6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten

Größe: px
Ab Seite anzeigen:

Download "6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten"

Transkript

1 6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten Dieser Abschnitt ist ein Einschub. Gewöhnliche DGL werden im nächsten Semester behandelt. Unter einer linearen gewöhnlichen DGL n-ter Ordnung mit konstanten Koezienten versteht man eine Gleichung der Form x (n) + a n 1 x (n 1) + + a 1 ẋ + a 0 x = f, a i R( oder C) (1) DGL heiÿt homogen, wenn f = 0 (das ist dann Gleichung (1 hom ). Unter einer Lösung der DGL (1) versteht man eine n-mal stetig dierenzierbare (komplexwertige) Funktion x, deniert auf einem t Intervall I R, so daÿ (1) dort erfüllt ist. Unter einem Anfangswertproblem (AWP) (an der Stelle t 0 ) von (1) versteht man folgende Aufgabenstellung: Gesucht ist eine Lösung x von (1), die auf I deniert ist und für t 0 I die folgenden n Anfangsbedingungen erfüllt: x(t 0 ) = x 0, ẋ(t 0 ) = x 1,..., x (n 1) (t 0 ) = x n 1. Hierbei sind x 0,..., x n 1 fest vorgegebene (reelle oder komplexe) Zahlen. Typisches Beispiel: Schwingungsgleichung (1-dimensionale Schwingung) mẍ(t) + dẋ(t) + cx(t) = F (t) wobei: m - Masse, c - Federkonstante, d - Dämpfungsfaktor, f - äuÿere Anregung. Umgeschrieben sieht die Gleichung so aus: ẍ + 2kẋ + ω 2 0x = f, 2k = d/m 0, ω 2 0 = c/m > 0, f = F/m. Bemerkung: Diese DGL muÿ man einmal in allen Varianten diskutiert haben! Typische Aufgabenstellungen für DGL (Liste wird später erweitert): 1. Existenz von Lösungen der DGL (Struktur der Menge aller Lösungen) 2. Existenz und Eindeutigkeit der Lösung des AWP. Günstig ist es, folgende Abkürzung einzuführen: D := d. D ist einfachstes Beispiel eines dt Dierentialoperators. Gleichung (1 hom ) wird dann: oder D n x + a n 1 D n 1 x + + a 1 Dx + a 0 x = 0 (D n + a n 1 D n a 1 D + a 0 )x = 0 (2) 1

2 d.h. p(d) = 0 (2) mit p(λ) = λ n + a n 1 λ n a 1 λ + a 0 (3) Dieses Polynom heiÿt charakteristisches Polynom von (2). Lemma 6.1 Die Menge aller Lösungen von (2) (d.h. von (1 hom )) bildet einen Vektorraum. Beweis: Das folgt direkt daraus, daÿ die Ableitung eine lineare Operattion ist. Seien x 1, x 2 Lösungen, α, β C. Dann gilt p(d)[αx 1 + βx 2 ] = αp(d)x 1 + βp(d)x 2 = = 0. Bemerkungen: 1. Lemma 6.32 ist ein typisches Resultat für jegliche Art linearer homogener Gleichungen (DGL, algebraische Gleichungen,...) 2. Oen ist die Dimension des Lösungsraums. 3. Wir haben bei diesen Betrachtungen Lösungen im Auge, die alle auf einem gemeinsamen Intervall J R deniert sind. Es wird sich herausstellen, daÿ J = R. 4. Induktiv sieht man (ÜA), daÿ die Lösungen von (2), sofern sie existieren, automatisch unendlich oft dierenzierbar sind (d.h. sie liegen in C (J)). Lösungsidee für (2): Ansatz: x(t) = e λt, einsetzen in (2) und durch e λt dividieren. Dann erhält man Gleichung p(λ) = 0. Die Lösungen dieser Gleichung (= Nullstellen des charakteristischen Polynoms) spielen also eine fundamentale Rolle. Wir diskutieren das genauer. Seien λ 1,..., λ m die verschiedenen NST von p(λ) mit den Vielfachheiten k 1,..., k m. Aus der Partialbruchzerlegung von 1/p(λ) erhält man 1 p(λ) = 1 (λ λ 1 ) k 1... (λ λm ) = q 1(λ) km (λ λ 1 ) + + q m(λ) k 1 (λ λ m ) km mit gewissen Polynomen q 1,..., q m. Damit erhält man für alle λ C: mit 1 = q 1 (λ)p 1 (λ) +... q m (λ)p m (λ) p l (λ) = m (λ λ j ) k j. Setzt man hier anstelle von λ den Dierentialoperator D ein, dann erhält man j=1 j l I = q 1 (D)p 1 (D) + + q m (D)p m (D). 2

3 Hier steht I für die identische Abbildung in C (J) (x Ix = x). Damit erhält man mit x l = q l (D)p l (D)x. x = q 1 (D)p 1 (D)x + + q m (D)p m (D)x = x x m (4) Sei nun x eine Lösung von (2), d.h. p(d)x = 0. Dann gilt (D λ l I) k l x l = (D λ l I) k l q l (D)p l (D)x = q l (D)(D λ l I) k l p l (D)x = q l (D)p(D)x = q l (D)0 = 0 Das bedeutet: jedes x l in der Zerlegung (4) erfüllt die Teilgleichung (D λ l I) k l x l = 0 (5) Umgekehrt ist auch jede Lösung y von (5) eine Lösung von (2): p(d)y = p l (D)(D λ l I) k l y == pl (D)0 = 0. Diese Überlegungen zusammmen mit Lemma 6.32 liefern sofort Satz 6.2 Sei p(λ) = (λ λ 1 ) k 1... (λ λ m ) km die Produktdarstellung des charakteristischen Polynoms von (2). Dann ist jede Summe /LKB von Lösungen der Teilgleichung (5) auch Lösung von (2). Umgekehrt wird jede Lösung von (2) als Summe von Lösungen von (5) erhalten. Man hat also eine Gleichung folgendes Art zu lösen: (D λi) m x = 0 (λ C, m N) (6) Ein wichtiger Schritt dazu ist im folgenden Lemma enthalten. Lemma 6.3 Es gilt für beliebiges x C (R) D m (e αt x(t)) = e αt (D + αi) m x(t), t R. Beweis: Induktion über m. m = 0 trivial, m = 1 einfach nachrechnen. Behauptung sein für m richtig. D m+1 (e αt x(t)) = D [ D m (e αt x(t)) ] = Induk.-voraussetzung = D [ e αt (D + αi) m x ] = Produktregel = D(e αt ) (D + αi) m x + e αt (D + αi) m Dx = αe αt (D + αi) m x + e αt (D + αi) m Dx = e αt (D + αi) m (D + αi)x Folgerung:x C (J) genügt genau dann der Gleichung (6), wenn e λt (D λi) m = 0 (reine Multiplikation mit e λt 0), und das ist wegen Lemma 6.34 genau dann der Fall, wenn D m (e λt x(t)) = 0 (7). 3

4 Die Gleichung (7) läÿt sich aber leicht lösen: D m y(t) = 0 = D(D m 1 y(t)) = D m 1 y(t) = C m 1 = D m 2 y(t) = C m 1 t + C m 2 =... = y(t) = C 0 + C 1 t + C m 1 t m 1. Also hat (7) die Lösung x(t) = e λt (C 0 + C 1 t + C m 1 t m 1 ). Faÿt man alles zusammen, so erhält man Satz 6.4 Seien λ 1,... λ m die NST des charakteristischen Polynoms von (2) mit den Vielfachheiten k 1,..., k m. Dann erhält man sämliche Lösungen der DGL (2) als LKB von Lösungen der Gestalt e λ 1t, te λ 1t,..., t k 1 1 e λ 1t. (8) e λmt, te λmt,..., t km 1 e λmt Da die Menge dieser Lösungen linear unabhängig ist, ist die Dimension des Lösungsraumes von (2) gleich n. Die Lösungen sind für alle t R deniert (d.h. C (R)). Schwieriger ist der Beweis des folgenden Satzes, den wir im Kapitel Gewöhnliche DGL'n als Spezialfall eines allgemeinen Satzes erhalten werden. Satz 6.5 Jedes zu (2) gehörende AWP ist eindeutig lösbar. Bemerkungen: 1. Die NST des charakteristischen Polynoms können auch komplex sein. Wenn die Koef- zienten aber reell sind, dann taucht mit jeder komplexen NST auch die entsprechende konjugiert-komplexe Zahl als NST auf - und zwar mit gleicher Vielfachheit. Die Linearität des Problems erlaubt es dann, sich auf (eine Basis) reelle(r) Lösungen zu beschränken. Das System (8) nennt man ein Fundamentalsystem von Lösungen (= Basis des Lösungsraumes. Nummeriert man (8) durch: xi 1,..., x n, dann heiÿt die allgemeine Lösung von (2). x(t) = c 1 x 1 (t) +... c n x n (t) Bisher haben wir uns nur mit der homogenen DGL beschäftigt. Für die Lösung der inhomogenen DGL ndet wieder (vgl. Lineare Algebra!) das Superpositionsprinzip Anwendung: Seien y 1, y 2 zwei Lösungen der inhomogenen DGL, dann ist x := y 1 y 2 eine Lösung der homogenen DGL. Die allgemeine Lösung der inhomogenen DGL erhält man aus der Summe aus der allgemeinen Lösung der homogenen DGL und einer speziellen Lösung der inhomogenen DGL. (d.h. sei y 0 eine feste Lösung der inhomogenen DGL. Dann erhält 4

5 man jede andere Lösung der inhomogenen DGL y als y = y 0 + x, wo x eine geeignete Lösung der homogenen DGL ist). Beispiel 1 AWP: ẍ 3ẋ + 2x = 0, x(0) = 1, ẋ(0) = 3. Ansatz x(t) = e λt, charakteristische Gleichung: λ 2 3λ + 2 = (λ 1)(λ 2) = 0. Lösungen λ 1 = 1, λ 2 = 2, Fundamentalsystem: x 1 (t) = e t, x 2 (t) = e 2t. Beide Lösungen sind in der Tat linear unabhängig über R (selbst nachprüfen!) Lösung des AWP: Damit erhält man: x(t) = c 1 e t + c 2 e 2t, ẋ(t) = c 1 e t + 2c 2 e 2t x(o) = c 1 + c 2 = 1 ẋ(0) = c 1 + 2c 2 = 3 (*) Also als Lösungen: c 1 = 5, c 2 = 4 Man sieht auÿerdem aus (*) sofort, daÿ jedes AWP eindeutig lösbar ist, weil die Determinante der Koezientenmatrix in (*) ungleich Null. Beispiel 2 ẍ 2ẋ + 1 = 0 Charakteristische Gleichung: λ 2 2λ + 1 = 0, doppelte NST: λ 1,2 = 1. Fundamentalsystem von Lösungen: x 1 (t) = e t, x 2 (t) = te t. Beispiel 3 Beispiel für Lösung einer inhomogenen DGL. Man bestimme die allgemeine Lösung von ẍ 3ẋ + 2x = 4t + 1 Auÿerdem löse man das zugehörige AWP mit den AW: x(0) = 7/2, ẋ(0) = 1. Die allgemeine Lösung der hohogenen DGL war nach Beispiel 1: x(t) = c 1 e t + c 2 e 2t. Eine spezielle Lösung der inhomogenen DGL versucht man durch einen Ansatz zu nden, der nach der rechten Seite modelliert ist (das ist eine sehr grobe Formulierung mit vielen Tücken!). Ansatz: y 0 (t) = at + b, also ẋ = a, ẍ = 0. Einsetzen in DGL: Mithin: 3a + 2(at + b) = 4t + 1 (2a 4)t + (2b 3a 1) = 0 5

6 Koezienten müssen alle Null sein, das liefert: a = 2, b = 7/2, also y 0 (t) = 2t + 7/2. Damit erhält man als allgemeine Lösung: y(t) = c 1 e t + c 2 e 2t + 2t + 7/2 Lösung des AWP: x(0) = c 1 + c 2 + 7/2 = 7/2, ẋ(0) = c 1 + 2c = 1. Daraus folgt: c 1 = 1, c 2 = 1. Andere rechte Seite: f(t) = sin t. Hier führt der Ansatz y 0 (t) = a cos t + b sin t zum Ziel; Sinus bzw. Cosinus allein reichen nicht aus. 6

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja Lineare Systeme mit konstanten Koeffizienten 44 63 Zusammenhang mit Fundamentalsystemen Für die Matrix-Exponenzialfunkton e Ax gilt (e Ax ) = Ae Ax Für jede Spalte '(x) der Matrix e Ax Matrixmultpiplikation

Mehr

Lineare Differentialgleichungen n-ter Ordnung

Lineare Differentialgleichungen n-ter Ordnung KAPITEL 5 Lineare Differentialgleichungen n-ter Ordnung 1 Veränderliche Koeffizienten Analog zu den linearen Dierentialgleichungen 2 Ordnung gilt: 75 76 5 LINEARE DIFFERENTIALGLEICHUNGEN n-ter ORDNUNG

Mehr

Lineare Differentialgleichungen höherer Ordnung

Lineare Differentialgleichungen höherer Ordnung Lineare Differentialgleichungen höherer Ordnung I. Grundlegendes Eine homogene lineare Differentialgleichung n-ter Ordnung besitzt die Form y (n) + a n 1 (x)y (n 1) +... + a 1 (x)y + a 0 (x)y = 0 Eine

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

1.5 Lineare Differentialgleichungen zweiter Ordnung

1.5 Lineare Differentialgleichungen zweiter Ordnung 16 Kapitel 1. Differentialgleichungen 1.5 Lineare Differentialgleichungen zweiter Ordnung Eine lineare Differentialgleichung zweiter Ordnung hat die Form y +a 1 (x)y +a 0 (x)y = b(x), wobei a 1,a 0,b:I

Mehr

2.5 Lineare Differentialgleichungen n-ter Ordnung

2.5 Lineare Differentialgleichungen n-ter Ordnung 2.5 Lineare Differentialgleichungen n-ter Ordnung Eine Dgl der Gestalt a n (x)y (n) +a n 1 (x)y (n 1) +...+a 2 (x)y +a 1 (x)y +a 0 (x)y = b(x) heißt lineare Dgl n-ter Ordnung. ( ) Dabei sind a 0, a 1,...,

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten. Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff.

2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten. Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff. 2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff. a k y (k) (x) = b(x) k=0 (L) mit a 0, a 1,..., a n

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1 Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform 4 Reelle Fundamentalsysteme Ausblick auf die heutige Vorlesung

Mehr

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden.

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am 20.6.2015 um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Prof. Dr. Wolfgang Arendt Manuel Bernhard Sommersemester 2015 Achten

Mehr

Lineare Differentialgleichungen

Lineare Differentialgleichungen Technische Universität München Thomas Reifenberger Vorlesung, Kapitel 4 Repetitorium Analysis I für Physiker Analysis I Lineare Differentialgleichungen 1 Das Matrixexponential Definition 1.1 Sei A C n

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 12.1 Der Satz von Picard-Lindelöf 12.1.1 Definition (Explizite Differentialgleichung erster Ordnung) Ω 1 R, Ω 2 R n seien offen und f : Ω 1 Ω 2 R n, (x,y) f (x,y)

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

Die inhomogene Differentialgleichung höherer Ordnung.

Die inhomogene Differentialgleichung höherer Ordnung. Die inhomogene Differentialgleichung höherer Ordnung. Ist das Funktionensystem (y 1,..., y n ) ein Fundamentalsystem, so ist die Matrix Y(t) = y (0) 1... y n (0). y (n 1) 1... y n (n 1) eine Fundamentalmatrix

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Höhere Mathematik III für Physik

Höhere Mathematik III für Physik 8..8 PD Dr. Peer Kunstmann M.Sc. Michael Ullmann Höhere Mathematik III für Physik 5. Übungsblatt - Lösungsvorschläge Aufgabe (Homogene Anfangswertprobleme) Lösen Sie erst die folgenden Differentialgleichungssysteme

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya Fundamentale Lösungen von linearen homogenen Differentialgleichungen 1-E Eigenschaften einer linearen DGL 2. Ordnung Eine homogene lineare Differenzialgleichung 2. Ordnung mit konstanten Koeffizienten

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004 B Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004 April Klausur (Rechenteil Lösungen Lineare Algebra für Ingenieure Name:.......................................

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

11.4. Lineare Differentialgleichungen höherer Ordnung

11.4. Lineare Differentialgleichungen höherer Ordnung 4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Lineare Systeme 1. Ordnung

Lineare Systeme 1. Ordnung KAPITEL 7 Lineare Systeme. Ordnung 7. Allgemeine Aussagen über lineare Systeme. Ordnung...... 235 7.2 Homogene lineare Systeme. Ordnung mit konstanten Koeffizienten237 7.3 Inhomogenes System. Ordnung mit

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25.

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25. A Technische Universität Berlin Fakultät II Institut für Mathematik WS 3/4 Eppler, Richter, Scherfner, Seiler, Zorn 5. Februar 4 Februar Klausur (Rechenteil) Lösungen: Lineare Algebra für Ingenieure Name:.......................................

Mehr

y = A(x) y + b(x). (1) y = A(x) y (2)

y = A(x) y + b(x). (1) y = A(x) y (2) 73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe

Mehr

Lineare Differentialgleichungen mit festen Koeffizienten

Lineare Differentialgleichungen mit festen Koeffizienten Lineare Differentialgleichungen mit festen Koeffizienten Wir fangen mit folgender Definition an: Definition: Linear abhängige (unabhängige) Funktionen. Seien u i (x), i = 1,, n Funktionen, vorgegeben auf

Mehr

Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung

Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung Höhere Mathematik II für den Studiengang BAP Hausaufgabe 2 04.11.2008 1 Hausaufgabe 2: Differenzialgleichungen n-ter Ordnung Lösungen 1. Geben Sie die allgemeine Lösung der folgenden Differenzialgleichungen

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 4. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching June 6, 207 Erinnerung Die Reihe a k konvergiert falls, lim S n = lim n n n a k =: a k existiert. Satz (Majoranten/Minorantenkriterium)

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

9 Lineare Differentialgleichungen

9 Lineare Differentialgleichungen $Id: lineartex,v 3 //8 ::37 hk Exp hk $ 9 Lineare Differentialgleichungen 9 Homogene lineare Differentialgleichungen Wir beschäftigen uns gerade mit den homogenen linearen Differentialgleichungen, also

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Systeme gewöhnlicher Di erentialgleichungen. Ordnung

Systeme gewöhnlicher Di erentialgleichungen. Ordnung Systeme gewöhnlicher Di erentialgleichungen. Ordnung Systeme. Ordnung De nition Für eine gegebene n n-matrix A(x) =(a ij (x)) n i,j=, deren Elemente Funktionen von x sind und einer gegebenen rechten Seite

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analsis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 07.05.07 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

III. Lineare Dgln. 1 Lineares System von n Dgln, Existenz und Eindeutigkeit. y = A(t)y + b(t), y(t 0 ) = y 0 ( )

III. Lineare Dgln. 1 Lineares System von n Dgln, Existenz und Eindeutigkeit. y = A(t)y + b(t), y(t 0 ) = y 0 ( ) III. Lineare Dgln 1 Lineares System von n Dgln, Existenz und Eindeutigkeit ( ) y = A(t)y + b(t) y(t) := ( y 1 (t),...,y n (t) ), A(t) := ( a i j (t) ) n,n, y (t) := ( y 1 (t),...,y n(t) ) b(t) :=( b 1

Mehr

29.2 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten Wir betrachten das homogene System. y = A y, t R, (1)

29.2 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten Wir betrachten das homogene System. y = A y, t R, (1) 292 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten Wir betrachten das homogene System y = A y, t R, ( wobei A C n n, und wollen ein Fundamentalsystem bestimmen Grundlegende Beobachtung:

Mehr

Lineare DGL-Systeme 1. Ordnung

Lineare DGL-Systeme 1. Ordnung Lineare DGL-Systeme 1. Ordnung Eine Reihe von naturwissenschaftlichen Problemstellungen, wie z. B. Feder- Dämpfer-Systeme der Mechanik oder Kirchhoffsche Netzwerke der Elektrotechnik, lassen sich durch

Mehr

Vergessen Sie nicht, sich zur Klausur anzumelden Anmeldeschluÿ am Freitag, den 20. Juli!!

Vergessen Sie nicht, sich zur Klausur anzumelden Anmeldeschluÿ am Freitag, den 20. Juli!! Vergessen Sie nicht, sich zur Klausur anzumelden Anmeldeschluÿ am Freitag, den 20. Juli!! Erst den Anmeldungszettel im Studienbüro holen Dann den Anmeldungszettel vor Zimmer 208. in den richtigen Kasten

Mehr

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten

Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Lineare Differenzialgleichungen n-ter Ordnung mit konstanten Koeffizienten Wir betrachten nun Lu = u (n) + a n 1 u (n 1) +... + a 1 u + a 0 u = b(t) wobei a 0, a 1,..., a n 1 R. Um ein FS für die homogene

Mehr

4.7 Lineare Systeme 1. Ordnung

4.7 Lineare Systeme 1. Ordnung 3. Die allgemeine Lösung der inhomogenen Differentialgleichung lautet damit yx = y hom x + y inh x = c x + c 2 x + 8 x + 4 xlnx2 4 xlnx = C x + C 2 x + 4 xlnx2 4 xlnx. Wir haben c 2 + 8 zu C 2 zusammengefasst.

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Leseprobe. Michael Knorrenschild. Mathematik für Ingenieure 2. Angewandte Analysis im Bachelorstudium. ISBN (Buch):

Leseprobe. Michael Knorrenschild. Mathematik für Ingenieure 2. Angewandte Analysis im Bachelorstudium. ISBN (Buch): Leseprobe Michael Knorrenschild Mathematik für Ingenieure 2 Angewandte Analysis im Bachelorstudium ISBN (Buch): 978-3-446-41347-4 ISBN (E-Book): 978-3-446-43269-7 Weitere Informationen oder Bestellungen

Mehr

Spezieller Ansatz bei spezieller Inhomogenität.

Spezieller Ansatz bei spezieller Inhomogenität. Spezieller Ansatz bei spezieller Inhomogenität. Bei Inhomogenitäten der Form h(t) = e µt kann man spezielle Ansätze zur Bestimmung von y p (t) verwenden: Ist µ keine Nullstelle der charakteristischen Gleichung

Mehr

Randwertprobleme. Kapitel 7. Randwertprobleme für lineare Differentialgleichungen 2. Ordnung

Randwertprobleme. Kapitel 7. Randwertprobleme für lineare Differentialgleichungen 2. Ordnung Kapitel 7 Randwertprobleme Anwendungsbeispiel: Temperaturverteilung in einem dünnen Stab mit isolierter Oberfläche. u(x) : Temperatur im Stab an der Stelle x, x ; L. Im Gleichgewichtszustand genügt u der

Mehr

Floquet-Theorie IV. 1 Hills Gleichung

Floquet-Theorie IV. 1 Hills Gleichung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 08.11.2011 Tobias Roidl Dieser Vortrag befasst sich mit der Hills Gleichung und gibt eine Einführung in die Periodischen Orbits von linearen Systemen.

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Systeme von Differentialgleichungen 1. Ordnung

Systeme von Differentialgleichungen 1. Ordnung 9 KAPITEL 7 Systeme von Differentialgleichungen. Ordnung. Grundsätzliches In vielen Anwendungen sind zeitlich variable Groen x t, x 2 t,..., x n t in der Weise gekoppelt, dass der " momentane Zuwachs\

Mehr

Differenzengleichungen, Z - Transformation

Differenzengleichungen, Z - Transformation Differenengleichungen, Z - Transformation In diesem Kapitel wollen wir eine weitere Transformation, die Z-Transformation behandeln. Mit Hilfe der Z-Transformation können lineare Differenengleichungen (DFG

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Tutorium Mathematik II M WM

Tutorium Mathematik II M WM Tutorium Mathematik II M WM 9.6.7 Lösungen Lösen Sie folgende Systeme von Differentialgleichungen der Form x = A x + b mit. A = 6 und b = et. e t Hinweis: Die Eigenwerte und -vektoren der Matrix A lauten:

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

3 Lineare DGlen mit konstanten Koeffizienten

3 Lineare DGlen mit konstanten Koeffizienten 3 Lineare DGlen mit konstanten Koeffizienten In diesem wichtigen Fall linearer DGlen, dem wir ein eigenes Kapitel widmen wollen, sind die Koeffizientenfunktionen a k (t) a k Konstanten, n 1 x (n) (t)+

Mehr

B. Lösungsskizzen zu den Übungsaufgaben

B. Lösungsskizzen zu den Übungsaufgaben B. Lösungsskizzen zu den Übungsaufgaben B.. Lösungen zum Kapitel B... Tutoraufgaben Lösungsskizze Wir gehen zuerst nach dem Lösungsverfahren vor. Schritt : Bestimmung der Lösung des homogenen DGL-Systems

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2018/2019 Dr. Hanna Peywand Kiani Hörsaalübung 2 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Separierbare und lineare Differentialgleichungen

Mehr

Lineare Differenzen- und Differenzialgleichungen

Lineare Differenzen- und Differenzialgleichungen Lineare Differenzen- und Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Lineare Differenzen- und Differenzialgleichungen Übersicht 1 Beispiele Anwendung auf Fragen der dynamischen

Mehr

Differentialgleichungen für Ingenieure Lösung Klausur Juli

Differentialgleichungen für Ingenieure Lösung Klausur Juli Technische Universität Berlin Fakultät II Institut für Mathematik SS 0 Dozentin Dr Penn-Karras Assistentin Dr C Papenfuß Differentialgleichungen für Ingenieure Lösung Klausur Juli Rechenteil Aufgabe 8

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

Vorlesung Mathematik 2 für Ingenieure (A)

Vorlesung Mathematik 2 für Ingenieure (A) 1 Vorlesung Mathematik 2 für Ingenieure (A) Sommersemester 2017 Kapitel 8: Gewöhnliche Differenzialgleichungen Prof. Dr. Gerald Warnecke Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke

Mehr

MATHEMATISCHE METHODEN DER PHYSIK 1

MATHEMATISCHE METHODEN DER PHYSIK 1 MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen

Mehr

3 Lineare Differentialgleichungen

3 Lineare Differentialgleichungen 3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,

Mehr

D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler. Lösungen Serie 11

D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler. Lösungen Serie 11 D-MAVT Lineare Algebra II FS 28 Prof. Dr. N. Hungerbühler Lösungen Serie. Die allgemeine Lösung von y = ay ist y(x) = e ax. (a) richtig (b) falsch y(x) = e ax ist eine spezielle Lösung von y = ay. Für

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

Wir wollen Systeme von linearen Differentialgleichungen 1. Ordnung über einem offenen Intervall I R untersuchen:

Wir wollen Systeme von linearen Differentialgleichungen 1. Ordnung über einem offenen Intervall I R untersuchen: 23 23 Lineare Systeme Wir wollen Systeme von linearen Differentialgleichungen Ordnung über einem offenen Intervall I R untersuchen: y = y A(t + b(t, mit stetigen Abbildungen A : I M n,n (R und b : I R

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr. 14-16 und n.v. holtz@math.tu-berlin.de Sadegh Jokar MA 373 Sprechstunde, Do. 12-14 und n.v. jokar@math.tu-berlin.de

Mehr

Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten

Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten Robert Labus Wintersemester 01/013 Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten Definition Ist n N eine natürliche Zahl und a k R für k = 1;...; n, dann wird die Abbildung

Mehr

14 Lineare Differenzengleichungen

14 Lineare Differenzengleichungen 308 14 Lineare Differenzengleichungen 14.1 Definitionen In Abschnitt 6.3 haben wir bereits eine Differenzengleichung kennengelernt, nämlich die Gleichung K n+1 = K n q m + R, die die Kapitalveränderung

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt, WS 202/203 Höhere Mathematik III für die Fachrichtung Physik Aufgabe 6 Bei allen Aufgabenteilen handelt es sich um (homogene bzw. inhomogene) lineare Differentialgleichungen

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen Vorbemerkungen. Eine gewöhnliche Differentialgleichung ist eine Gleichung, wo neben einer gesuchten Funktion y(x) auch deren Ableitungen y, y etc. auftreten, z.b. y

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik. Bachelor-Modulprüfung. Lösungsvorschläge

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik. Bachelor-Modulprüfung. Lösungsvorschläge Institut für Analysis SS 5 PD Dr. Peer Christian Kunstmann 7.9.5 Silvana Avramska-Lukarska Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Bachelor-Modulprüfung Lösungsvorschläge

Mehr

Lineare Abbildungen und Orthonormalsysteme

Lineare Abbildungen und Orthonormalsysteme KAPITEL Lineare Abbildungen und Orthonormalsysteme. Lineare Abbildungen und Koordinatendarstellungen.. Lineare Abbildungen und ihre Basisdarstellung. Seien V, W Vektorraume uber R. Mit einer Abbildung

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Prof. Dr. Guido Sweers WS 28/29 Jan Gerdung, M.Sc. Gewöhnliche Dierentialgleichungen Übungsblatt 6 Die Lösungen müssen in den Übungsbriefkasten Gewöhnliche Dierentialgleichungen Raum 3 im MI) geworfen

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

9 Lineare Di erentialgleichungen

9 Lineare Di erentialgleichungen 9. Definition. Lineare Systeme Sei I R ein o enes Intervall und A : I! M(n, R) eine stetige Abbildung mit Werten in den reellen n n-matrizen. (a) Man nennt dann die Di erentialgleichung = A(t) ein nicht-autonomes,

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel 14 Differentialgleichungen Josef Leydold Mathematik für VW WS 2017/18 14 Differentialgleichungen 1 / 41 Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen:

Mehr

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x.

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x. D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi Musterlösung 10 1. a) Das charakteristische Polynom ist λ 2 + λ 2 = (λ + 2)(λ 1) mit den beiden verschiedenen Nullstellen λ = 2 λ = 1. Die allgemeine Lösung

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Extremalprobleme unter Nebenbedingungen

Extremalprobleme unter Nebenbedingungen Technische Universität München Christoph Niehoff Ferienkurs Analysis 2 für Physiker Vorlesung Donnerstag SS 20 Der heutige Ferienkurstag ist drei Themen gewidmet. Zuerst beschäftigen wir uns mit Extremalaufgaben

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1 D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler Übungsblatt 5 1. Gegeben sei die Matrix 1 1 0 A := 0 1 0 0 0 2 a) Bestimmen Sie ein Fundamentalsystem (das heisst eine Basis des Lösungsraums)

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen

7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Prof. Dr. Walter Arnold Lehrstuhl für Materialsimulation Universität des Saarlandes 5. Januar 2016 7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Abgabe des Übungsblattes

Mehr

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen und Ordnung mit konstanten Koeffizienten Prof Dr BGrabowski Lösung linearer Dgl Ordnung mittels Zerlegungssatz Aufgabe ) Lösen Sie

Mehr