Vergessen Sie nicht, sich zur Klausur anzumelden Anmeldeschluÿ am Freitag, den 20. Juli!!

Größe: px
Ab Seite anzeigen:

Download "Vergessen Sie nicht, sich zur Klausur anzumelden Anmeldeschluÿ am Freitag, den 20. Juli!!"

Transkript

1 Vergessen Sie nicht, sich zur Klausur anzumelden Anmeldeschluÿ am Freitag, den 20. Juli!! Erst den Anmeldungszettel im Studienbüro holen Dann den Anmeldungszettel vor Zimmer 208. in den richtigen Kasten werfen Wenn Ihnen das Studienbüro keinen Anmeldungszettel gibt, weil Sie kein Testat haben, dann gehen Sie zunächst zu Frau Behrens (Zimmer 207.2)

2 Tipps für die Klausur Lernen Sie nicht auf Lücke. Das rächt sich... Rechen Sie viele alte Klausuren ohne vorher in die Lösung zu schauen... Machen Sie sich einen Zeitplan (noch 8 Tage bis zur Klausur... ) Lesen Sie am Anfang die Aufgaben zuerst ganz durch! Schreiben Sie Ihren Namen auf jedes Blatt! Verbringen Sie nicht zuviel Zeit mit einer Aufgabe. Prüfen Sie Ihr Ergebnis (Probe!). Schreiben Sie keine Romane aus dem Skript ab. Bringen Sie einen Tacker mit.

3 Tipps zum Lösen der Aufgaben Schreiben Sie ordentlich!!!! Schreiben Sie hin, was Sie tun. Beispielsweise den Namen oder die Nummer des Satzes, den Sie benutzen! Wenn Sie einen Satz aus dem Skript benutzen, dann prüfen Sie seine Vorraussetzungen! Wenn Sie Lösungen "raten"(also irgendwie auf die Lösung kommen, ohne zu rechnen), dann schreiben Sie hin, dass Sie geraten haben und zeigen Sie, dass das geratenen (Zwischen-) Ergebnis passt!

4 Themen heute: Integration partielle Integration Substitutionsregel Existenz von Integralen, uneigentliche Integrale Partialbruchzerlegung: reell oder komplex? Fourierkoezienten Mittelwertsregel: warum prüft man f? Dierentialgleichungen Ansatz vom Typ der rechten Seite Laplacetransformation Verschiebungssatz vs. Dämpfungssatz Oene und abgeschlossene Mengen

5 Integration Was Sie im Schlaf beherschen müssen: Partielle Integration für bestimmte Integrale: b a b u (x)v(x) dx = [u(x)v(x)] b a u(x)v (x) dx a... für unbestimmte Integrale: u (x)v(x) dx = u(x)v(x) u(x)v (x) dx Wenn Sie partiell integrieren wollen, brauchen Sie eine Funktion u', die Sie einfach aueiten können und eine Funktion v, die Sie einfach ableiten können. Beispiel: }{{} e 2t sin(t) dt = }{{} u v

6 Substitutionsregel... für bestimmte Integrale: g(α) = a, g(β) = b, Substitution x = g(t), dx = dt g (t), b a f(x) dx = β α f(g(t))g (t) dt... für unbestimmte Integrale: Substitution x = g(t), dx g (t), f(x) dx = f(g(t))g (t) dt Substitutionsregel ist praktisch bei Integralen der Form f(g(t)) h(g(t)) g (t) dt g(t) = = x f(x) h(x) dx Spezialfall : dt = g (t) g(t) dt = ln ( g(t) ) + C Beispiel: sin(t) = x cos(t) dt = sin(t) x dx = ln x + C = ln sin(t) + C

7 Existenz von Integralen... kein Thema bei beschränkten Integranden auf beschränkten Intervallen. Aber: Achtung bei unbeschränkten Integranden, z.b. 0 x dx Integrand unbeschränkt oder unbeschränkten Intervallen, z.b. x dx Intervall unbeschränkt. Wie prüft man Existenz solch eines Integrals?... im Sinn eines uneigentlichen Integrals: Existiert lim A 0 A x A dx? Existiert lim A x dx?... im Sinn des Lebesgue Integrals: Existiert lim A 0 x dx? Existiert lim A A A x dx?

8 Praktisches Kriterium für Existenz im Lebesgue-Sinn: Wenn f(t) g(t) und g(t) dt = lim A A g(t) dt <, dann existiert auch f(t) dt als Lebesgue Integral! Schreiben Sie nicht: e x = [ e x ] = e + e = e sondern e x = lim A [ e x ] A = lim A e A + e = e

9 Beispiel: Für welche α R existiert das Integral 0 arctan(x + 2) ln(x)x α dx als Lebesgue-Integral? Problem: ln(x) unbeschränkt an der 0, x α unbeschränkt an der 0 für α < 0, Integrationsgebiet unbeschränkt. Also: Aufteilen des Integrals: 0 arctan(x + 2) ln(x)x α dx = arctan(x + 2) ln(x)x α dx 0 }{{} A + arctan(x + 2) ln(x)x α dx }{{} A 2 und Existenz von A und A 2 getrennt untersuchen! α 0: A 2 existiert nicht! lim x arctan(x + 2) = π/2, ln(x)x α ist unbeschränkt. α < 0:

10 Partialbruchzerlegung: reell oder komplex? Gegeben: rationaler Ausdruck, z.b. f(s) = 2s s 6 2s 5 + 3s 4 + 3s 2 2s + Gesucht: Partialbruchzerlegung von f, also Zerlegung von f als Summe von Termen der Form A s s 0 und B Cs + D und (s s ) 2 s 2 + s 2 Die Zahlen s 0, s, s 2,... kommen aus Faktorisierung des Nennerpolynoms s 6 2s 5 + 3s 4 + 3s 2 2s +. Wie geht man bei einer Partialbruchzerlegung vor? (Seite 3 Skript HM2). Schritt: Falls Zählergrad > Nennergrad Polynomdivision: Zählerpolynom \ Nennerpolynom 2. Faktorisierung des Nennerpolynoms. Hier muÿ man oft Nullstellen raten. Zahlen wie 2,, 0,, 2 sind gute Kandidaten 2s f(x) = (s ) 2 (s 2 + ) 2 3. Ansatz 2s (s ) 2 (s 2 + ) = A 2 s + Wie wählt man den Ansatz? B (s ) + Cs + D 2 s Es + F (s 2 + ) 2

11 Linearfaktor Ansatz (s s j ) k A s s j + (s 2 + s j ) k, s j > 0 A s + B s 2 + s j A 2 (s s j ) A ks + B k (s 2 + s j ) k A k (s s j ) k Sie können den irreduziblen Faktor (s 2 + ) auch komplex zerlegen in (s 2 + ) = (s + i)(s i) und dann folgenden Ansatz machen: 2s (s ) 2 (s 2 + ) = A 2 s + B (s ) + C 2 + E s i + F (s i) 2 s + i + D (s + i) 2

12 Konstanten A, B, C,... ausrechnen: In der letzten Gleichung mit Nenner (s ) 2 (s 2 + ) 2 multiplizieren: 2s = A(s )(s 2 + ) 2 + B(s 2 + ) 2 + C(s ) 2 (s i) 2 (s + i) + D(s ) 2 (s i) 2 + E(s ) 2 (s i)(s + i) 2 + F (s ) 2 (s + i) 2 Dann: Entweder Koezientenvergleich + LGS lösen, oder geschickt Zahlen für s einsetzen, oder Ableiten. Sowohl die relle als auch die komplexe Form der Partialbruchzerlegung führen zum Ziel.

13 Fourierkoezienten Mittelwertsregel (Satz 2.3): f eine stückweise stetig dierenzierbare 2π periodische Funktion, x 0 [ π, π]. Wenn die links-und rechtsseitigen Grenzwerte und lim x x 0,x>x 0 f(x) =: f + (x 0 ) und lim x x 0,x>x 0 f (x) und lim f(x) =: f (x 0 ) x x 0,x<x 0 lim f (x) x x 0,x<x 0 alle existieren, dann gilt: Die Fourierreihe von f an der Stelle x 0 konvegiert gegen /2(f + (x 0 ) + f (x 0 )) n Z c k e ikx 0 = f +(x 0 ) + f (x 0 ) 2 Sie müssen die Vorraussetzungen an f prüfen, obwohl, der Wert lim x x0,x x 0 f (x) nicht in die Berechnung des Wertes der Fourierreihe eingeht. (Weil Sie Satz 2.3 anwenden und der Beweis von Satz 2.3 diese Vorraussetzungen braucht.)

14 Dierentialgleichungen Lineare DGL mit konstanten Koezienten homogen: a n u (n) (x) + a n u (n ) (x) + + a 0 u(x) = 0 e λx Ansatz charakteristisches Polynom p(λ) = a n λ n + a n λ n + + a 0 = 0 mit Nullstellen λ n Lösungen e λnx Beispiel: y (3) + y + 4y + 4y = 0 p(λ) = λ 3 + λ 2 + 4λ + 4 = (λ + )(λ + 2i)(λ 2i) Lösungen der homogenen Gleichung: e x, e 2ix, e 2ix

15 Jetzt: Inhomogene Gleichung: a n u (n) (x)+a n u (n ) (x) + + a 0 u(x) = q(x) }{{} Polynom v.g. m e µx Ansatz für partikuläre Lösung: u p (x) = x k r(x) e µx }{{} Polynom v.g. m Dabei ist k die Vielfachheit von µ als Nullstelle des charakteristischen Polynoms p(λ). Also: Beispiel: µ ist keine Nullstelle: k = 0 µ ist eine einfache Nullstelle: k = µ ist eine doppelte Nullstelle: k = 2,... y (3) + y + 4y + 4y = e 2x p(λ) = (λ + )(λ + 2i)(λ 2i) 2 ist keine Nullstelle von p Ansatz v.t.d.r.s.: u p (x) = A e 2x y (3) + y + 4y + 4y = x 2 e 2x p(λ) = (λ + )(λ + 2i)(λ 2i) 2 ist keine Nullstelle von p Ansatz v.t.d.r.s.: u p (x) = ( Ax 2 + Bx + C ) e 2x

16 y (3) + y + 4y + 4y = e x p(λ) = (λ + )(λ + 2i)(λ 2i) ist einfache Nullstelle von p Ansatz v.t.d.r.s.: u p (x) = Ax e x y (3) + y + 4y + 4y = x 2 e x p(λ) = (λ + )(λ + 2i)(λ 2i) ist einfache Nullstelle von p Ansatz v.t.d.r.s.: u p (x) = ( Ax 2 + Bx + C ) x e x

17 Alles was Sie wissen müssen: a n u (n) (x)+a n u (n ) (x) + + a 0 u(x) = e µ x q (x) cos(µ }{{} 2 x) + q 2 (x) sin(µ }{{} 2 x) Gradm Gradm Ansatz vom Typ der rechten Seite: u p (x) = x k e µ x r (x) cos(µ }{{} 2 x) + r 2 (x) sin(µ }{{} 2 x) Gradm Gradm Dabei ist k die Vielfachheit von µ + iµ 2 als Nullstelle des charakteristischen Polynoms. Also: µ + iµ 2 ist keine Nullstelle: k = 0 µ + iµ 2 ist eine einfache Nullstelle: k = µ + iµ 2 ist eine doppelte Nullstelle: k = 2,... y (3) + y + 4y + 4y = sin( 2x)e 0 x p(λ) = (λ + )(λ + 2i)(λ 2i) 0 2i ist einfache Nullstelle von p Ansatz v.t.d.r.s.: u p (x) = x [A sin( 2x)]

18 Laplacetransformation Der Verschiebungssatz und der Dämpfungssatz sind zwei Seiten der gleichen Medaille... der Dämpfungssatz: Wenn man im Urbildbeich mit e at dämpft, dann verschiebt man im Bildbereich: L ( e at f(t) ) = L(f(t))(s a)... der Verschiebungssatz: Wenn man im Urbildbeich um a > 0 verschiebt, dann dämpft man im Bildbereich um a: { 0, 0 t < a, g(t) = f(t a), t a L (g(t)) = e as L(f(t))(s)

19 Man kann das aber auch anderst deuten: Wenn man im Bildbereich mit e as dämpft, dann verschiebt man im Urbildbereich um a Verschiebung im Urbildbereich Dämpfung im Bildbereich Dämpfung im Urbildbereich Verschiebung im Bildbereich

20 Oene und abgeschlossene Mengen Der einfachste Fall: eine Kugel K = {x R 3 : x 2 } Für x R 3 mit x < ndet man immer eine Kugel um x, die ganz in K liegt (Z.b. K(x, ( x 2 )/2 ) ) Für x R 3 mit x > ndet man immer eine Kugel um x, die ganz auÿerhalb von K liegt (Z.b. K(x, ( x 2 )/2 ) ) Für x R 3 mit x = liegt jede Kugel um x sowohl innerhalb als auch auÿerhalb von K. Betrachten wir z.b. K(x, δ), dann liegt ( + δ/2)x K, ( δ/2)x K, aber beide Punkte liegen in der Kugel K(x, δ) um x mit Radius δ. Also: K ist oen und der Rand von K ist die Menge K = {x R 3 : x 2 = }

21 Das gilt auch allgemein: Sei F : R n R eine stetige Funktion. Dann ist die Menge M = {x R n : F (x) < C} M = {x R n : F (x) = C} oen, und der Rand von M Achtung: Wenn F nicht stetig ist, stimmt das nicht! Beispiel: M = {x R 2 : H(x ) < } Heavisidefunktion: H(x ) = für x 0 und 0 sonst. Dann ist M die ganze linke Halbebene, M = {x R 2 : x < 0} und der Rand ist M = {x R 2 : x = 0}. Das ist aber nicht die Menge {x R 2 : H(x ) = }

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Kapitel 19 Partialbruchzerlegung

Kapitel 19 Partialbruchzerlegung Kapitel 19 Partialbruchzerlegung Mathematischer Vorkurs TU Dortmund Seite 1 / 15 Zur Erinnerung wiederholen wir Definition 4.5 [part] Es sei n N 0 und a 0, a 1,..., a n R mit a n 0. Dann heißt die Funktion

Mehr

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft Algebra Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt roger.burkhardt@fhnw.ch Algebra

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man

Mehr

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. 1 DETERMINANTEN 1

Mehr

Mathematik I HM I A. SoSe Variante A

Mathematik I HM I A. SoSe Variante A Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n. Blatt 1 V 1 Grenzwerte von Folgen Aufgabe V1 Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2 ( n! a) lim n 2n n 3 b) lim n n 7 c) lim 1 1 ) 3n n n Marco Boßle

Mehr

Mathematik III Vorlesung 5,

Mathematik III Vorlesung 5, Mathematik III Vorlesung 5, 03.11.2006 Markus Nemetz November 2006 1 Vorbemerkung Prof. Panholzer hat die illustrierenden Beispiele aus der zur VO empfohlenen Lektüre gebracht - sie sind hier nicht angeführt.

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

7. Übungsblatt Aufgaben mit Lösungen

7. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sei die Differentialgleichung 7. Übungsblatt Aufgaben mit Lösungen y x) 2 x y x) + 5 x 2 y x) 5 x yx) = 0 für x > 0. Prüfen Sie, ob die folgenden Funktionen Lösungen dieser Differentialgleichung

Mehr

Partialbruchzerlegung für Biologen

Partialbruchzerlegung für Biologen Partialbruchzerlegung für Biologen Rationale Funktionen sind Quotienten zweier Polynome, und sie tauchen auch in der Biologie auf. Die Partialbruchzerlegung bedeutet, einen einfacheren Ausdruck für eine

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation

Mehr

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

Vortragsübung am 25. April 2014

Vortragsübung am 25. April 2014 Seite von 6 Termin: 5. April 04 Vortragsübung am 5. April 04.. Berechnen Sie den Grenzwert lim n ( n + + n + + + ), n indem Sie ihn als Riemann-Summe eines Integrals auffassen... Bestimmen Sie folgende

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Bachelor Modulprüfung. Höhere Mathematik III für die Fachrichtung Physik. Lösungsvorschläge

Bachelor Modulprüfung. Höhere Mathematik III für die Fachrichtung Physik. Lösungsvorschläge KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT) Institut für Analysis Priv.-Doz. Dr. Peer Kunstmann Markus Antoni WS 22/23 Bachelor Modulprüfung Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 4. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching June 6, 207 Erinnerung Die Reihe a k konvergiert falls, lim S n = lim n n n a k =: a k existiert. Satz (Majoranten/Minorantenkriterium)

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x.

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x. D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi Musterlösung 10 1. a) Das charakteristische Polynom ist λ 2 + λ 2 = (λ + 2)(λ 1) mit den beiden verschiedenen Nullstellen λ = 2 λ = 1. Die allgemeine Lösung

Mehr

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz:

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz: d-infk Lösung von Serie 4 FS 07 4.. Inhomogene Lineare Differentialgleichungen Das charakteristische Polynom der homogenen DGl y (4) + y + y = 0 ist λ 4 + λ + = (λ + ). Seine Wurzeln sind ±i und jede hat

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 8. 7. 6, 8. -. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten 6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten Dieser Abschnitt ist ein Einschub. Gewöhnliche DGL werden im nächsten Semester behandelt. Unter einer linearen gewöhnlichen DGL

Mehr

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung

Mathematik I Herbstsemester 2018 Kapitel 5: Integralrechnung Mathematik I Herbstsemester 208 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas / 70 5. Integralrechnung Grundbegriffe Das bestimmte Integral als Flächeninhalt Der Fundamentalsatz Partielle

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialruchzerlegung Unknown: www.gute-mathe-fragen.de/user/unknown Letzte Änderung: 11.09.2013 1 Contents 1 Nutzen/Ziel [Integration] 3 2 Partialruchzerlegung 4 2.1 Rellee Nullstellen (einfach).....................

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

Hörsaalübung 3, Analysis II

Hörsaalübung 3, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Hörsaalübung 3, Analysis II SoSe 2016, 02/03. Mai Integration II: Partielle Integration Partialbruchzerlegung (PBZ) Die ins Netz gestellten

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialbruchzerlegung Eine rationale Funktion r mit n verschiedenen Polstellen z j der Ordnung m j, r = p q, lässt sich in der Form r(z) = f (z) + n j=1 q(z) = c(z z 1) m1 (z z n ) mn r j (z), r j (z)

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Lösung Semesterendprüfung

Lösung Semesterendprüfung MAE Mathematik: Analysis für Ingenieure Herbstsemester 07 Dr. Christoph Kirsch ZHAW Winterthur Aufgabe : Aufgabe : Lösung Semesterendprüfung a) Wir verwenden die Def. 4 der Vorlesung für die Implikation,

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1.

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1. Stroppel Musterlösung 4..4, 8min Aufgabe 3 Punkte) Sei f n ) n N die Fibonacci-Folge, die durch f :=, f := und f n+ := f n +f n definiert ist. Beweisen Sie durch vollständige Induktion, dass für alle n

Mehr

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2

SBP Mathe Grundkurs 2 # 0 by Clifford Wolf. SBP Mathe Grundkurs 2 SBP Mathe Grundkurs 2 # 0 by Clifford Wolf SBP Mathe Grundkurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2. Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I (E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). September 7 (Hans-Georg Rück) Aufgabe (6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft Re(z) = und (z

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 7 4.5.7 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

FESTSTELLUNGSPRÜFUNG in HM2

FESTSTELLUNGSPRÜFUNG in HM2 FESTSTELLUNGSPRÜFUNG in HM2 FDIBA - TU, WS 27/8 INFORMATIK Name: Immatrikulationsnummer: Aufgabe : Zu lösen sei, durch Anwendung der Transformation von Laplace, das Anfangswertproblem 9P. u () (t) u(t)

Mehr

4 Die Laplace-Transformation

4 Die Laplace-Transformation 4 Die Laplace-ransformation 4. Definitionen, Beispiele und Regeln In der Wirklichkeit hat man es meist mit Signalen zu tun, die erst zu einem bestimmten Zeitpunkt ausgelöst werden. Um solche Einschaltvorgänge

Mehr

13 Differentialgleichungen

13 Differentialgleichungen 3 Differentialgleichungen 282 3. Einführung Unter einer Differentialgleichung (=: DGL) versteht man eine Bestimmungsgleichung für eine unbekannte Funktion, in der die Funktion selbst und ihre Ableitungen

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II. (8 Punkte) a) Mit Kürzen des Bruchs folgt ( ) x + sin(x) sin(x) cos(x) lim x sin(x) ( ) x = lim x sin(x) + cos(x)

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 10. Februar 2016 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. G. Scheithauer Klausur Mathematik I für Studierende der Fakultät Maschinenwesen Name: Matrikelnummer:

Mehr

Integralrechnung. Petra Grell, WS 2004/05

Integralrechnung. Petra Grell, WS 2004/05 Integralrechnung Petra Grell, WS 2004/05 1 Einführung Bei den Rechenoperationen, die wir im Laufe der Zeit kennengelernt haben, kann man feststellen, dass es immer eine Umkehrung gibt: + : log a aˆ So

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS WS 0/0 Blatt 7. Bestimmen Sie eine Stammfunktion von sinx 4 und für alle n N π π sin nxdx. Lösung. Die Rekursionsformel lautet sinx n

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 5. September 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Im R 3 wird eine Fläche T durch die Abbildung

Mehr

$Id: integral.tex,v /05/05 13:36:42 hk Exp $

$Id: integral.tex,v /05/05 13:36:42 hk Exp $ $Id: integral.tex,v.5 07/05/05 3:36:4 hk Exp $ Integralrechnung.4 Integration rationaler Funktionen In diesem Abschnitt wollen wir die Integration rationaler Funktionen diskutieren. Es wird sich herausstellen

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden.

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am 20.6.2015 um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Prof. Dr. Wolfgang Arendt Manuel Bernhard Sommersemester 2015 Achten

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix Stroppel Musterlösung 7.., 8min Aufgabe Punkte Bestimmen Sie die Determinante der Matrix A =. Geben Sie alle Lösungen x des homogenen Gleichungssystems Ax = an. Entwicklung nach der ersten Spalte: deta

Mehr

Spezieller Ansatz bei spezieller Inhomogenität.

Spezieller Ansatz bei spezieller Inhomogenität. Spezieller Ansatz bei spezieller Inhomogenität. Bei Inhomogenitäten der Form h(t) = e µt kann man spezielle Ansätze zur Bestimmung von y p (t) verwenden: Ist µ keine Nullstelle der charakteristischen Gleichung

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann 6.9.6 Bergische Universität Wuppertal Aufgabe ( Punkte Modul: Mathematik I und II, Bachelor Maschinenbau a Zeigen Sie durch Induktion nach n die Summenformel

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Lineare Differentialgleichungen n-ter Ordnung

Lineare Differentialgleichungen n-ter Ordnung KAPITEL 5 Lineare Differentialgleichungen n-ter Ordnung 1 Veränderliche Koeffizienten Analog zu den linearen Dierentialgleichungen 2 Ordnung gilt: 75 76 5 LINEARE DIFFERENTIALGLEICHUNGEN n-ter ORDNUNG

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3 Aufgabe ( Punkte) a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix 6 A = 6 b) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems x = 6x + x 3 x = x x 3 = x + 6x 3 c) Bestimmen

Mehr

2 Rechentechniken. 2.1 Potenzen und Wurzeln. Übersicht

2 Rechentechniken. 2.1 Potenzen und Wurzeln. Übersicht 2 Rechentechniken Übersicht 2.1 Potenzen und Wurzeln.............................................. 7 2.2 Lösen linearer Gleichungssysteme..................................... 8 2.3 Polynome.........................................................

Mehr

3 a) Berechnen Sie die normierte Zeilenstufenform der Matrix A = normierte Zeilenstufenform:

3 a) Berechnen Sie die normierte Zeilenstufenform der Matrix A = normierte Zeilenstufenform: 1. Aufgabe (9 Punkte) In dieser Aufgabe müssen Sie Ihre Antwort nicht begründen. Es zählt nur das Ergebnis. Tragen Sie nur das Ergebnis auf diesem Blatt im jeweiligen Feld ein. 0 1 3 a) Berechnen Sie die

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

die kanonische Faktorisierung von p. Dann besitzt q/p eine Summendarstellung

die kanonische Faktorisierung von p. Dann besitzt q/p eine Summendarstellung Partialbruchzerlegung rationaler Funktionen Satz 4 (komplexe Partialbruchzerlegung) Es sei q/p eine echt gebrochen rationale Funktion, dh deg q < deg p und es sei p(z) = c (z z 1 ) α 1 (z z k ) α k die

Mehr

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a

2 a 6. a 4 a Wir führen nun den Gauÿalgorithmus durch: 2 a a 2 4a 2 4a a a 2 2a 0 2 a Aufgabe 8 Punkte). Bestimmen Sie die Lösungsmenge in R in Abhängigkeit von a R) des folgenden linearen Gleichungssystem: x + ax + 6x = 4, ax + 4x + ax =, x + 4x =. Lösung. Wir schreiben das lineare Gleichungssystem

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2 Lösungsvorschläge zu Blatt 7: ) x ( ) 3 3 e + e ( ) ( ) ( )! x x + x + x x + x x x Wir haben hier also zwei verschiedene Darstellungen für einen Vektor, da zwei verschiedene Basen verwendet werden. b b

Mehr

Musterlösung Prüfung

Musterlösung Prüfung D-BAUG Analysis I/II Winter 24 Meike Akveld Theo Bühler Musterlösung Prüfung. (a) Bestimmen Sie die reellen Koeffizienten p und q, so dass z = 2 3i eine Lösung der Gleichung z 3 3z 2 + pz + q = ist. Bestimmen

Mehr

68 3 Folgen und Reihen

68 3 Folgen und Reihen 68 3 Folgen und Reihen dh S 2m m1 monoton wachsend, nach oben beschränkt Satz 3115i S 2m m1 konvergent, s : s lim S 2m; andererseits ist S 2m+1 S 2m + a m 2m+1 lim S 2m+1 lim S 2m s, m m s 0 m m also ist

Mehr

Mathematik für Sicherheitsingenieure I B

Mathematik für Sicherheitsingenieure I B Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 3.3.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I B Aufgabe. (5+8+7 Punkte a Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann.9. Bergische Universität Wuppertal Modul: Mathematik b für Ingenieure, Bachelor Sicherheitstechnik PO Aufgabe a Berechnen Sie das Integral I : e x + ln

Mehr

Mathematik 2 (Master Sicherheitstechnik)

Mathematik 2 (Master Sicherheitstechnik) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 4.6.8 Mathematik Master Sicherheitstechnik) Übungsblatt 8 Aufgabe 5. Konvergenz von Fourierreihen) Der Sinus Hyperbolicus ist die Funktion sinhx) = e x e x). Es

Mehr

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur H. Schmidli Mathematik für Physiker WS / Lösung der Klausur. a) Zähler und Nenner konvergieren gegen. Somit verwenden wir die Regel von L Hospital e sin x x x e cos x (cos x)e sin x x (sin x)e cos x x

Mehr

13. WEITERE INTEGRATIONSMETHODEN

13. WEITERE INTEGRATIONSMETHODEN 06 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

6.5 Determinanten. Satz 6.3 Ist A R (n,n), so gibt es eine Matrix A 1 R (n,n) mit. A 1 A = A A 1 = I n

6.5 Determinanten. Satz 6.3 Ist A R (n,n), so gibt es eine Matrix A 1 R (n,n) mit. A 1 A = A A 1 = I n wesentlichen Gleichungen geht genau ein Freiheitsgrad verloren. (Diese etwas vagen Formulierungen sind mathematisch eher unpräzise, sollen Ihnen aber helfen, ein Gefühl für die Bedeutung des Ranges einer

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

Musterlösungen Online Zwischentest - Serie 10

Musterlösungen Online Zwischentest - Serie 10 D-MAVT, D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Online Zwischentest - Serie 10 Frage 1 [Prüfungsaufgabe Frühling 2011)] Sei das Vektorfeld in R 3, ( x v(x,y,z) = 2, x+y ),0 2 und der

Mehr

4.1 Stammfunktionen: das unbestimmte Integral

4.1 Stammfunktionen: das unbestimmte Integral Kapitel 4 Integration 4. Stammfunktionen: das unbestimmte Integral Die Integration ist die Umkehrung der Differentiation: zu einer gegebenen Funktion f(x) sucht man eine Funktion F (x), deren Ableitung

Mehr

Differentialgleichungen WS 2013/ Übungsblatt. und y(x) = cos(x) x

Differentialgleichungen WS 2013/ Übungsblatt. und y(x) = cos(x) x Differentialgleichungen WS 2013/2014 1. Übungsblatt 1. Zeigen Sie, dass y(x) = sin(x) x und y(x) = cos(x) x Lösungen der Bessel-Gleichung sind. x 2 y +xy +(x 2 1 4 )y = 0 2. Konstruieren Sie zu dem Anfangswertproblem

Mehr

15 Integration (gebrochen) rationaler Funktionen

15 Integration (gebrochen) rationaler Funktionen 5 Integration (gebrochen) rationaler Funktionen Wir werden im folgenden sehen, daß sich die Integration gebrochen rationaler Funktionen auf die folgenden drei einfachen Fälle zurückführen läßt (für komplexe

Mehr

A. Die Laplace-Transformation

A. Die Laplace-Transformation A. Die Laplace-Transformation Die Laplace-Transformation ist eine im Wesentlichen eineindeutige Zuordnung von Funktionen der Zeit t zu Funktionen einer komplexen Variablen s. Im Rahmen der einseitigen)

Mehr

Serie 12 - Integrationstechniken

Serie 12 - Integrationstechniken Analysis D-BAUG Dr. Meike Akveld HS 5 Serie - Integrationstechniken. Berechnen Sie folgende Integrale: a e x cos(x dx Wir integrieren zwei Mal partiell, bis wir auf der rechten Seite wieder das Integral

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr