Fourier - Transformation
|
|
|
- Lars Hartmann
- vor 10 Jahren
- Abrufe
Transkript
1 Fourier - Transformation Kurzversion 2. Sem. Prof. Dr. Karlheinz Blankenbach Hochschule Pforzheim, Tiefenbronner Str Pforzheim Überblick / Anwendungen / Motivation: Die Fourier-Transformation (FT) dient zur Frequenzanalyse von (Zeit-) Signalen (Signalverarbeitung), der Filterung und der Analyse von Schwingungen. Die FT ist auch die Grundlage bei der Spracherkennung. Bei der FT wird die Fourier-Amplitude über der Frequenz dargestellt, man erhält also Aussagen, welche Frequenz wie stark im Zeitsignal vertreten ist. Der zugehörige Algorithmus (Numerik) wird als Fast Fourier Transformation (FFT) bezeichnet. Zeitsignal Quelle: WIKIPEDIA Frequenzbereich mittels FT Zum Ausprobieren: GOOGLE PLAY: SimpleFFT, bs-spectrum, MS EXCEL Empfohlene Literatur: - Böhme: Analysis 2, Springer - Latussek et al. : Lehr- und Übungsbuch Mathematik V, Fachbuchverlag Leipzig-Köln - Papula : Mathematik für Ing. und Naturwissenschaftler, Band 2, Vieweg (nur Fourier-Reihe!) - Burg et al. : Höhere Mathematik für Ingenieure, Band III, Teubner - Tilman Butz: Fourier-Transformation für Fußgänger, Teubner Blankenbach / SS2013 /
2 Idealisiertes Beispiel aus der Musik Fourier-Analyse von Musikinstrumenten Wie kann man Musikinstrumente unterscheiden, wenn alle dieselbe Frequenz (hier f o, z.b: 440 Hz) spielen? Da das bekanntlich möglich ist, müssen die Instrumente noch weitere Frequenzen aussenden, hier Oberwellen mit typischerweise Vielfachen der Grundfrequenz f o. rel. Lautstärke Trompete rel. Lautstärke Horn f o 2f o 3f o 4f o 5f o Frequenz f o 2f o 3f o 4f o 5f o Frequenz rel. Lautstärke Oboe rel. Lautstärke Clarinette f o 2f o 3f o 4f o 5f o Frequenz f o 2f o 3f o 4f o 5f o Frequenz Die Intensitäten (hier rel. Lautstärke, von der Mathe her Fourier-Amplitude) der Schwingungsfrequenzen untereinander sind charakteristisch für das jeweilige Musikinstrument Die Abbildungen der FT-Spektren sind idealisierte Betrachtung. Bei echter Messung im Zeitbereich und Fourier-Transformation verbreitern sich diese Peaks. Blankenbach / SS2013 /
3 Grundlegende Idee der Fourier-Transformation Bekannt: Numerische Approximation von Funktionen durch Reihen (z.b. Polynom): - e x 1 + x + x² + - sinx x + 1/6 x³ + Das Bespiel sin zeigt aber, dass diese Approximation für periodische Funktionen eher ungeeignet ist. Daher der Ansatz von Fourier, periodische Funktionen mit den periodischen Funktionen Sinus und Cosinus zu entwickeln: k 1 Fourier-Reihe: f (t) a a coskt b sinkt o k k k ist hier der Frequenzfaktor von (= 2 f). Es treten also nur ganzzahlige Vielfache der Grundfrequenz auf. Beispiel: Sägezahlfunktion (hier tritt nur Sinus auf, Plot nächste Folie): (f t) hier : 1 k k1 2 ( 1) sin( 1 k rel.amplitude Die Amplitude bei den jeweiligen Frequenzen k stellen eine Hyperbel (y = 1/x) dar kt) Explizite Beschreibung der ersten Glieder der Fourier-Reihe: k Amplitude /3 f(t) 2 sint - sin2t + 2/3 sin3t Hier: = 1 (s.o.) Grundfrequenz 1. harmonische 2. harmonische (Bedeutung) des Sägezahns Oberwelle Oberwelle Somit wird also die Sägezahnfunktion sukzessive durch Sinus mit steigender Frequenz approximiert (Numerik). Zum Ausprobieren: App Fourier Reihe ( Blankenbach / SS2013 /
