir dann das Vektorprodukt u := u u = = verwenden. Die Transformationsmatrix von der Basis u, u, u zur kanonischen Basis des R ist dann S := mit S = S t = Bezüglich der Basis u, u, u können wir die Drehung um einen Winkel φ leicht hinschreiben, die x-komponente wird nicht verändert während in den (y, z)-komponenten die Drehung um den Winkel φ stattfindet, also D (φ) := cos φ sin φ sin φ cos φ -5

6 Mathematik für Ingenieure II, SS 9 Freitag. Bezüglich der kanonischen Basis wird unsere Drehmatrix damit zu SD (φ)s t = = cos φ+sin φ sin φ cos φ sin φ = cos φ sin φ sin φ cos φ cos φ sin φ cos φ+ sin φ cos φ + cos φ + sin φ cos φ sin φ cos φ sin φ cos φ + cos φ + sin φ cos φ + sin φ cos φ sin φ cos φ + cos φ Setzen wir hier φ = π/ ein, so wird wegen sin(π/) = / und cos(π/) = / unsere Drehmatrix zu D = So kann man im Prinzip jede Drehmatrix ausrechnen. Es gibt aber auch noch einen zweiten Weg zur Bestimmung von Drehungen, der sich als rechnerisch angenehmer herausstellt. Um diese Drehungsformel herzuleiten, führen wir die eben gerade gemachte Rechnung noch einmal mit einem unbestimmten Einheitsvektor u aus, und werden so eine allgemeine Formel für Drehungen D mit Achse in Richtung von u und Winkel φ erhalten. Seien also ein Vektor u mit u = und ein Winkel φ R gegeben. Sei x R mit x / u, d.h. u und x sind linear unabhängig. Wie oben starten wir mit der Berechnung einer Orthonormalbasis indem wir u := u setzen. Den zweiten Basisvektor Basisvektor u wählen wor jetzt aber nicht mehr völlig willkürlich sondern zum Argument x passend. Den Punkt x selbst können wir leider nicht verwenden, da dieser weder normiert noch senkrecht zu u ist. Dies ist aber kein großes Problem, wir wenden einfach die und schon bekannte Gram Schmidt Orthonormalisierung auf u, x an, d.h. wir setzen y := x (u x)u und u := y y. Die Orthonormalbasis wird dann vervollständigt durch u := u u = u x u (x (u x)u) = y y da u u = ist. Bezüglich der Basis u, u, u wird x zu x = (u x)u + y = (u x)u + y u = - u x y

7 Mathematik für Ingenieure II, SS 9 Freitag. In dieser Basis berechnet sich das Bild von x unter unserer Drehung als u x u x Dx = cos φ sin φ y = y cos φ sin φ cos φ y sin φ Bezüglich der Standardbasis haben wir damit das Ergebnis Dx = (u x)u + y cos(φ)u + y sin(φ)u = (u x)u + cos(φ)y + sin(φ)u x = (u x)u + cos(φ)x (u x) cos(φ)u + sin(φ)(u x) = cos(φ)x + ( cos φ)(u x)u + sin(φ)(u x). Dies ist bereits eine für praktische Zwecke nützliche Drehungsformel. Wir können die Formel auch noch in Matrixform umschreiben, hierzu müssen wir uns nur überlegen wie die Matrix der linearen Abbildung f(x) = u x aussieht. Dies ist schnell berechnet u e = u u u = u u, u e = u e = u u u u u u u =, u u = u, die Matrix von f ist also û := u u u u u u Die Drehmatrix wird damit insgesamt zu D u (φ) := D = cos φ + ( cos φ)uu t + sin(φ)û. Damit können wir nun Drehmatrizen berechnen. Wir können den Drehwinkel φ auch direkt aus der Matrix D u (φ) ablesen, es ist ja tr û =, tr uu t = u + u + u = und somit tr D u (φ) = cos φ + cos φ = + cos φ. Auch die von u aufgespannte Gerade können wir an der Matrix D u (φ) ablesen. Es ist ja (uu t ) t = uu t aber û t = û, also D u (φ) + D u (φ) t = cos φ + ( cos φ)uu t = tr D u (φ) + ( cos φ)uu t. Ist also φ kein Vielfaches von π, so ist cos φ und es folgt u = Bild(D u (φ) + D u (φ) t tr(d u (φ)) + ). -7

8 Mathematik für Ingenieure II, SS 9 Freitag. Ist φ dagegen ein Vielfaches von π, also cos φ =, so findet überhaupt keine Drehung statt, und daher ist es nicht überraschend das wir keine Drehachse bestimmen können. Beachte übrigens das die Formel für die Drehachse nur den Teilraum u liefert, aber nicht u selbst, d.h. wir können auf diese Weise nicht zwischen u und u unterscheiden. Wenn man aber φ und ±u kennt, so ist ein leichtes durch Einsetzen in die Matrixform der Drehformel abzulesen welchen der beiden wir nehmen müssen. Wir wollen die Matrixformel einmal auf unser oben per Hand gerechnetes Beispiel von Drehungen um u = (/ )(,, ) anwenden. Es gelten uu t = (,, ) = Die Drehung um u mit dem Winkel φ wird damit zu und û = D u (φ) = cos φ + ( cos φ)uu t + sin(φ)û = + cos φ cos φ sin φ cos φ + sin φ cos φ + sin φ + cos φ cos φ sin φ cos φ sin φ cos φ + sin φ + cos φ Dies ist wieder das schon früher berechnete Ergebnis nur das die Rechnung diesmal wesentlich einfacher war. In zwei Dimensionen sind Drehungen und Spiegelungen die einzigen orthogonalen Matrizen. In drei Dimensionen ist es auch noch möglich alle auftretenden Typen orthogonaler Matrizen aufzulisten, und wie im zweidimensionalen Fall sind die Drehungen genau die orthogonalen Matrizen mit Determinante. Satz 7. (Orthogonale Matrizen) Sei A eine orthogonale Matrix. (a) Ist det A =, so ist A eine Drehung um den Winkel ( ) tr(a) φ = arccos mit der Drehachse Bild(A + A t tr(a) + ). (b) Ist det A =, so ist A ein Spiegelung oder das Produkt einer Spiegelung und einer Drehung. Produkte von Spiegelungen und Drehungen nennt man gelegentlich auch Drehspiegelungen. Diese spielen für uns keine Rolle, und daher wollen wir sie auch nicht untersuchen. Ab Dimension 4 werden die Verhältnisse komplizierter, es gibt dann auch orthogonale Matrizen mit Determinante die keine Drehungen sind. Da auch dies für uns keine Rolle spielt, wollen wir dies hier nicht näher ausführen. -8

9 Mathematik für Ingenieure II, SS 9 Freitag. Zum Abschluß wollen wir noch eine eine weitere Beschreibung von Drehungen besprechen, die sogenannten Eulerwinkel. Wir hatten bereits mehrfach die Drehungen um die x-achse verwendet, und entsprechend haben auch die Drehungen um y- und z-achse eine sehr einfache Form, nämlich D (φ) := cos φ sin φ sin φ cos φ, D (φ) := cos φ sin φ sin φ cos φ D (φ) :=, cos φ sin φ sin φ cos φ Aus diesen drei speziellen Drehungen kann man alle anderen Drehungen zusammensetzen, d.h. zu einer beliebigen Drehmatrix A gibt es immer drei Winkel α, β, γ, die sogenannten Euler Winkel von A, so, dass A = D (α)d (β)d (γ) = cos β cos γ cos β sin γ sin β sin α sin β cos γ + cos α sin γ sin α sin β sin γ + cos α cos γ sin α cos β cos α sin β cos γ + sin α sin γ cos α sin β sin γ + sin α cos γ cos α cos β gilt. Aus dieser Formel lassen sich die Euler Winkel bei gegebener Matrix A berechnen. Wir wollen dies einmal am Beispiel der Drehmatrix D = vorführen. Es ist sin β = /, also insbesondere sin β <. Damit ist π/ < β <. Außerdem ist cos β = sin β = 5/9, also cos β = 5/. Explizit ist β = arcsin(/). Wegen / = cos β sin γ = ( 5/) sin γ ist sin γ = / 5 und weiter / = cos β cos γ = ( 5/) cos γ, d.h. cos γ = / 5. Also ist < γ < π/ und γ = arcsin(/ 5). Analog folgt α = γ = arcsin(/ 5). 8 Euklidische Vektorräume und Fourierreihen 8. Allgemeine Skalarprodukte Wir haben bisher das gewöhnliche Skalarprodukt x y = x y + + x n y n für Vektoren x, y R n verwendet. Diesen Begriff verallgemeinern wir nun zu Skalarprodukten auf allgemeineren Vektorräume, und werden dann am Beispiel der Fourierreihen sehen wozu derartige Dinge gut sind. Um Verwechslungen in der Notation zu vermeiden, wird -9

10 Mathematik für Ingenieure II, SS 9 Freitag. für allgemeine Skalarprodukte nicht mehr x y geschrieben, sondern die Schreibweise x y verwendet. Definition 8.: Sei V ein reeller Vektorraum. Ein Skalarprodukt auf V ist eine Abbildung : V V R; (v, w) v w die die folgenden drei Bedingungen erfüllt: (a) Für alle u, v, w V, c R ist (b) Für alle u, v V ist u v = v u. (c) Für alle u V gilt u u >. u + v w = u w + v w und cu v = c u v. Das Grundbeispiel eines Skalarprodukts ist natürlich das gewöhnliche Skalarprodukt v w := v w auf dem R n und seinen Teilräumen. Bei der Behandlung von Fourierreihen wird ein anderes Skalarprodukt eine wichtige Rolle spielen. Um dieses einzuführen betrachten wir den Vektorraum V aller stetigen Funktionen f : [, π] R. Auf diesem Vektorraum V können wir dann durch ein Skalarprodukt definieren. f g := π f(x)g(x) dx -

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen $Id: quadrat.tex,v.2 27/7/5 :59:6 hk Exp $ $Id: orthogonal.tex,v.5 27/7/5 2::22 hk Exp $ 6 Symmetrische und hermitesche Matrizen 6. Quadratische Formen und Hauptachsentransformation In der letzten Sitzung

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen $Id: quadrat.tex,v 1.26 215/6/3 1:3:3 hk Exp $ $Id: orthogonal.tex,v 1.13 215/7/1 1:57:5 hk Exp $ 6 Symmetrische und hermitesche Matrizen 6.4 Definite Matrizen Wir hatten eine symmetrische reelle beziehungsweise

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen Mathematische Probleme, SS 28 Dienstag 29.5 $Id: vektor.tex,v.46 28/5/29 6:4: hk Exp $ Analytische Geometrie und Grundlagen.6 Bewegungen und Kongruenzbegriffe Am Ende der letzten Sitzung hatten wir bereits

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen $Id: quadrat.tex,v.0 0/06/9 :47:4 hk Exp $ $Id: orthogonal.tex,v.4 0/06/9 3:46:46 hk Exp $ 6 Symmetrische und hermitesche Matrizen 6.3 Quadratische Funktionen und die Hauptachsentransformation Wir sind

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach)

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SS 0 Blatt.06.0 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Abgabe: Dienstag, 0. Juli 0, bis 4:00

Mehr

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte

Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte Nachhilfe-Kurs Mathematik Klasse 3 Freie Waldorfschule Mitte März 8 Aufgaben zur analytischen Geometrie Musterlösung Gegeben sind die Ebenen E und E sowie die Punkte A und B: E : 4x + y + 3z = 3 E : x

Mehr

3.2 Spiegelungen an zwei Spiegeln

3.2 Spiegelungen an zwei Spiegeln 3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

7 Orthogonale und unitäre Matrizen

7 Orthogonale und unitäre Matrizen $Id: orthogonal.tex,v.6 2/7/ 4::3 hk Exp $ $Id: mdiffb.tex,v.3 2/7/ 4::5 hk Exp hk $ 7 Orthogonale und unitäre Matrizen 7.2 Drehungen Wir wollen uns jetzt mit Drehungen im dreidimensionalen Raum beschäftigen.

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Hans Walser, [20090509a] Wurzeln aus Matrizen

Hans Walser, [20090509a] Wurzeln aus Matrizen Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR)

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) 1 Bei Ausgrabungen wurden die Überreste einer 4500 Jahre alten Pyramide entdeckt. Die Abbildung zeigt die Ansicht der Pyramidenruine

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Kill Keyword Density. Weshalb die Keyword Density blanker Unsinn ist.

Kill Keyword Density. Weshalb die Keyword Density blanker Unsinn ist. Kill Keyword Density Weshalb die Keyword Density blanker Unsinn ist. Kill Keyword Density» & Karl Kratz Das ist. Jana ist Diplom- Mathematikerin und Controlling-Leiterin bei der Innovation Group AG. Ihr

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Thema: Winkel in der Geometrie:

Thema: Winkel in der Geometrie: Thema: Winkel in der Geometrie: Zuerst ist es wichtig zu wissen, welche Winkel es gibt: - Nullwinkel: 0 - spitzer Winkel: 1-89 (Bild 1) - rechter Winkel: genau 90 (Bild 2) - stumpfer Winkel: 91-179 (Bild

Mehr

7 Die Determinante einer Matrix

7 Die Determinante einer Matrix 7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden.

Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden. Multiplikation Die schriftliche Multiplikation ist etwas schwieriger als die Addition. Zum einen setzt sie das kleine Einmaleins voraus, zum anderen sind die Überträge, die zu merken sind und häufig in

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Ingenieure II, SS 9 Dienstag $Id: jordantex,v 8 9// 4:48:9 hk Exp $ $Id: quadrattex,v 9// 4:49: hk Exp $ Eigenwerte und die Jordansche Normalform Matrixgleichungen und Matrixfunktionen Eine

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten "bedingten Wahrscheinlichkeit".

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten bedingten Wahrscheinlichkeit. Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 9 12 04/2015 Diabetes-Test Infos: www.mued.de Blutspenden werden auf Diabetes untersucht, das mit 8 % in der Bevölkerung verbreitet ist. Dabei werden

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004 Anwendungssoftware 1 / 11 Dauer der Prüfung: 90 Minuten. Es sind alle fünf Aufgaben mit allen Teilaufgaben zu lösen. Versuchen Sie, Ihre Lösungen soweit wie möglich direkt auf diese Aufgabenblätter zu

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf Kochen mit Jordan Vorbereitungen Man nehme eine Matrix A R n n und bestimme ihr charakteristisches Polynom p(λ) = (λ c ) r (λ c j ) rj C[X] Dabei gilt: algebraische Vielfachheit r j ˆ= Länge des Jordanblocks

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr