Blatt 12.3: Fourier-Integrale, Differentialgleichungen

Größe: px
Ab Seite anzeigen:

Download "Blatt 12.3: Fourier-Integrale, Differentialgleichungen"

Transkript

1 Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger Blatt 2.3: Fourier-Integrale, Differentialgleichungen Ausgabe: Freitag, Abgabe: Freitag, , 3:00 Zentralübung: (b)[2](e/m/a) bedeutet: Aufgabe (b) zählt 2 Punkte und ist einfach/mittelschwer/anspruchsvoll Beispielaufgaben: {T}: wird im Tutorien besprochen; {S}: Selbststudium. Beispielaufgabe : Eigenschaften der Fourier-Transformation [] Punkte: (a)[0.5](e); (b)[0.5](e). [S] Beweisen Sie folgende Eigenschaften der Fourier-Transformation, wobei a jeweils eine beliebige reelle Konstante ist. (a) Die Fourier-Transformierte von f( a) ist e ika fk. (b) Die Fourier-Transformierte von f(a) ist f k/a / a, wobei a 0. Beispielaufgabe 2: Fourier-Transformation eines Gauß-Peaks [2] Punkte: [2](E). [S] Zeigen Sie, dass die Fourier-Transformierte eines normierten Gauß-Peaks mit Breite σ, g [σ] () = 2πσ e 2 /2σ 2, mit d g[σ] () =, durch g [σ] k = e σ2 k 2 /2 gegeben ist. Hinweis: Das Fourier- Integral lässt sich mittels quadratischer Ergänzung im Eponenten berechnen. Beispielaufgabe 3: Gekoppelte Schwingungen von zwei Massenpunkten [5] Punkte: (a)[0.5](e); (b)[0.5](e); (c)[2](e); (d)[2](m). [T] Betrachten Sie ein System aus zwei Massenpunkten, mit Massen m und m 2, die mittels drei Federn (Federkonstanten K, K 2 und K 2 ) miteinander bzw. mit zwei Festen Wänden gekoppelt sind (siehe Skizze). Die Bewegungsgleichungen für die beiden Massen lauten m ẍ = K K 2 ( 2 ), m 2 ẍ 2 = K 2 2 K 2 ( 2 ). K m K 2 m 2 K (a) Bringen Sie das Gleichungssystem in die Form ẍ(t) = A (t), mit = (, 2 ) T. Wie lautet die Matri A? (b) Mittels dem Ansatz (t) = v cos(ωt) kann dieses Differentialgleichungsystem in ein algebraisches Eigenwertproblem überführt werden. Wie lautet dieses? (c) Setzen Sie fortan m = m 2, K 2 = m Ω 2, K = 4K 2 und K 2 = 2K 2. (Ω hat die Dimension einer Frequenz.) Finden Sie die Eigenwerte λ j und die Eigenvektoren v j der Matri Ω 2 A, und somit die entsprechenden Eigenfrequenzen ω j und Eigenmoden j (t) der gekoppelten Massen (mit j (0) = v j ).

2 (d) Skizzieren Sie die beiden Eigenmoden j (t) als Funktion der Zeit: machen Sie für j = und 2 jeweils eine Skizze, die auf demselben Achsensystem die beiden Komponenten j(t) und 2 j(t) zeigt. Kommentieren Sie das gezeigte Verhalten! Beispielaufgabe 4: Green sche Funktion von (d t + a) [4] Punkte: (a)[](m); (b)[0.5](e); (c)[0.5](e); (d)[](e); (e)[](m). [T] D(d t ) = (d t +a) sei ein Differentialoperator erster Ordnung, und a eine positive, reelle Konstante. Die entsprechende Green sche Funktion ist definiert durch die Differentialgleichung: (a) Zeigen Sie, dass der Ansatz D(d t )G(t) = δ(t). () G(t) = θ(t) h (t) mit θ(t) = { für t > 0 0 für t < 0, (2) die definierende Gleichung () erfüllt, vorausgesetzt, dass h (t) eine Lösung der homogenen Gleichung D(d t ) h (t) = 0 ist, mit Anfangsbedingung h (0) =. [Hinweis: die Anfangsbedingung gewährleistet, dass δ(t) h (t) = δ(t).] (b) Bestimmen Sie G(t) eplizit durch Lösen der homogenen Gleichung für h (t). (c) Berechnen Sie das Fourier-Integral G(ω) = dt eiωt G(t). (d) Konsistenz-Check: Bestimmen Sie G(ω) alternativ durch Fourier-Transformation der definierenden Gleichung (). Stimmt das Resultat mit dem von Teilaufgabe (c) überein? (e) Finden Sie eine Lösung der inhomogenen Differentialgleichung (d t + a)(t) = e 2at mittels Faltung von G(t) mit der Inhomogenität. Überprüfen Sie die gefundene Lösung eplizit durch Einsetzen. Beispielaufgabe 5: Fipunkte einer Differentialgleichung in einer Dimension [2] Punkte: (a)[0.5]; (b)[0.5]; [](M). [T] Betrachten Sie die autonome Differentialgleichung ẋ = f λ () = ( 2 λ) 2 λ 2 für die reelle Funktion (t), mit λ R. (a) Finden Sie abhängig von λ die Fipunkte dieser Differentialgleichung, (i) für λ 0 und (ii) für λ > 0. (b) Skizzieren Sie f() als Funktion von in zwei Skizzen, (i) für λ = und (ii) für λ = +, und zeichnen Sie die in (a) gefundenen Fipunkte ein. (c) Diskutieren Sie mittels einer graphischen Analyse die Stabilität von jedem dieser Fipunkte, und zeichnen Sie den Fluss von (t) nahe den Fipunkten in die Skizzen von (b) ein. Beispielaufgabe 6: Stabilitätsanalyse in zwei Dimensionen [6] Punkte: (a)[0.5](e); (b)[0.5](e); (c)[](e); (d)[2](e); (e)[2](m). [T] Die Funktion : R R 2, t (t), erfülle folgende Differentialgleichung, mit 0 < c R: ẋ = ( ẋ ẏ ) = f() = ( 2 2 y c( ) ). 2

3 (a) Finden Sie den Fipunkt der Differentialgleichung. (b) Linearisieren Sie die DG in der Abweichung η = vom Fipunkt und bringen Sie sie in die Form η = Aη. Wie lautet die Matri A? ( ) (c) Überprüfen Sie, dass die Matrielemente von A durch a i f j = i j = gegeben sind. (d) Finden Sie die Eigenwerte und Eigenvektoren der Matri A. (e) Diskutieren Sie die Stabilitätseigenschaften des Fipunkts: Für welche Auslenkungsrichtungen relativ zum Fipunkt wächst bzw. zerfällt eine Auslenkung am schnellsten? Auf welcher Zeitskala? [Kontrollergebnisse für c = 3: Eigenwerte: λ + = 3, λ = ; Eigenvektoren v + = (, ) T und v = (, 3) T.] Beispielaufgabe 7: Feldlinien in zwei Dimensionen [2] Punkte: [2](E). [S] ( ) Betrachten Sie das Vektorfeld F = in der y-ebene mit a > 0. Berechnen und skizzieren Sie ay die Feldlinien dieses Feldes durch das Lösen einer entsprechenden Differentialgleichung (nehmen Sie für die Skizze a = 2 ). [Gesamtpunktzahl Beispielaufgaben: 22] Hausaufgabe : Eigenschaften der Fourier-Transformation [2] Punkte: (a)[0.5](e); (b)[0.5](e); (c)[](m). Beweisen Sie folgende Eigenschaften der Fourier-Transformation in 2 Dimensionen, wobei a R 2, α R \ {0} und R eine Drehmatri ist. (a) Die Fourier-Transformierte von f( a) ist e ik a fk. (b) Die Fourier-Transformierte von f(α) ist α 2 f k/α. (c) Die Fourier-Transformierte von f(r) ist f Rk. Hausaufgabe 2: Faltung von Gauß-Peaks [6] Punkte: (a)[](m); (b)[](e); (c)[](m); (d)[](m); (e)[](m); (f)[](e). Lernziel: Illustration folgender Aussage: Die Feinstruktur einer Funktion (z.b. Rauschen in einem Messsignal) lässt sich glätten mittels Faltung mit einer gepeakten Funktion von geeignet gewählter Breite. Ein normierter Gauß-Peak mit Breite σ hat die Form g [σ] () = 2πσ e 2 /2σ 2. Zeigen Sie, dass die Faltung von zwei normierten Gauß-Peaks mit Breiten σ und σ 2 wieder ein normierter Gauß-Peak ist, mit Breite σ = σ 2 + σ 2 2, also dass ( g [σ ] g [σ 2] ) () = g [σ] (). Zeigen Sie das auf zwei Weisen, (a) und (b): (a) Berechnen Sie das Faltungsintegral mittels quadratischer Ergänzung im Eponenten. (b) Nutzen Sie das Faltungstheorem, laut dem ( g[σ ] g ) [σ 2] (k) = g [σ] (k) g [σ2] (k), und die (aus einer Beispielaufgabe) bekannte Form der Fourier-Transformierten eines Gauß-Peaks, g [σj] (k). 3

4 (c) Machen Sie zwei qualitative Skizzen, die erste von g [σ] (), g [σ2] () und g [σ] (), die zweite von deren Fourier-Spektren g [σ] (k), g [σ2] (k) und ( g[σ ] g ) [σ 2] (k), und erläutern Sie anhand der Skizzen, warum die Faltung einer Funktion (hier g [σ] ) mit einer gepeakten Funktion (hier g [σ2] ) zu einer verbreiterten Version der ersten Funktion führt. f [σ] () = 5 n= 5 g[σ ] n (), mit g [σ ] n () = g [σ] ( nl), sei ein Kamm von identischen, normierten Gauß-Peaks der Breite σ, mit Peak-zu-Peak-Abstand L, und F [σ2] () = ( f g ) [σ 2] () sei die Faltung dieses Kammes mit einem normierten Gauß-Peak der Breite σ 2. (d) Finden Sie eine Formel für F [σ 2] (), ausgedrückt als Summe über normierte Gauß-Peaks. Was ist die Breite jedes dieser Peaks? (e) Die Skizze zeigt F [σ 2] () für σ /L = 4 und vier Werte von σ 2/L: 00, 4, 2 und 3 4. Erläutern Sie das gezeigte Verhalten anhand Ihrer Formel aus Teilaufgabe (c). Warum verschwindet die Feinstruktur in F [σ 2] () für σ 2 2 L? F [ 00 L] () F [ 4 L] () σ = L/0 F [ 2 L] () 3 F [ 4 L] () L L L L (f) Mit Bezugnahme auf die eingangs zitierte Aussage zur Rauschglättung mittels Faltung: erläutern Sie allgemein, wie die Breite der gepeakten Funktion gewählt werden muss, um Rauschen wegzuglätten. Hausaufgabe 3: Gekoppelte Schwingungen von drei Massenpunkten [5] Punkte: (a)[0.5](e); (b)[0.5](e); (c)[2](e); (d)[2](m). Betrachten Sie ein System aus drei Massenpunkten, mit Massen m, m 2 und m 3, gekoppelt durch zwei identische Federn, mit Federkonstante k (siehe Skizze). Die Bewegungsgleichungen für die drei Massen lauten m ẍ = k( 2 ), m 2 ẍ 2 = k ( [ 2 ] [ 3 2 ] ), m 3 ẍ 3 = k( 3 2 ), m k m 2 k m (a) Bringen Sie das Gleichungssystem in die Form ẍ(t) = A (t), mit = (, 2, 3 ) T. Wie lautet die Matri A? (b) Mittels dem Ansatz (t) = v cos(ωt) kann dieses Differentialgleichungsystem in ein algebraisches Eigenwertproblem überführt werden. Wie lautet dieses? (c) Setzen Sie fortan m = m 3 = m, m 2 = 2 3 m, und k = mω2. (Ω hat die Dimension einer Frequenz.) Finden Sie die normierten Eigenwerte λ j und die Eigenvektoren v j der Matri Ω 2 A, und somit die entsprechenden Eigenfrequenzen ω j und Eigenmoden j (t) der gekoppelten Massen (mit j (0) = v j ). 4

5 (d) Skizzieren Sie die drei Eigenmoden j (t) als Funktion der Zeit: machen Sie für j =, 2 und 3 jeweils eine Skizze, die auf demselben Achsensystem die drei Komponenten j(t), 2 j(t) und 3 j(t) zeigt. Kommentieren Sie das gezeigte Verhalten! Hausaufgabe 4: Green sche Funktion des kritisch gedämpften harmonischen Oszillators [4] Punkte: (a)[](m); (b)[0.5](e); (c)[0.5](e); (d)[](e); (e)[](m). Ein getriebener, kritisch gedämpfter harmonischer Oszillator mit Frequenz Ω > 0 und Dämpfungsrate γ = Ω erfüllt die Gleichung D(d t )(t) = f(t), mit D(d t ) = (d 2 t + 2Ωd t + Ω 2 ). Die entsprechende Green sche Funktion ist definiert durch die Differentialgleichung: (a) Zeigen Sie, dass der Ansatz D(d t )G(t) = δ(t). (3) G(t) = θ(t) h (t), mit θ(t) = { für t > 0 0 für t < 0, (4) die definierende Gleichung (3) erfüllt, vorausgesetzt, dass h (t) eine Lösung der homogenen Gleichung D(d t ) h (t) = 0 ist, mit Anfangsbedingung h (0) = 0 und d t h (0) =. [Hinweis: die Anfangsbedingung gewährleistet, dass δ(t) h (t) = 0 und δ(t)d t h (t) = δ(t).] (b) Bestimmen Sie G(t) eplizit durch Lösen der homogenen Gleichung für h (t). (c) Berechnen Sie das Fourier-Integral G(ω) = dt eiωt G(t). (d) Konsistenz-Check: Bestimmen Sie G(ω) alternativ durch Fourier-Transformation der definierenden Gleichung (3). Stimmt das Resultat mit dem von Teilaufgabe (c) überein? (e) Finden Sie eine Lösung der inhomogenen Differentialgleichung D(d t )(t) = q sin(ω 0 t) mittels Faltung von G(t) mit der Inhomogenität. Überprüfen Sie die gefundene Lösung eplizit durch Einsetzen. [Hinweis: es lohnt sich, die Sinus-Funktion als Im [ e iω 0t ] zu schreiben, die Rechnung mit e iω 0t als Inhomogenität auszuführen, und erst ganz am Ende den Imaginärteil zu bilden.] Hausaufgabe 5: Fipunkte einer Differentialgleichung in einer Dimension [2] Punkte: (a)[0.5]; (b)[0.5]; [](M). Betrachten Sie die Differentialgleichung ẋ = f() = tanh[5( 3)] tanh[5( + )] sin(π) für die reelle Funktion (t). (a) Finden Sie die Fipunkte dieser Differentialgleichung. (b) Skizzieren Sie f() als Funktion von mit [ 4, 5], und zeichnen Sie die in (a) gefundenen Fipunkte ein. (c) Diskutieren Sie mittels einer graphischen Analyse die Stabilität von jedem dieser Fipunkte, und zeichnen Sie den Fluss von (t) nahe den Fipunkten in die Skizzen von (b) ein. 5

6 Hausaufgabe 6: Stabilitätsanalyse in drei Dimensionen [4] Punkte: (a)[](e); (b)[2](e); (c)[](e). Die Funktion : R R 3, t (t), erfülle folgende autonome Differentialgleichung: ẋ = (ẋ ) ẏ ż ( ) 0 y 24 =. 3z 3 (a) Finden Sie die Fipunkte dieser Differentialgleichung. (b) Zeigen Sie, dass die Fipunkte im Allgemeinen instabil sind, jedoch stabil bezüglich Abweichungen in bestimmte Richtungen. Bestimmen Sie hierfür die lineare Näherung für kleine Auslenkungen um die Fipunkte und berechnen Sie die Eigenwerte und Eigenvektoren der entsprechenden Matri. [Kontrollergebnis: einige der Eigenwerte, die an den Fipunkten auftreten, sind 6, 4, 2, 2.] (c) Identifizieren Sie die stabilen Richtungen, und die entsprechende charakteristische Zeitskala, auf der eine Abweichung vom Fipunkt in diese Richtung nach Null zerfällt. Hausaufgabe 7: Elektrisches Quadrupolfeld in zwei Dimensionen [Bonus] Punkte: [2](E,Bonus). ( ) Betrachten Sie das elektrische Quadrupolfeld in der z-ebene, E = F. Die Konstante F bestimmt die Feldstärke. Berechnen und skizzieren Sie die Feldlinien dieses Feldes durch das Lösen einer entsprechenden Differentialgleichung. [Gesamtpunktzahl Hausaufgaben: 23] 3z 6

Blatt 11.1: Fourier-Integrale, Differentialgleichungen

Blatt 11.1: Fourier-Integrale, Differentialgleichungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt.:

Mehr

Repetitorium A: Matrizen, Reihenentwicklungen

Repetitorium A: Matrizen, Reihenentwicklungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 5/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr

Blatt 05.3: Green sche Funktionen

Blatt 05.3: Green sche Funktionen Fakultät für Physik T: Klassische Mechanik, SoSe 06 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/

Mehr

Blatt 05.2: Green sche Funktionen

Blatt 05.2: Green sche Funktionen Fakultät für Physik T: Klassische Mechanik, SoSe 05 Dozent: Jan von Delft Übungen: Katharina Stadler, Frauke Schwarz, Dennis Schimmel, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5t/

Mehr

Blatt 11.4: Deltafunktion und Fourierreihen

Blatt 11.4: Deltafunktion und Fourierreihen Faultät für Physi R: Rechenmethoden für Physier, WiSe 215/16 Dozent: Jan von Delft Übungen: Benedit Bruognolo, Dennis Schimmel, Fraue Schwarz, uas Weidinger http://homepages.physi.uni-muenchen.de/~vondelft/ehre/15r/

Mehr

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik!

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Bewegungsgleichung: Dämpfungsrate: Einheit: Kreisfrequenz des Oszillators:

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Blatt 03.2: Vektorprodukt, Raumkurven, Linienintegrale

Blatt 03.2: Vektorprodukt, Raumkurven, Linienintegrale Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 25/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T0: Rechenmethoden für Physiker, WiSe 2012/13. T0: Nachholklausur. Mittwoch,

Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T0: Rechenmethoden für Physiker, WiSe 2012/13. T0: Nachholklausur. Mittwoch, Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T0: Rechenmethoden für Physiker, WiSe 202/3 http://homepages.physik.uni-muenchen.de/~vondelft/lehre/2t0/ T0: Nachholklausur Mittwoch, 03.04.203

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

3 Zweidimensionale dynamische Systeme Oszillationen

3 Zweidimensionale dynamische Systeme Oszillationen 3 Zweidimensionale dynamische Systeme Oszillationen Lineare Systeme Ein Beispiel für ein zweidimensionales dynamisches System ist die Gleichung ẍ + ω 2 sin x = 0 für ebene Schwingungen eines reibungsfreien

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 8 06..0 Musterlösungen Theoretische Physik I: Klassische Mechanik Schwingungen z und Wellen Prof. Dr. G. Alber MSc Nenad Balanesković. g x y Ein Massenpunkt der Masse m bewegt sich unter dem Einfluß

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik Klassische Mechanik 30. September 016 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 5 Punkten. Die Klausur

Mehr

Fourier-Transformation

Fourier-Transformation Fourier-ransformation Im Folgenden werden die schon bekannten Eigenschaften der Fourier-Reihen zur Darstellung periodischer Funktionenn zusammengefasst und dann auf beliebige Funktionen verallgemeinert.

Mehr

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung:

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: (3q.6) folgt auch direkt, wenn ein exp-ansatz für x(t),

Mehr

T0: Rechenmethoden WiSe 2011/12. Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen

T0: Rechenmethoden WiSe 2011/12. Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen T0: Rechenmethoden WiSe 20/2 Prof. Jan von Delft http://homepages.physik.uni-muenchen.de/~vondelft/lehre/2t0/ Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen Aufgabe. (**)

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 3. Übungsblatt - 8.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (2 Punkte) Berechnen

Mehr

5. Fourier-Transformation

5. Fourier-Transformation 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion

Mehr

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält.

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält. C7 Differentgleichungen (DG) (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel C7 weicht ab vom Altland-Delft-Text] C7.1 Was ist eine DG, wozu wird sie gebraucht?

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

3 Lineare DGlen mit konstanten Koeffizienten

3 Lineare DGlen mit konstanten Koeffizienten 3 Lineare DGlen mit konstanten Koeffizienten In diesem wichtigen Fall linearer DGlen, dem wir ein eigenes Kapitel widmen wollen, sind die Koeffizientenfunktionen a k (t) a k Konstanten, n 1 x (n) (t)+

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 4 - Angabe Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 013 Übung 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

7.4 Gekoppelte Schwingungen

7.4 Gekoppelte Schwingungen 7.4. GEKOPPELTE SCHWINGUNGEN 333 7.4 Gekoppelte Schwingungen Als Beispiel für 2 gekoppelte Schwingungen betrachten wir das Doppelpendel, das in Abb. 7.19 dargestellt ist. Zunächst vernachlässigen wir die

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2014/2015 1 Seite 2 Inhaltsverzeichnis 3 Energie, Arbeit und Leistung 3 3.1 Energie.................................. 3 3.2 Arbeit...................................

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Blatt 06.3: Matrizen

Blatt 06.3: Matrizen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt 06.3:

Mehr

9.4 Lineare gewöhnliche DGL

9.4 Lineare gewöhnliche DGL 9.4 Lineare gewöhnliche DGL Allgemeinste Form einer gewöhnlichen DGL: Falls linear in ist, sprechen wir von einer "linearen" DGL: und eine Matrix zeitabhängigen Komponenten ein zeitabhängiger Vektor In

Mehr

M. 59 Perle auf rotierendem Draht (F 2018)

M. 59 Perle auf rotierendem Draht (F 2018) M. 59 Perle auf rotierendem Draht (F 8) Eine Perle der Masse m bewegt sich reibungslos auf einem mit konstanter Winkelgeschwindigkeit ω um die z-achse rotierenden Draht. Für die Belange dieser Aufgabe

Mehr

Blatt 13.5: Oberflächenintegrale,

Blatt 13.5: Oberflächenintegrale, Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2 D-MAVT/D-MATL Analysis II FS 07 Dr. Andreas Steiger Lösung - Serie 6. Es ist das folgende autonome System ẋ = x + x + 3 ẋ = x + x von linearen Differenzialgleichungen. Ordung gegeben. Welche der folgenden

Mehr

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim.

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim. Theorie A (WS5/6) Musterlösung Übungsblatt 7 6..5 Θ(t t [ t t ) = lim arctan( ) + π ] ε π ε ( ) d dt Θ(t t ) = lim ε π vergleiche Blatt 6, Aufg. b). + (t t ) ε ε = lim ε π ε ε + (t t ) = δ(t t ) Plot von

Mehr

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält.

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält. C7 Differentgleichungen (DG) (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel C7 weicht ab vom Altland-Delft-Text] C7.1 Was ist eine DG, wozu wird sie gebraucht?

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Repetitorium A: Newtonsche Mechanik, Schwingungen

Repetitorium A: Newtonsche Mechanik, Schwingungen Faultät für Physi T: Klassische Mechani, SoSe 5 Dozent: Jan von Delft Übungen: Katharina Stadler, Fraue Schwarz, Dennis Schimmel, Luas Weidinger http://homepages.physi.uni-muenchen.de/~vondelft/lehre/5t/

Mehr

D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler. Lösungen Serie 11

D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler. Lösungen Serie 11 D-MAVT Lineare Algebra II FS 28 Prof. Dr. N. Hungerbühler Lösungen Serie. Die allgemeine Lösung von y = ay ist y(x) = e ax. (a) richtig (b) falsch y(x) = e ax ist eine spezielle Lösung von y = ay. Für

Mehr

Übungen zur Theoretischen Physik F SS 14. (a) Wenn das System nur aus einem reinen Zustand besteht, dann gilt für die Dichtematrix

Übungen zur Theoretischen Physik F SS 14. (a) Wenn das System nur aus einem reinen Zustand besteht, dann gilt für die Dichtematrix Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS 4 Prof. Dr. Jörg Schmalian Blatt Dr. Peter Orth and Dr. Una Karahasanovic Besprechung.7.4

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

2. Fourier-Transformation

2. Fourier-Transformation 2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten

Mehr

2.9 Gedämpfter Harmonischer Oszillator

2.9 Gedämpfter Harmonischer Oszillator 72 KAPITEL 2. DYNAMIK EINES MASSENPUNKTES 2.9 Gedämpfter Harmonischer Oszillator In diesem Abschnitt wollen wir die Bewegung eines Massenpunktes betrachten, der sich in einer Raumrichtung x in einer Harmonischen

Mehr

2ml2 folgt die Form der Phasenraumtrajektorien zu

2ml2 folgt die Form der Phasenraumtrajektorien zu PDDr.S.Mertens Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt WS 8/9 3..9. Phasenraumportrait eines Fadenpendels. Eine Masse m sei an einer masselosen Stange der Länge l aufgehängt,

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 1

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 1 Prof.. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physi 2 Lösungen zu Blatt 1 Aufgabe 1: Differentialoperatoren der Vetoranalysis (a) Aus der Definition des Nabla-Operators folgt

Mehr

Spezieller Ansatz bei spezieller Inhomogenität.

Spezieller Ansatz bei spezieller Inhomogenität. Spezieller Ansatz bei spezieller Inhomogenität. Bei Inhomogenitäten der Form h(t) = e µt kann man spezielle Ansätze zur Bestimmung von y p (t) verwenden: Ist µ keine Nullstelle der charakteristischen Gleichung

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ.

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ. Eigenwert, Eigenvektor In der Regel hat bei einer linearen Abbildung das Bild eines Vektors eine andere Richtung als das Original r. Bei der Untersuchung der geometrischen Eigenschaften von linearen Abbildungen

Mehr

Repetitorium D: Starrer Körper

Repetitorium D: Starrer Körper Fakultät für Physik T: Klassische Mechanik, SoSe 206 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, August 2009 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Bitte nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Lösung der harmonischen Oszillator-Gleichung

Lösung der harmonischen Oszillator-Gleichung Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................

Mehr

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung (a) Trivialfall: rechte Seite der DG ist unabhängig von x Integration: Substitution auf linker Seite: Lösung: Fazit: Das Lösen von

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

Lösung 09 Klassische Theoretische Physik I WS 15/16. G(t t ) = Θ(t t )e α(t t ). (1)

Lösung 09 Klassische Theoretische Physik I WS 15/16. G(t t ) = Θ(t t )e α(t t ). (1) Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung 09 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön 0 Punkte Sebastian Zanker, Daniel Mendler

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

a) Wir nutzen den Drallsatz für die Rolle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Abb.

a) Wir nutzen den Drallsatz für die Rolle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Abb. Tutoriumsaufgaben. Aufgabe a) Wir nutzen den Drallsatz für die olle und horizontale Komponente des Schwerpunktsatzes, für kleine Auslenkungen: Θ S φ = M(t) rs + cos(φ) F c + F H () m x = S + F H F c Gl.

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

Fakultät für Physik Jan von Delft, Katharina Stadler, Frauke Schwarz T0: Rechenmethoden für Physiker, WiSe 2013/14.

Fakultät für Physik Jan von Delft, Katharina Stadler, Frauke Schwarz T0: Rechenmethoden für Physiker, WiSe 2013/14. Fakultät für Physik Jan von Delft, Katharina Stadler, Frauke Schwarz T0: Rechenmethoden für Physiker, WiSe 01/14 http://homepages.physik.uni-muenchen.de/~vondelft/lehre/1t0/ T0: Probeklausur Donnerstag,

Mehr

Blatt 02.4: Vektorräume, Euklidischer Räume

Blatt 02.4: Vektorräume, Euklidischer Räume Fakultät für Physik R: Rechenmethoen für Physiker, WiSe 15/16 Dozent: Jan von Delft Übungen: Beneikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weiinger http://homepages.physik.uni-muenchen.e/~vonelft/lehre/15r/

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten

Gewöhnliche Differentialgleichungen. Teil II: Lineare DGLs mit konstanten Koeffizienten - 1 - Gewöhnliche Differentialgleichungen Teil II: Lineare DGLs mit konstanten Koeffizienten Wir wenden uns jetzt einer speziellen, einfachen Klasse von DGLs zu, die allerdings in der Physik durchaus beträchtliche

Mehr

Blatt 09.3: Reihenentwicklung

Blatt 09.3: Reihenentwicklung Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

+ x 2 y 2 = f( x 1 ) + f( x 2 ), z 1 + z 2. z 1. a jj + n bjj = SpurA + SpurB ; j=1

+ x 2 y 2 = f( x 1 ) + f( x 2 ), z 1 + z 2. z 1. a jj + n bjj = SpurA + SpurB ; j=1 Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen Lineare Abbildungen, Eigenwerte Lösungen Lösungshinweise: a nicht linear, denn zb fα α, αy +, α + αz T α, αy +, α + z

Mehr

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten 6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten Dieser Abschnitt ist ein Einschub. Gewöhnliche DGL werden im nächsten Semester behandelt. Unter einer linearen gewöhnlichen DGL

Mehr

Blatt 09.2: Variationsrechnung II

Blatt 09.2: Variationsrechnung II Fakultät für Physik T1: Klassische Mechanik, SoSe 016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: f = 3N) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung:

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 3 Tobias Spranger - Prof. Tom Kirchner WS 5/6 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 5 Übungsblatt 6 Lösungsvorschlag 3 ufgaben,

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analsis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 07.05.07 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

1. Aufgabe: (ca. 14% der Gesamtpunkte)

1. Aufgabe: (ca. 14% der Gesamtpunkte) Institut für Mechanik Prof. Dr.-Ing. habil. P. Betsch Prof. Dr.-Ing. habil. Th. Seelig Prüfung in Baudynamik 23. Juli 2018 1. Aufgabe: (ca. 14% der Gesamtpunkte) a) Geben Sie Amplitude, Frequenz und Phasenverschiebung

Mehr

Nichtlineare Dynamik Einführung

Nichtlineare Dynamik Einführung Nichtlineare Dynamik Einführung Tobias Kerscher gekürzte Internetversion (ohne fremde Bilder) Sommerakademie Ftan 2004, 13. August Gliederung 1. Def: Nichtlineare Physik 2. Typische Beispiele 3. Dynamische

Mehr

Fakultät für Physik Jan von Delft, Katharina Stadler, Frauke Schwarz T0: Rechenmethoden für Physiker, WiSe 2013/14.

Fakultät für Physik Jan von Delft, Katharina Stadler, Frauke Schwarz T0: Rechenmethoden für Physiker, WiSe 2013/14. Fakultät für Physik Jan von Delft, Katharina Stadler, Frauke Schwarz T: Rechenmethoden für Physiker, WiSe / http://homepages.physik.uni-muenchen.de/~vondelft/lehre/t/ Nachklausur: T Lösung Hausaufgabe

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:

C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit: C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel

Mehr