4 Fourier-Darstellung Sägezahn y 4 Sägezahn (nicht maßstäblich) bis k=1 bis k=2 bis k= t Nullstellen-Versatz durch EXCEL-Schrittweite b k Fourier - Koeffizienten Sägezahn (Spektrum) 2 1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0, Liniendiagramm, da einzelne diskrete 'x-werte', hier k k Die b k s fallen relativ langsam, da die Spitzen des Sägezahnes nachgebildet werden müssen. Für k = 0 ist b k = 0; dies ist technisch dadurch erklärbar, dass das Sägezahn-Signal keinen Gleichspannungs-Anteil enthält. Die Fourier-Reihe liefert für mathematisch bekannte Funktionen die Reihenentwicklung nach Sinus und Cosinus. Dieses Verfahren klappt aber nicht bei messtechnisch erfassten Signalen, da ja hier nur AD-Werte und keine Funktion vorliegen. Deshalb kommt in der Praxis die Fourier-Transformation zum Einsatz! Blankenbach / SS2013 /
5 Fourier Transformation Idee : Analyse eines Zeitsignals im Frequenzbereich (Spektrum) Bezeichnung: f(t) F() komplexe Darstellung (e jt = cost jsint) Definition der Integrale Transformation vom Zeit- in den Frequenzbereich Rück-Transformation vom Frequenz- in den Zeitbereich Fourier- Integral 1 jt jt F( ) f( t) e dt f( t) F( ) e d 2 F() ist Fouriertransformierte von f(t) : Spektraldarstellung im Allgemeinen komplex, d.h. Amplitude + Phase ACHTUNG: - Nie = 2 / T verwenden, ist hier Variable. - Vereinfachung für reelle gerade bzw. ungerade Funktionen f(t): siehe Eigenschaften der FT #9 Aufsplittung von F() in Real- und Imaginärteil e -jt = cost - jsint (Euler): F( ) jt f ( t) e dt f ( t) cos( t) dt j f ( t) sin( t) dt F( ) R( ) j I( ) F( ) R²( ) I ²( ) : Betrag ( ) I R ( ) ( ) : Phase A() = F() : Amplitudenspektrum : Praxis! Blankenbach / SS2013 /
6 In der Praxis: Fertiger Algorithmus z.b. Butterfly (wird hier nicht beschrieben, da meist fertig implementiert) für 2 n Messstellen ( 512, 1024,..). Blankenbach / SS2013 /
7 Weitergehende Aspekte FT eines Rechteck-Pulses: sinx/x FT eines Rechteckpulses: F() ~ sinx/x Darstellung oft als Betrag sinx/x 1. Nebenmaximum (Sidelobe) Ableitung (sinx/x) = 0 (Maximum) bei = 3 / T mit 5% des Maximums bei Null (DC-Anteil) In der Technik oft als Betragsspektrum F() ² mit Skalierung in Dezibel db = 10 log 10 (x) für Spannung etc. mit log (1) = 0 (f = / 2) Ort. 1. Sidelobe 9/T über Ableitung (Steigung Null): Einsetzen: F() ² = A² T² sin²(t/2) / (T/2)² mit = 9/T F() ² = T² sin²(9/2) / (9/2)² 0,05 T² wobei für = 0 : F() ² = T² 1. Sidelobe ca. 5% des Maximums 10 log 10 (0,05) = -13 db Leistung: db = 20 log 10 (x) : Halbe Leistung: -3 db = 20 log(0,5) Blankenbach / SS2013 /
8 Beispiele Rechteck-Signale vs. Optik (Beugung) Blankenbach / SS2013 /
9 Tabelle Fourier-Transformierte (aus Föllinger, HÜTHIG) Vergleiche Rechteckimpuls und sinx/x (Si) Blankenbach / SS2013 /
10 Blankenbach / SS2013 /
11 Blankenbach / SS2013 /
12 Java-App zur Fourier-Trafo: Blankenbach / SS2013 /
13 Fourier-Transformierte und Fensterfunktionen Vorgehensweise: Erfassung (z.b. Oszi) und Multiplikation im Zeitbereich mit Fensterfunktion Fensterfunktionen dämpfen die Nebenzipfel (Frequenz im Original nicht vorhanden!) zu Lasten der Amplitude des Hauptmaximums ( Grund ist ja endliche Messzeit) Blankenbach / SS2013 /
14 Weitere Fensterfunktionen (aus Butz: FT für Fußgänger, Teubner) Blankenbach / SS2013 /
15 Frequenz Auflösung verschiedener Fensterfunktionen (aus Butz: FT für Fußgänger, Teubner) Gegeben ist folgende Funktion: f(t) = cos(t) cos(1,15 t) cos(1,25 t) cos(2 t) cos(2,75 t) cos(3t) Frequenz 1 1,15 1,25 2 2,75 3 Amplitude Frage: Mit welcher Fensterfunktion wird das Signal mit benachbarten Frequenzen und teilweise geringen Amplituden aufgelöst? Blankenbach / SS2013 /
16 Fourier-Fenster-Funktion: Rechteck Spaltfunktion (Zoom, s.u.) Verbreiterung des 10 Hz-Peaks F (Amplitudenspektrum) 1,2 Fouriertransformierte einer zeitlich begrenzten Cosinusschwingung fo = 10 Hz, Meßdauer 1s : 10 gemessene Schwingungen 1 0,8 0,6 0,4 0, f /Hz F (Amplitudenspektrum) Fouriertransformierte einer zeitlich begrenzten Cosinusschwingung fo = 10 Hz, Meßdauer 10s : 100 gemessene Schwingungen f /Hz Nebenzipfeldämpfung durch mehr Perioden (längere Messzeit), aber Gefahr der Unterabtastung (zu wenig Zeit-Messwerte pro Periode). Blankenbach / SS2013 /
17 Beispiel: Fourier-Transformation eines RLC-Schwingkreis mit schwacher Dämpfung Amplitude Gedämpfte Schwingungen 1 Einhüllende 0, Zeit -0,5-1 schw ach gedämpft Kriechfall Aperiodischer Grenzfall rel. Amplitude 10 FT gedämpfte Schwingung 8 6 A (d= 0,1) A (d = 0,25) A (d = 1) ,5 1 1,5 2 2,5 rel. Frequenz (w/w s ) Blankenbach / SS2013 /
18 Übungsaufgaben Fourier-Transformation 1. Berechne Fouriertransformierte eines Dreieckimpulses und skizziere das Ergebnis f(t) A - 0 Tmess/2 t Lösung: 8A T m (F ) sin² T ² 2 m 2. Berechne die FT des doppelten Rechteckpuls und skizziere das Ergebnis f(t) 1-3 T -T 0 T 3T t Lösung: F( ) 4 sint cos2 T 3. Führen Sie die Fourier-Transformation für sin(628 t) mit MS EXCEL sowie MATLAB durch. Weitere Aufgaben siehe Altklausuren. Blankenbach / SS2013 /
Technik der Fourier-Transformation
Was ist Fourier-Transformation? Fourier- Transformation Zeitabhängiges Signal in s Frequenzabhängiges Signal in 1/s Wozu braucht man das? Wie macht man das? k = 0 Fourier- Reihe f ( t) = Ak cos( ωkt) +
Fourier-Reihen, Fourier- und Laplace - Transformation
Fourier-Reihen, Fourier- und Laplace - Transformation Prof. Dr. Karlheinz Blankenbach Hochschule Pforzheim Tiefenbronner Str. 65 7575 Pforzheim Überblick / Anwendungen: - Fourier: Analyse von Schwingungen
DFT / FFT der Titel der Präsentation wiederholt (Ansicht >Folienmaster) Dipl.-Ing. Armin Rohnen, Fakultät 03, [email protected]
1 Grundlagen Abtasttheorem Fenster Zeit - Frequenzauflösung Pegelgenauigkeit Overlap Mittelung 2 2 volle Schwingungen 32 Abtastwerte Amplitude = 1 Pascal Signallänge = 1 Sekunde Eine Frequenzline bei 2
Bildverarbeitung Herbstsemester 2012. Fourier-Transformation
Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie
Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)
Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle
Messtechnik-Praktikum. Spektrumanalyse. Silvio Fuchs & Simon Stützer. c) Berechnen Sie mit FFT (z.b. ORIGIN) das entsprechende Frequenzspektrum.
Messtechnik-Praktikum 10.06.08 Spektrumanalyse Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie die Schaltung für eine Einweggleichrichtung entsprechend Abbildung 1 auf. Benutzen Sie dazu
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de
GT- Labor. Inhaltsverzeichnis
Inhaltsverzeichnis Seite 1. Versuchsvorbereitung 2 1.1 Qualitatives Spektrum der Ausgangsspannung des Eintaktmodulators 2 1.2 Spektrum eines Eintaktmodulators mit nichtlinearem Element 2 1.3 Bandbreite
Kybernetik Laplace Transformation
Kybernetik Laplace Transformation Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 73 / 50 2453 [email protected] 08. 05. 202 Laplace Transformation Was ist eine Transformation? Was ist
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
11.3 Komplexe Potenzreihen und weitere komplexe Funktionen
.3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt
A2.3: Sinusförmige Kennlinie
A2.3: Sinusförmige Kennlinie Wie betrachten ein System mit Eingang x(t) und Ausgang y(t). Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet. Der Zusammenhang zwischen dem Eingangssignal
Elektrische Messtechnik, Labor
Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Messverstärker Studienassistentin/Studienassistent Gruppe Datum Note Nachname, Vorname Matrikelnummer Email
Versuch 3. Frequenzgang eines Verstärkers
Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert
Physik & Musik. Stimmgabeln. 1 Auftrag
Physik & Musik 5 Stimmgabeln 1 Auftrag Physik & Musik Stimmgabeln Seite 1 Stimmgabeln Bearbeitungszeit: 30 Minuten Sozialform: Einzel- oder Partnerarbeit Voraussetzung: Posten 1: "Wie funktioniert ein
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)
Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich
Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich André Grüneberg Janko Lötzsch Mario Apitz Friedemar Blohm Versuch: 19. Dezember 2001 Protokoll: 6. Januar
MATLAB Kurs 2010 Teil 2 Eine Einführung in die Frequenzanalyse via MATLAB
MATLAB Kurs 2010 Teil 2 Eine Einführung in die via MATLAB 26.11.2010 & 03.12.2010 nhaltsverzeichnis 1 2 3 Ziele Kurze Einführung in die -Analyse Ziele Kurze Einführung in die -Analyse MATLAB Routinen für
Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.
Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen
Signale und Systeme. A1 A2 A3 Summe
Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand
Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der
DIFFERENTIALGLEICHUNGEN
DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung
Projekt 2HEA 2005/06 Formelzettel Elektrotechnik
Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Kondensator im Wechselspannunskreis Gruppenteilnehmer: Jakic, Topka Abgabedatum: 24.02.2006 Jakic, Topka Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS
Analogmultiplexer als Amplitudenmodulatoren
Analogmultiplexer als Amplitudenmodulatoren Dipl.-Phys. Jochen Bauer 09.11.014 Einführung und Motivation Mit dem zunehmenden Verschwinden von Mittel- und Langwellensendern ergibt sich die Notwendigkeit
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)
www.mathe-aufgaben.com
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )
Prof.Dr. R. Kessler, C:\ro\Si05\Andy\tephys\Bahm2\PWM-Modul_Demodul2.doc, S. 1/7
Prof.Dr. R. Kessler, C:\ro\Si05\Andy\tephys\Bahm2\PWM-Modul_Demodul2.doc, S. 1/7 Homepage: http://www.home.hs-karlsruhe.de/~kero0001/ Pulsweiten- Modulation am Beispiel Handy Demodulation mittiefpass und
Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:
Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Longitudinale und transversale Relaxationszeit
Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T
Argumente für die diskrete Realisierung der Fourierintegrale
Argumente für die diskrete Realisierung der Fourierintegrale Die Fouriertransformation gemäß der Beschreibung in Kapitel 3.1 weist aufgrund der unbegrenzten Ausdehnung des Integrationsintervalls eine unendlich
Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB
Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Wie kommen die Bits überhaupt vom Sender zum Empfänger? (und welche Mathematik steckt dahinter) Vergleichende Einblicke in digitale Übertragungsverfahren
Anleitung zum Java-Applet. Fourierentwicklung. Studienarbeit : Matthias Klingler Elektronik und Informationstechnik WS 08/09.
Anleitung zum Java-Applet Fourierentwicklung Studienarbeit : Elektronik und Informationstechnik WS 08/09 Betreuung : Prof. Dr. Wilhelm Kleppmann Inhaltsverzeichnis 1 Vorwort...2 2 Übersicht der Benutzeroberfläche...3
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen
Projektdokumentation
Thema: Bildschärfung durch inverse Filterung von: Thorsten Küster 11027641 Lutz Kirberg 11023468 Gruppe: Ibv-team-5 Problemstellung: Bei der Übertragung von Kamerabildern über ein Video-Kabel kommt es
Induktivitätsmessung bei 50Hz-Netzdrosseln
Induktivitätsmessung bei 50Hz-Netzdrosseln Ermittlung der Induktivität und des Sättigungsverhaltens mit dem Impulsinduktivitätsmeßgerät DPG10 im Vergleich zur Messung mit Netzspannung und Netzstrom Die
Simulink: Einführende Beispiele
Simulink: Einführende Beispiele Simulink ist eine grafische Oberfläche zur Ergänzung von Matlab, mit der Modelle mathematischer, physikalischer bzw. technischer Systeme aus Blöcken mittels plug-and-play
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler
Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011
Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h
Fourier-Zerlegung, Fourier-Synthese
Fourier-Zerlegung, Fourier-Synthese Periodische Funktionen wiederholen sich nach einer Zeit T, der Periode. Eine periodische Funktion f(t) mit der Periode T genügt der Beziehung: f( t+ n T) = f( t) für
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
DAS ABI-PFLICHTTEIL Büchlein
DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
= {} +{} = {} Widerstand Kondensator Induktivität
Bode-Diagramme Selten misst man ein vorhandenes Zweipolnetzwerk aus, um mit den Daten Amplituden- und Phasengang zu zeichnen. Das kommt meistens nur vor wenn Filter abgeglichen werden müssen oder man die
Approximation durch Taylorpolynome
TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni
Vorkurs Mathematik Übungen zu Differentialgleichungen
Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)
Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Statistische Thermodynamik I Lösungen zur Serie 1
Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen
Vorkurs Mathematik Übungen zu Polynomgleichungen
Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.
Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung
Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und
Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg
Hauptprüung Fachhochschulreie 3 Baden-Württemberg Augabe 3 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com Dezember 3 3. Das Schaubild einer Funktion
7.3 Anwendungsbeispiele aus Physik und Technik
262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit
Experiment 4.1: Übertragungsfunktion eines Bandpasses
Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal
Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik
Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.
Elektrotechnik für Ingenieure 3
Elektrotechnik für Ingenieure 3 Ausgleichsvorgänge, Fourieranalyse, Vierpoltheorie. Ein Lehr- und Arbeitsbuch für das Grundstudium Bearbeitet von Wilfried Weißgerber 9. Auflage 2015. Buch. XIII, 320 S.
Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung
Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
Signale und ihre Spektren
Einleitung Signale und ihre Spektren Fourier zeigte, dass man jedes in der Praxis vorkommende periodische Signal in eine Reihe von Sinus- und Cosinusfunktionen unterschiedlicher Frequenz zerlegt werden
Fourier-Reihen & Fourier - Transformation
Fourier-Reihen & Fourier - ransformation Prof. Dr. Karlheinz Blanenbach Hochschule Pforzheim iefenbronner Str. 65 7575 Pforzheim Überblic / Anwendungen: Die Fourier-ransformation dient beispielsweisezur
Zuammenfassung: Reelle Funktionen
Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen
Vergleichsklausur 12.1 Mathematik vom 20.12.2005
Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Mit CAS S./5 Aufgabe Alternative: Ganzrationale Funktionen Berliner Bogen Das Gebäude in den Abbildungen heißt Berliner Bogen und steht in Hamburg. Ein
Vermeiden Sie es sich bei einer deutlich erfahreneren Person "dranzuhängen", Sie sind persönlich verantwortlich für Ihren Lernerfolg.
1 2 3 4 Vermeiden Sie es sich bei einer deutlich erfahreneren Person "dranzuhängen", Sie sind persönlich verantwortlich für Ihren Lernerfolg. Gerade beim Einstig in der Programmierung muss kontinuierlich
Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg
Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com
Kurzeinführung zum Plotten in Maple
Kurzeinführung zum Plotten in Maple Dies ist eine sehr kurze Einführung, die lediglich einen Einblick in die Visualisierung von Funktionen und Mengen gestatten soll und keinesfalls um Vollständigkeit bemüht
Die reellen Lösungen der kubischen Gleichung
Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................
Vermessung und Verständnis von FFT Bildern
Vermessung und Verständnis von FFT Bildern Viele Auswertungen basieren auf der "Fast Fourier Transformation" FFT um die (ungewünschten) Regelmäßigkeiten im Schliffbild darzustellen. Die Fourier-Transformation
Komplexe Zahlen und Wechselstromwiderstände
Komplexe Zahlen und Wechselstromwiderstände Axel Tobias 22.2.2000 Ein besonderer Dank geht an Ingo Treunowski, der die Übertragung meines Manuskriptes in L A TEX durchgeführt hat tob skript komplex.tex.
Skalierung des Ausgangssignals
Skalierung des Ausgangssignals Definition der Messkette Zur Bestimmung einer unbekannten Messgröße, wie z.b. Kraft, Drehmoment oder Beschleunigung, werden Sensoren eingesetzt. Sensoren stehen am Anfang
Netzwerke - Bitübertragungsschicht (1)
Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)
Gitterherstellung und Polarisation
Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit
1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82)
3 Schaltungen mit frequenzselektiven Eigenschaften 35 a lg (8) a die Grenzkreisfrequenz ist Grenz a a (8) 3 esonanzkreise 3 eihenresonanzkreis i u u u u Bild 4 eihenresonanzkreis Die Schaltung nach Bild
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen
geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde
Bundesverband Flachglas Großhandel Isolierglasherstellung Veredlung e.v. U g -Werte-Tabellen nach DIN EN 673. Flachglasbranche.
Bundesverband Flachglas Großhandel Isolierglasherstellung Veredlung e.v. U g -Werte-Tabellen nach DIN EN 673 Ug-Werte für die Flachglasbranche Einleitung Die vorliegende Broschüre enthält die Werte für
Elektronenstrahloszilloskop
- - Axel Günther 0..00 laudius Knaak Gruppe 7 (Dienstag) Elektronenstrahloszilloskop Einleitung: In diesem Versuch werden die Ein- und Ausgangssignale verschiedener Testobjekte gemessen, auf dem Oszilloskop
Musterlösungen zur Linearen Algebra II Blatt 5
Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische
QM: Prüfen -1- KN16.08.2010
QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,
Repetitionsaufgaben: Lineare Gleichungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern
Schwingungsanalyse an elektrischen Maschinen
Schwingungsanalyse an elektrischen Maschinen Wolfgang Hüttl Oskar-von-Miller Str. 2, D-86356 Neusäß Tel.: +49 821 48 001-55, Fax: +49 821 48 001-40 E-Mail: [email protected] Internet: www.amserv.de
Methodenseminar. Messtechnik und Biosignalerfassung / Übungen. Assist. Prof. Dipl.-Ing. Dr. Manfred Bijak
Methodenseminar Messtechnik und Biosignalerfassung / Übungen Assist. Prof. Dipl.-Ing. Dr. Manfred Bijak Dieses Skriptum ist ausschließlich als Lernbehelf im Rahmen der Lehrveranstaltung LV 809.045 Messtechnik
Erfolg im Mathe-Abi. H. Gruber, R. Neumann. Prüfungsaufgaben Hessen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Prüfungsaufgaben Hessen Übungsbuch für den Grundkurs mit Tipps und Lösungen - plus Aufgaben für GTR und CAS Inhaltsverzeichnis Inhaltsverzeichnis 1 Ganzrationale
Erstes Nyquistkriterium im Zeitbereich
Erstes Nyquistkriterium im Zeitbereich Für dieses Kapitel wurde vorausgesetzt, dass die Detektion eines Symbols nicht durch Nachbarimpulse beeinträchtigt werden soll. Dies erreicht man durch die Detektion
Charakteristikenmethode im Beispiel
Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)
Wechselstromwiderstände
Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:
Lernmaterial für die Fernuni Hagen effizient und prüfungsnah
Lernmaterial für die Fernuni Hagen effizient und prüfungsnah www.schema-f-hagen.de Sie erhalten hier einen Einblick in die Dokumente Aufgaben und Lösungen sowie Erläuterungen Beim Kauf erhalten Sie zudem
Plotten von Linien ( nach Jack Bresenham, 1962 )
Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x
Physik. Lichtgeschwindigkeit
hysik Lihtgeshwindigkeit Messung der Lihtgeshwindigkeit in Versuhsaufbau Empfänger s Spiegel Sender l osition 0 d Abb. Versuhsdurhführung Die Spiegel werden auf die osition 0 m geshoben und die hase mit
Zwei einfache Kennzahlen für große Engagements
Klecksen nicht klotzen Zwei einfache Risikokennzahlen für große Engagements Dominik Zeillinger, Hypo Tirol Bank Die meisten Banken besitzen Engagements, die wesentlich größer sind als der Durchschnitt
Grundlagen der Computer-Tomographie
Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2)
DHBW Karlsruhe, Vorlesung Programmieren, Klassen (2) Aufgabe 3 Bankkonto Schreiben Sie eine Klasse, die ein Bankkonto realisiert. Attribute für das Bankkonto sind der Name und Vorname des Kontoinhabers,
Analysis I. Einige Bemerkungen zum Beginn... R. Haller-Dintelmann Analysis I
Analysis I Einige Bemerkungen zum Beginn... Termine Vorlesung Di., 09:50 11:30 S2 07/109 Do., 09:50 11:30 S2 17/103 Übung Mi., 08:00 09:40 S1 02/36 Mi., 09:50 11:30 S1 03/313 Mi., 09:50 11:30 S1 02/34
