4 Die Laplace-Transformation
|
|
|
- Lieselotte Huber
- vor 6 Jahren
- Abrufe
Transkript
1 4 Die Laplace-ransformation 4. Definitionen, Beispiele und Regeln In der Wirklichkeit hat man es meist mit Signalen zu tun, die erst zu einem bestimmten Zeitpunkt ausgelöst werden. Um solche Einschaltvorgänge zu berücksichtigen, betrachtet man Funktionen, die für t < verschwinden. Um außerdem eine größere Menge von Funktionen transformieren zu können, fügt man einen konvergenzerzeugenden Faktor e αt ein. Zusammen ergibt das die Laplacetransformation f(t L f(α + j σ : F [f(te αt ](σ f(te (α+j σt dt. Definition: Unter einer L-Funktion verstehen wir eine Funktion f : R C mit folgenden Eigenschaften:. f(t für t <. 2. f ist stückweise stetig für t, insbesondere existiert f(+. 3. Das Laplace-Integral mit Re(s > absolut. f(te st dt konvergiert für wenigstens ein s C Ist Re(s > Re(s, so ist f(te st f(te s t. Konvergiert also das Laplace- Integral L f(s absolut, so auch L f(s für jedes s mit Re(s > Re(s. Ist also f eine L-Funktion, so gibt es eine kleinste reelle Zahl α, so dass L f(s für alle s mit Re s > α definiert ist, aber in keinem Punkt s C mit Re s < α. Das genaue Konvergenzgebiet von L f ist also die Halbene R α : {s Re s > α }. Der Rand gehört entweder ganz dazu oder überhaupt nicht. Da f(t für t < ist, kann auch die ganze Ebene als Konvergenzgebiet vorkommen. Man nennt α die Abszisse absoluter Konvergenz für das Laplace-Integral von f. Definition: Eine stückweise stetige Funktion f : R + : {t R : t } C wächst höchstens exponentiell (von der Ordnung a, wenn es Konstanten a >, M > und > gibt, so dass f(t M e at für t gilt. 4.. Satz: Wächst die (stückweise stetige Funktion f : R + C höchstens exponentiell, so ist f eine L-Funktion, deren Abszisse absoluter Konvergenz a ist.
2 2 4 Die Laplace-ransformation Beweis. f wachse höchstens exponentiell von der Ordnung a. Ist z α + j σ, mit α > a, so gibt es Konstanten und M, so dass für t gilt: f(te zt f(t e αt M e (a αt M e a α t. Die Funktion auf der rechten Seite ist (absolut integrierbar, denn es ist R ( lim e a α t dt lim R R a α R e a α t a α e a α. Bemerkung: Für Funktionen, die auf (, verschwinden, gilt: a Wachsen die Funktionen f und g höchstens exponentiell, so auch f + g und fg. b Polynome (und erst recht alle beschränkten Funktionen wachsen höchstens exponentiell. Ist nämlich p(t ein Polynom, so strebt der Quotient p(t/e t für t gegen Null, und es muss zu jedem M > ein > geben, so dass p(t M e t für t gilt. c Sei f : R + C stückweise stetig differenzierbar. Wächst die Ableitung f höchstens exponentiell, so gilt dies auch für f (mit gleicher Ordnung. Ist nämlich f (t M e at abschätzen: für t, so kann man folgendermaßen f(x f( + x f (t dt f( + M x e at dt f( + M a eax M e ax für eine geeignete Konstante M und x. d Wachsen f, g : R C höchstens exponentiell, so auch die Faltung f g(t f(ug(t u du t f(ug(t u du. Auf den Beweis verzichten wir hier. Die Funktionen /t und e t2 gehören nicht zur Klasse der höchstens exponentiell wachsenden Funktionen.
3 4. Definitionen, Beispiele und Regeln 3 Beispiele: a Wir beginnen mit der Heavisidefunktion { für t <, H(t : für t. Dann ist L H(s e s t dt s e s t s (für Re s > b Für a > definieren wir die modifizierte Heavisidefunktion H a durch { für t a H a (t H(t a sonst. Dann erhalten wir L H a (s a e s t dt s e s t a e as s (für Re s > oder: H a (t e as s. c Die Bedingung f(t für t < (erreichbar durch Multiplikation mit der Heaviside-Funktion sei künftig automatisch vorausgesetzt. Für > sei f(t sin(t. Dann errechnen wir L f(s 2j 2j 2j sin(t e st dt ( e (j st dt e (j +st dt ( j s e(j st + j + s e (j +st ( j s + j + s 2 + s 2 für Re s >. Damit haben wir sin(t und analog cos(t 2 + s 2 s 2 + s. 2 d Sei f : R C eine periodische, stückweise stetige Funktion. Ist die Periode, so gilt für jedes s C mit positivem Realteil:
4 4 4 Die Laplace-ransformation L f(s k f(te st dt e s k (k+ k f(t + k e s(t+k dt f(te st dt f(te st dt ( e Ist k > ganzzahlig und setzen wir f k (t t k, so finden wir L (f k (s t k e s t dt s tk e s t + k s k s Induktiv erhalten wir damit: f Sei nun g a (t : e at. Dann ist L (g a (s Wir schreiben auch t k e s t dt f(te st dt k t k e s t dt k s L (f k (s für Re s >. L (f k (s k! s k+ für Re(s >. e k s e (a s t dt a s e(a s t, für Re s > a. s a g a (t s a. Wir stellen nun einige Rechenregeln für die Laplacetransformation zusammen, ähnlich wie bei der Fouriertransformation. Alle vorkommenden Funktionen mögen für t < verschwinden und höchstens exponentiell wachsen Satz (Eigenschaften der Laplace-ransformation: Sei f(t F (s und g(t G(s. Dann gilt:. Linearität: a f(t + b g(t a F (s + b G(s. 2. Ähnlichkeitssatz: f(at a F ( s. (für a R, a > a 3. Verschiebungssatz (Verschiebung im Zeitbereich: f(t e s F (s. (für R (Man beachte, dass f(t links vom Nullpunkt abgeschnitten werden muss!
5 4. Definitionen, Beispiele und Regeln 5 4. Dämpfungssatz (Verschiebung im Bildbereich: e ct f(t F (s + c. (für c C Beweis. ist trivial. 2 Ist a R, a >, so gilt: L [f(at] a 3 Für R ist L [f(t ] f(ate st dt a e s f(τe (s/aτ dτ a F ( s a. f(t e st dt f(ate (s/aat a dt f(τe s(τ+ dτ f(τe sτ dτ e s F (s. 4 Schließlich ist L [e ct f(t] Sei etwa f(t t 2 e t. f(te (s+ct dt F (s + c. 4 e 2 Dann sieht f(3t folgendermaßen aus, 2 4 e 2 2/3 und f(t 2 folgendermaßen: 4 e Wegen t 2 2 s 3 finden wir als Laplacetransformierte zu f(t e t t 2 : f(t F (s 2 ( + s 3.
6 6 4 Die Laplace-ransformation Mit den gewonnenen Regeln folgt: f(3t ( s 3 F 3 2/3 ( + s/3 3 8 (3 + s 3 und f(t 2 e 2s F (s 2e 2s ( + s 3 für Re s >. Wie die Fouriertransformation führt auch die Laplacetransformation eine Differentiation wieder in eine Multiplikation über: 4..3 Satz: Die Funktion f verschwinde für t < und sei stückweise stetig differenzierbar für t. Außerdem wachse f höchstens exponentiell. Dann existiert F : L f, und es gilt: f (t s F (s f(+. Beweis. Mit f wächst auch f höchstens exponentiell von gleicher Ordnung a, ist also eine L-Funktion. Ist Re s > a, so ist L f (s f (te st dt f(te st lim ε f(εe sε + s f(t( se st dt Mit vollständiger Induktion zeigt man leicht: f(te st dt f(+ + s F (s Satz: f verschwinde für t < und sei n-mal stückweise stetig differenzierbar für t. Außerdem wachse f (n höchstens exponentiell. Dann wächst auch f höchstens exponentiell, und mit F L f gilt: f (n (t s n F (s s n f(+ s n 2 f (+... f (n ( Satz: Die Funktion h(t sei stetig für t >, und es existiere der einseitige Grenzwert h(+. Wenn h höchstens exponentiell wächst, dann existiert die Laplace-ransformierte H(s von h(t, und damit auch die Laplace-ransformierte von und es gilt: f(t : t h(τ dτ, f(t s H(s.
7 4. Definitionen, Beispiele und Regeln 7 Beweis. Da f (t h(t für t > ist, folgt aus den Voraussetzungen und den vorangegangenen Sätzen, dass die Laplace-ransformierte F (s von f existiert. Außerdem ist f in t stetig, mit f(. Also ist H(s s F (s und f(t F (s s H(s. Beispiel: Es ist (sin 2 t 2 sin t cos t sin 2t, also L [sin 2 t](s s L [sin 2t](s 2 s(s Bei der Differentiation und Integration im Bildbereich erhält man ähnliche Ergebnisse. Allerdings benötigt man dazu den Begriff der komplexen Differentiation, den wir hier nicht in voller Allgemeinheit einführen konnten. In einfachen Fällen geht es aber wie im Reellen, es ist (z n nz n, (/z /z 2, (f g (z f (zg(z + f(zg (z ( f (z f (zg(z f(zg (z und. g g(z 2 In diesem Sinne gilt: 4..6 Satz: Aus der Beziehung f(t F (s folgt: t n f(t ( n F (n (s. Auf den Beweis verzichten wir hier, weil er mathematische Methoden erfordert, die uns nicht zur Verfügung stehen Beispiele A. Es gilt e at und. Damit folgt: s a ( te at s a (s a 2 t 2 e at B. Sei f(t : t 2 sin(t für t. ( 2 s a (s a. 3 Aus der Beziehung sin(t folgt dann: s ( ( 2s f(t 2(s s 2 (s s (s (s (2 3s 2 (s
A. Die Laplace-Transformation
A. Die Laplace-Transformation Die Laplace-Transformation ist eine im Wesentlichen eineindeutige Zuordnung von Funktionen der Zeit t zu Funktionen einer komplexen Variablen s. Im Rahmen der einseitigen)
Laplacetransformation
Laplacetransformation Fakultät Grundlagen Februar 206 Fakultät Grundlagen Laplacetransformation Übersicht Transformationen Transformationen Bezugssysteme Definition der Laplacetransformation Beispiele
Kapitel 28. Bemerkungen zur Laplace-Transformation Die Transformation (Heaviside-Funktion; konvergenzerzeugender
Kapitel 28 Bemerkungen zur Laplace-Transformation 28.1 Die Transformation (Heaviside-Funktion; konvergenzerzeugender Faktor; exponentielle Ordnung) Eng verwandt mit der Fourier-Transformation ist die Laplace-
9. Die Laplace Transformation
H.J. Oberle Differentialgleichungen I WiSe 212/13 9. Die Laplace Transformation Die Laplace Transformation gehört zur Klasse der so genannten Integraltransformationen. Diese ordnen einer vorgegebenen Funktion
Periodische Funktionen, Fourier Reihen
Kapitel 1: Periodische Funktionen, Fourier Reihen 1.1 Grundlegende Begriffe Periodische Funktionen Definition: Eine Funktion f : R R oder f : R C) heißt periodisch mit der Periode T, falls für alle t R
8 Laplace-Transformation
8 Laplace-Transformation Ausgangspunkt: Die Heaviside-Funktion für t < u(t) = 1 für t besitzt keine Fourier-Transformation. Denn: Formal bekommt man das unbestimmte Integral ^u(ω) = e iωτ dτ = 1 iω das
Mathematik 2 (Master Sicherheitstechnik)
Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 4.6.8 Mathematik Master Sicherheitstechnik) Übungsblatt 8 Aufgabe 5. Konvergenz von Fourierreihen) Der Sinus Hyperbolicus ist die Funktion sinhx) = e x e x). Es
3.2 Die Fouriertransformierte
5 3.2 Die Fouriertransformierte Eine Funktion f : R C heißt absolut integrabel, falls sie stückweise stetig und fx dx < ist. Definition: Sei f : R C absolut integrabel. Dann bezeichnen wir die durch fω
5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main
5. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: e jωt -Funktionen sind sinusförmige, komplexe Funktionen. Sie sind
Integraltransformationen
Fourier-ransformation Integraltransformationen Fakultät Grundlagen Juli 00 Fakultät Grundlagen Integraltransformationen Übersicht Fourier-ransformation Fourier-ransformation Motivation Fakultät Grundlagen
10. Periodische Funktionen, Fourier Reihen
H.J. Oberle Analysis II SoSe 212 1. Periodische Funktionen, Fourier Reihen Jean Baptiste Joseph Fourier: Joseph Fourier wurde am 21.3.1768 bei Auxerre (Burgund) geboren und starb am 16.5.183 in Paris.
Beispiel: Die Sägezahnfunktion.
Beispiel: Die Sägezahnfunktion. Betrachte die Sägezahnfunktion : für t = oder t = π S(t) := 1 (π t) : für < t < π Die Sägezahnfunktion ist ungerade, also gilt (mit ω = 1) a k = und b k = π π und damit
4.3 Anwendungen auf Differentialgleichungen
7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,
Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.
Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung
Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)
1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.
Teil III. Fourieranalysis
Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)
Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi
Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge
19.2 Mittelwertsatz der Differentialrechnung
19 Mittelwertsätze der Differentialrechnung mit Anwendungen 19.1 Satz von Rolle 19.2 Mittelwertsatz der Differentialrechnung 19.4 Globaler Wachstumssatz 19.6 Verallgemeinerter Mittelwertsatz der Differentialrechnung
2. Dirichlet-Reihen. Arithmetische Funktionen
2. Dirichlet-Reihen. Arithmetische Funktionen 2.. Eine Dirichlet-Reihe ist eine Reihe der Gestalt a n f(s = n, s wobei (a n n eine Folge komplexer Zahlen und s eine komplexe Variable ist. 2.2. σ a (f :=
Laplace Transformation
Laplace Transformation A Die Laplace Transformation ist eine im Wesentlichen eineindeutige Zuordnung von Funktionen der Zeit t zu Funktionen einer komplexen Variablen s. Formal kann die Laplace Transformation
6.1 Komplexe Funktionen
118 6 Funktionentheorie 6.1 Komplexe Funktionen Wir kennen die komplexen Zahlen als Erweiterung des Körpers der reellen Zahlen. Man postuliert die Existenz einer imaginären Größe i mit der Eigenschaft
5.6 Das Gibbs-Phänomen
94 5 Fouriertheorie 5.6 Das Gibbs-Phänomen Die Fourierreihe einer stückweise glatten Funktion f konvergiert punktweise gegen f, und auf kompakten Stetigkeitsintervallen sogar gleichmäßig. In Sprungstellen
11 Fourier-Analysis Grundlegende Begriffe
11 Fourier-Analysis 11.1 Grundlegende Begriffe Definition: Eine Funktion f : R R (oder f : R C) heißt periodisch mit der Periode T (oder T-periodisch), falls f(t + T) = f(t) für alle t R. Ziel: Entwicklung
3.3 Das Abtasttheorem
17 3.3 Das Abtasttheorem In der Praxis kennt man von einer zeitabhängigen Funktion f einem Signal meist nur diskret abgetastete Werte fn, mit festem > und ganzzahligem n. Unter welchen Bedingungen kann
Formelsammlung zum Skriptum
Systemtheorie und Regelungstechnik I - WS08/09 Formelsammlung zum Skriptum Kapitel 2 Satz 23 (Lokale Existenz und Eindeutigkeit) Es sei f (x, t) stückweise stetig in t und genüge der Abschätzung (Lipschitz-Bedingung)
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
Mathematik für Physiker, Informatiker und Ingenieure
Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG [email protected] http://www2.mathematik.uni-wuerzburg.de
Übungen zur Funktionentheorie
Mathematisches Institut SS 29 Universität München Prof. Dr. M. Schottenloher C. Paleani M. Schwingenheuer A. Stadelmaier Übungen zur Funktionentheorie Lösungen zu Übungsblatt. Sei fz) = z ) z 2) 2 eine
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript
Mathematik I für Studierende der Geophysik/Ozeanographie, Meteorologie und Physik Vorlesungsskript Janko Latschev Fachbereich Mathematik Universität Hamburg www.math.uni-hamburg.de/home/latschev Hamburg,
VIII. Fourier - Reihen
VIII. Fourier - Reihen Dieses Kapitel enthält eine kurze Einführung in die mathematische Beschreibung von Schwingungen. Übersicht über den Inhalt von Kapitel VIII: 5. Der Satz von Fejér 53. Die Parsevalsche
,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge
Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,
c < 1, (1) c k x k0 c k = x k0
4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger
Analysis I. 3. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 3. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine Abbildung F von einer Menge L in eine
Meromorphe Funktionen
Kapitel Meromorphe Funktionen Der Satz von Mittag-Leffler Zur Erinnerung: Die holomorphe Funktion f habe in z 0 C eine isolierte Singularität. Liegt eine Polstelle vor, so gibt es eine offene Umgebung
Kapitel 16 : Differentialrechnung
Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen
Klausur Höhere Mathematik I für die Fachrichtung Physik
Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche
2 Periodische, nicht harmonische Signale
Hochfrequenztechnik I Signaldarstellung im Zeit- und Frequenzbereich S/ Harmonische Signale Zeitabhängige Gröÿen, wie z. B. Spannung, Strom oder Feld, sind häug harmonische Gröÿen. Solche sinus- oder kosinusförmigen
Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)
1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge
1 Fourier-Reihen und Fourier-Transformation
Fourier-Reihen und Fourier-ransformation Fourier-Reihen und Fourier-ransformation J.B.J. de Fourier beobachtete um 8, dass sich jede periodische Funktion durch Überlagerung von sin(t) und cos(t) darstellen
Laplace-Transformation I: Grundlagen
Westfälische Wilhelms-Universität Münster Fachbereich Mathematik Seminararbeit Laplace-Transformation I: Grundlagen Matthias Böckmann 13.11.212 betreut durch Dr. Raimar Wulkenhaar Inhaltsverzeichnis 1
Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)
1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,
Nachklausur Analysis I
SS 008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Nachklausur Analysis I 07.0.008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung
Rechenoperationen mit Folgen. Rekursion und Iteration.
Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )
3 Der Cauchysche Integralsatz
3 Der Cauchysche Integralsatz Die in der Funktionentheorie meist vorkommenden Integrale (insbesondere im Cauchyschen Integralsatz) sind Kurvenintegrale und wie folgt definiert: Definition Sei U C, f :
f(t) = a 2 + darstellen lasst Periodische Funktionen.
7. Fourier-Reihen Viele Prozesse der Ingenieur- und Naturwissenschaften verlaufen periodisch oder annahernd periodisch, wie die Schwingungen einer Saite, Spannungs- und Stromverlaufe in Wechselstromkreisen
5. Fourier-Transformation
5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion
K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung WS 17/18: Woche vom
Übungsaufgaben 3. Übung WS 17/18: Woche vom 3. 10. - 7. 10. 017 Fourierreihen: 16. b,c,e,o), 16.3 a, b), 16.4 a) auch reelle Fourierreihe) Klausureinsicht zu Mathematik II 11.8. 017): 30.10.17, 7.00-8.30
Brückenkurs Rechentechniken
Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige
(a, 0) (c, 0) = (ac, 0) (0, 1) =: i. Re(z) := a der Realteil und Im(z) := b der Imaginärteil
14 DIE EXPONENTIALFUNKTION IM KOMPLEXEN 73 Wegen (a, 0) + (c, 0) = (a + c, 0) (a, 0) (c, 0) = (ac, 0) kann man die Teilmenge {(a, 0) a R} mit den darauf eingeschränkten Verknüpfungen identifizieren mit
1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen
1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09
Laplace-Transformation
Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:
Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen
Funktionentheorie, Woche Funktionen mit Singularitäten. Meromorphe Funktionen Definition. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P = f ( hat keine
Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen
Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende
2.3 Konvergenzverhalten von Fourierreihen
24 2 Fourierreihen 2.3 Konvergenzverhalten von Fourierreihen Wir diskutieren die folgenden Fragen: Unter welchen Umständen konvergiert eine Fourierreihe einer Funktion? Wann kann man eine stückweise stetige
Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.
Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,
PRÜFUNG AUS MATHEMATIK 3
(8 P.) Berechnen Sie das Integral tan(ln x) dx. x (8 P.) Bestimmen Sie die allgemeine Lösung der Differentialgleichung y 2y + 2y = x 2 + 5 cos x. (8 P.) Entwickeln Sie f(x) = sin(x) für x [ π/2, π/2] mit
Folgen und Reihen von Funktionen
Folgen und Reihen von Funktionen Sehr häufig treten in der Mathematik Folgen bzw. Reihen von Funktionen auf. Ist etwa (f n ) eine Folge von Funktionen, dann können wir uns für ein festes x fragen, ob die
Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren
Ferienkurs Analysis 1 - Wintersemester 2014/15 Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis
2. Fourier-Transformation
2. Fourier-Transformation Die Fourier-Transformation ist ein wichtiges Hilfsmittel für die dynamische Analyse linearer Systeme: Die Fourier-Transformierte der Antwort ist gleich dem Produkt der Fourier-Transformierten
Nachklausur Analysis 2
Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,
D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr
D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu MC-Fragen Serie 1 Einsendeschluss: Freitag, der 26.09.2014 12:00 Uhr 1. Welche der folgenden Aussagen sind richtig? (a) Eine divergente Folge ist nicht
Die trigonometrischen Funktionen
Die trigonometrischen Funktionen Betrachte die Funktion f(x) = 1 x auf dem Intervall [ 1, 1]. Für x = 1 erhält man den Punkt P 1 = ( 1, ), für x = den Punkt P = (, 1) und für x = 1 den Punkt P 1 = (1,
Konvergenz und Stetigkeit
Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn
Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke
Karteikarten, Analysis 2, Sätze und en nach der Vorlesung von PD Hanke Felix Müller, [email protected] Diese Karteikärtchen sollten alle en und Sätze der Vorlesung Analysis 2 bei Herrn PD Hanke
Funktionsgrenzwerte, Stetigkeit
Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn
3. Beschreibung dynamischer Systeme im Frequenzbereich
3. Laplace-Transformation 3. Frequenzgang 3.3 Übertragungsfunktion Quelle: K.-D. Tieste, O.Romberg: Keine Panik vor Regelungstechnik!.Auflage, Vieweg&Teubner, Campus Friedrichshafen --- Regelungstechnik
Kapitel 1. Holomorphe Funktionen
Kapitel 1 Holomorphe Funktionen Zur Erinnerung: I IR sei ein offenes Intervall, und sei z 0 I. Eine Funktion f : I IR heißt differenzierbar in z 0, falls der Limes fz fz 0 lim =: f z 0 z z 0 z z 0 existiert.
Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 1
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 015): Differential und Integralrechnung 1 1.1 (Frühjahr 00, Thema 3, Aufgabe ) Formulieren Sie das Prinzip der vollständigen Induktion und beweisen
Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen
Vortrag zum Seminar zur Analysis, 05.07.2010 André Stollenwerk, Eva-Maria Seifert Die Fourieranalysis beschäftigt sich mit dem Problem, inwiefern sich Funktionen mittels Sinus und Cosinus, das heißt periodischen
Holomorphe Funktionen
1 Kapitel 1 Holomorphe Funktionen 1 Komplexe Differenzierbarkeit Ist z = (z 1,..., z n ) ein Element des C n und z ν = x ν + i y ν, so können wir auch schreiben: z = x + i y, mit x = (x 1,..., x n ) und
Analysis I. 6. Beispielklausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.
Analysis I für Studierende der Ingenieurwissenschaften
Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom
Die Wärmeleitungsgleichung
Die Wärmeleitungsgleichung In einem Stab der Länge 1 wird die Temperaturverteilung gegeben durch die Funktion u : ([0,1] [0, )) R, u(x,t) ist die Temperatur am Punkt x zum Zeitpunkt t. Die Funktion erfüllt
differenzierbare Funktionen
Kapitel IV Differenzierbare Funktionen 18 Differenzierbarkeit und Rechenregeln für differenzierbare Funktionen 19 Mittelwertsätze der Differentialrechnung mit Anwendungen 20 Gleichmäßige Konvergenz von
Übungen zu Einführung in die Analysis
Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung
