Lösung 09 Klassische Theoretische Physik I WS 15/16. G(t t ) = Θ(t t )e α(t t ). (1)

Größe: px
Ab Seite anzeigen:

Download "Lösung 09 Klassische Theoretische Physik I WS 15/16. G(t t ) = Θ(t t )e α(t t ). (1)"

Transkript

1 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik Lösung 09 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön 0 Punkte Sebastian Zanker, Daniel Mendler Besprechung Drude-Leitfähigkeit ( ( + 4) = 7 + (6) Punkte) (a) Wir kennen bereits die Green sche Funktion für die DGL G(t t ) = Θ(t t )e α(t t ). () v + αv = f(t). () Setzen wir α = τ, so lässt sich die DGL des Drude Modells it dieser DGL identifizieren, wobei f(t) = e E(t). Dait finden wir die Lösung v(t) = für die Geschwindigkeit, bzw. dt G(t t )f(t ) = e j(t) = env(t) = ne für die Strodichte. Dait ist die Leitfähigkeit i Drude-Modell (b) Wir haben j(t) = t t dt E(t )e t t τ (3) dt E(t )e t t τ (4) σ(t) = ne Θ(t)e t/τ. (5) dt σ(t t )E(t ). (6) Die ist die Faltung von elektrische Feld E(t) und Leitfähigkeit σ(t). Dait folgt ittels Faltunstheore direkt j(ω) = E(ω)σ(ω). (7) Auch die Foruiertransforierte von σ(t) haben wir bereits auf de letzten Blatt berechnet. Sie lautet σ(ω) = ne τ + iω = ne τ iω τ + ω. (8) (c) Wir lösen die DGL nun ittels Fouriertransforation. Wir gehen wieder von der in Gleichung (??) aus (α = /τ und f(t) = ee(t)/). Setzen wir nun die Fouriertransforierten direkt in die Gleichung ein, finden wir ( ) d dω dω dt + α π v(ω)eiωt = π f(ω)eiωt. (9) Vertauschen wir nun Ableitung und Integral finden wir und dait dω π (iω + α) v(ω)eiωt = dω π f(ω)eiωt (0) (iω + α) v(ω) = f(ω) ()

2 bzw. it σ(ω) wie in (b). v(ω) = f(ω) iω + α = e iω + α E(ω) = σ(ω)e(ω). () en (d) Auch hier berechnen wir eine bereits bekannte Funktion, nälich die Fouriertransforierte der Green schen Funktion (siehe Blatt 8, A). Zur Bestiung der Green schen Funktion setzen wir E(t) = e δ(t) und erhalten die DGL v + αv = δ(t), (3) welche natürlich die Green sche Funktion als Lösung hat. Wir wissen, dass Wir benötigen also lediglich die FT des elektrischen Feldes E(ω) = v(ω) = σ(ω)e(ω). (4) Dait finden wir das bereits bekannte Ergebnis v(ω) = e (e) Sei nun E(t) = E 0. Die Gleichstroleitfähigkeit ergibt sich zu e dt e δ(t)e iωt = e. (5) α + iω = α + iω. (6) σ 0 = li σ(ω) = ne ω 0 τ (7) Wir wollen nun die Gleichstroleitfähigkeit bestien. Dazu nutzen wir zuerst direkt Gleichung () vo Aufgabenblatt: j(t) = t dt σ(t t )E 0 = ne E 0 dt e t t τ = ne τ E 0 Führ den zweiten Weg ittels Fouriertransforation benötigen wir zuerst E(ω): E(ω) = dt E 0 e iωt = πe 0 δ(ω). (8) Dait finden wir it der Drude Forel j(ω) = σ(ω)e(ω) = ne τ + iω πe 0δ(ω) (9) Nun üssen wir noch die inverse FT durchführen: dω j(t) = π j(ω)eiωt = ne τ E 0. (0) Wie erwartet stien die beiden Ergebnisse überein. Je nach For des elektrsichen Feldes kann aber eine der beiden Herangehensweisen deutlich besser zu rechnen sein.. Potenziale, Gradient und Kraftfelder ( () = 4 + () Punkte) (a) (Wir bezeichnen it e i einen Einheitsvecktor in i-richtung ) / / (i) r = 3 x j = 3 x j xi = x i x i x i r j= (ii) r = i (iii) j= e i r = x i i f(r) = df(r) x i dr (iv) x i e i r = r r = e r r = f (r) x i x i r f(r) = f (r)e r

3 (b) Das Kraftfeld eines Potenzials V (r), das nur vo Abstand r abhängt, lässt sich ittels a)(iv) berechnen: F (r) = V (r) = V (r)e r = V (r) r r. () Für ein /r Potenzial gilt und dait (c) Das Potential lässt sich hier erraten: V (r) = d dr α r = α r () F (r) = αr r 3 = α r e r. (3) V (x ) = k x + V 0 (4) it V 0 = const.. Das dieses Potential die korrekte Kraft gibt lässt sich ittels Nachrechnen prüfen: F (x ) = d V (x ) = kx. (5) Foral lässt sich das Potential ittels Integration aus der Kraft bestien: V (x ) = x x,0 F (x ) = k x i k x,0 = k x + V 0 (6) (d) Auch das Yukawa-Potenzial hängt nur vo Abstand r ab. Wir finden V Y (r) = α ( ) r r + γ e γr (7) und F = α ( + γr) e γr r e r (8) 3. Teilchen i quartischen Potenzial ( (4) = 9 + (4) Punkte) Ein Teilchen der Masse und Energie E bewege sich i Potenzial V (x) = ax 4 + bx it a, b > 0. Für kleine Energien und kleine x kennen wir die Lösung des Probles. Es ergibt sich it V (x) bx der haronische Oszillator, der bereits ausgiebig besprochen wurde. (a) Skizze:.5 V(x), b=, a=, = ẋ(x), E=0.5 ẋ(x), E= ẋ(x), E= V(x) x Abbildung : Skizze des Potentials V (x) und von ẋ(x) für unterschiedliche Energien für Aufgabe 3 (f) 3

4 (b) Hochpunkte E ax = V (± x ax ) des Potenzials: d V (x) = 4ax3 + bx = 0 (9) b x ± = ± (30) a b Wir finden die Maxialpunkte x = 0 und x ± = ± a = ± x ax. Bei x = 0 ist ein lokales Miniu, bei x ± sind Maxia. ( ) b E ax = V (± x ax ) = V ( x ax ) = a + b b a a = b 4a (3) (c) Gleichung für die Energie des Teilchens: (d) Auflösen nach ẋ: E(x, ẋ) = ẋ + V (x) = ẋ ax 4 + bx (3) E = ẋ ax 4 + bx (33) ẋ = ± (E + ax4 bx ) (34) Der Betrag der Geschwindigkeit des Teilchens ist durch die Energie festgelegt. Allerdings ist das ± wichtig, da die Richtung der Geschwindigkeit eine Rolle spielt und erstal nicht festgelegt ist. Aufstellen des Integrals x(t) ittels Separation der Variablen, wobei x i = x(t i ) t t 0 = ± Wir setzen i folgenden t 0 = 0 und t = t. t = ± x x E + ax 4 bx (35) E + ax 4 bx (36) Wegen t > 0 folgt für negative Geschwindigkeit x < x. (e) Sei nun die Energie des Teilchens E = E ax. < und für positive Geschwindigkeit t = ± x x = ± a = ± b 4a + ax4 bx a x = ± (x b a a ) x (37) b + x 4a 4 b a x x x ax Wir substituieren it y = x/ x ax, y i = x i / x ax. Das ist die Norierung des Orts auf die Breite der Potentialulde! I folgenden verwenden wir nur noch y. (38) t = ± x ax y a y 0 y (39) (40) Das Teilchen kann sich nun entweder innerhalb des Potentialtopfes oder außerhalb bewegen. Man uss daher bei der Integration darauf achten, dass die beiden Fälle y < (In der Mulde) 4

5 und y > (Außerhalb der Mulde) berücksichtigt werden. Das Teilchen kann die ganze Zeit entweder nur in der Potentialulde oder außerhalb sein, da die Energie genau E ax entspricht. Daher reicht es wenn wir die Fälle y 0 < und y 0 > betrachten. (Den Punkt y 0 =, also wenn sich das Teilchen genau a Maxiu befindet, schließen wir aus. In de Fall bleibt das Teilchen für ier an diese labilen Punkt liegen. Die Gleichungen gelten nicht wegen Division durch 0.) y > : y < : Wir führen eine Partialbruchzerlegung durch: t = τ t = τ y y 0 y y 0 y y τ = ± x ax a y = (y )(y + ) = A y + B y + = A + B = 0 A B = = y = y(a + B) + (A B) = y [ y ] y + Wir integrieren die beiden Fälle (Beachte, dass die Logarithen alle reell sind): y > : τ y = τ [ y ] y + = τ [ln(y ) ln(y + )] = τ ln y y < : y < : τ τ Insgesat erhalten wir y = τ [ y + ] + y y + (4) (4) (43) (44) (45) (46) (47) (48) = τ [ ln( y) + ln( + y)] = τ ln + y = τ artanh y (49) y y = τ [ ] y + (50) y = τ [ln( y) ln( y)] = τ ln y (5) y + y > : t = τ [ ln y y + ln y ] 0 y 0 + (5) y < : t = τ(artanh y artanh y 0 ) (53) Auflösen nach y = y(t): ( t y > : exp τ + ln y ) 0 = f(t) = y(t) y 0 + y(t) + ( ) t y < : y(t) = tanh τ + artanh y 0 = y(t) = + f(t) f(t) (54) (55) Die Funktion divergiert für y > und große t wegen des abstoßenden Potentials: ( t exp τ + ln y ) 0 < = t < τ y 0 + ln y 0 + y 0 (56) (f) E < 0: In diese Fall befindet sich das Teilchen nicht in der Potentialulde. Der Zustand ist ungebunden, das Teilchen läuft weg. 5

6 0 < E < E ax : In diese Fall kann sich das Teilchen in der Potentialulde befinden, sofern x < x ax. Dann ist der Zustand gebunden. Befindet sich das Teilchen anfangs außerhalb der Mulde, so ist der Zustand ungebunden. E ax < E: Das Teilchen ist ungebunden. Die Kurven i Phasenrau plotten wir für unterschiedliche Energien E. Der Einfachheit halber setzen wir =, a =, b = und erhalten E ax = b 4a =. ẋ(x) = ± (E + ax4 bx ) = ± E + x 4 x (57) 6

Übungen zur Klassischen Theoretischen Physik I WS 2016/17

Übungen zur Klassischen Theoretischen Physik I WS 2016/17 Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Klassischen Theoretischen Physik I WS 06/7 Prof. Dr. Carsten Rockstuhl Blatt 4 Dr. Andreas Poenicke, MSc. Kari

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

Lösung 04 Klassische Theoretische Physik I WS 15/16. c n = 1 T. c n,u e inωt + c n,u e inωt] c n e inωt = c 0 +

Lösung 04 Klassische Theoretische Physik I WS 15/16. c n = 1 T. c n,u e inωt + c n,u e inωt] c n e inωt = c 0 + Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung 4 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön 2 Punkte Sebastian Zanker, Daniel Mendler

Mehr

Lösung 10 Klassische Theoretische Physik I WS 15/16

Lösung 10 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu ösung Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel endler Besprechung

Mehr

Lösung 01 Klassische Theoretische Physik I WS 15/16

Lösung 01 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

Differentialgleichung.

Differentialgleichung. Kapitel 9 Differentialgleichungen 9. Einteilung der Differentialgleichungen In einer Differentialgleichung (DGl) treten Differentialquotienten von einer oder ehreren Funtionen von einer oder ehreren Veränderlichen

Mehr

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt, Punkte Dr. P. P. Orth Abgabe und Besprechung 24..24. Nicht so schnell

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Theorie A (WS2005/06) Musterlösung Übungsblatt

Theorie A (WS2005/06) Musterlösung Übungsblatt Theorie A (WS2005/06) Musterlösung Übungsblatt 3 0.02.06. Stammfunktionen: dx sin(x) = cos(x), dx x = 2(x) 3/2, 2. Partielle Integration: dxu(x) v (x) = u(x) v(x) dx cos(x) = sin(x), dxx n = n + x(n+)

Mehr

Übungen zur Theoretischen Physik F SS 14. (a) Wenn das System nur aus einem reinen Zustand besteht, dann gilt für die Dichtematrix

Übungen zur Theoretischen Physik F SS 14. (a) Wenn das System nur aus einem reinen Zustand besteht, dann gilt für die Dichtematrix Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS 4 Prof. Dr. Jörg Schmalian Blatt Dr. Peter Orth and Dr. Una Karahasanovic Besprechung.7.4

Mehr

Blatt 11.1: Fourier-Integrale, Differentialgleichungen

Blatt 11.1: Fourier-Integrale, Differentialgleichungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt.:

Mehr

Blatt 6. Schwingungen- Lösungsvorschlag

Blatt 6. Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

THEORETISCHE PHYSIK C NACHKLAUSUR Prof. Dr. J. Kühn Dienstag, 27.4.2 Dr. S. Uccirati 7:3-2:3 Uhr Bewertungsschema für Bachelor Punkte Note < 4 5. 4-5.5 4.7 6-7.5 4. 8-9.5 3.7 2-2.5 3.3 22-23.5 3. 24-25.5

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Gewöhnliche Differentialgleichungen Teil Ia: Lösung durch Quadratur

Gewöhnliche Differentialgleichungen Teil Ia: Lösung durch Quadratur - 1 - Gewöhnliche Differentialgleichungen Teil Ia: Lösung durch Quadratur I ersten Teil der Vorlesung wurde zunächst ein Überblick über Typen von Differentialgleichungen gegeben. Anschließend wurden hauptsächlich

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Fourier-Transformation

Fourier-Transformation Fourier-ransformation Im Folgenden werden die schon bekannten Eigenschaften der Fourier-Reihen zur Darstellung periodischer Funktionenn zusammengefasst und dann auf beliebige Funktionen verallgemeinert.

Mehr

Lösung 07 Klassische Theoretische Physik I WS 15/16

Lösung 07 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung 7 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

VDK Allgemeine Chemie I (PC)

VDK Allgemeine Chemie I (PC) VDK Allgeeine Cheie I (PC) Christian Zosel Lösungen für Montag, 2. Juli 2012 1 Vektorrechnung Mit der Forel für Deterinanten von 3x3 Matrizen det A = det a 11 a 12 a 13 a 21 a 22 a 23 (1) a 31 a 32 a 33

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

D = Lösung der Aufgabe 1

D = Lösung der Aufgabe 1 Klassische Theoretische Physik I, WiSe 7/8 Aufgabe : Verständnisfragen und kleine Aufgaben 3P Beantworten Sie die Fragen kurz, aber vollständig. (a) 4P Formulieren Sie zwei der drei Kepler schen Gesetze

Mehr

Aufgabe Summe Note Punkte

Aufgabe Summe Note Punkte Fachhochschule Südwestfalen FB IW - Meschede Ingenieurmathematik (MB 0.09.018 Klausur Ingenieurmathematik - Lösungen Name Matr.-Nr. Vorname Unterschrift Aufgabe 1 3 4 5 6 7 8 Summe Note Punkte Die Klausur

Mehr

Blatt 05.3: Green sche Funktionen

Blatt 05.3: Green sche Funktionen Fakultät für Physik T: Klassische Mechanik, SoSe 06 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/

Mehr

Blatt 05.2: Green sche Funktionen

Blatt 05.2: Green sche Funktionen Fakultät für Physik T: Klassische Mechanik, SoSe 05 Dozent: Jan von Delft Übungen: Katharina Stadler, Frauke Schwarz, Dennis Schimmel, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5t/

Mehr

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve.

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve. PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 7 WS 007/008 0.. 007. Lenz scher Vektor. Für die Bahn eines Teilchens der Masse m im Potential U(r) = α/r definieren wir mit

Mehr

Blatt 12.3: Fourier-Integrale, Differentialgleichungen

Blatt 12.3: Fourier-Integrale, Differentialgleichungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim.

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim. Theorie A (WS5/6) Musterlösung Übungsblatt 7 6..5 Θ(t t [ t t ) = lim arctan( ) + π ] ε π ε ( ) d dt Θ(t t ) = lim ε π vergleiche Blatt 6, Aufg. b). + (t t ) ε ε = lim ε π ε ε + (t t ) = δ(t t ) Plot von

Mehr

Moderne Theoretische Physik WS 2013/ Kraft auf Stromverteilung: (10 Punkte)

Moderne Theoretische Physik WS 2013/ Kraft auf Stromverteilung: (10 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 013/014 Prof. Dr. A. Shniran Blatt 4: Lösung Dr. B. Narozhny Besprechung.11.013 1. Kraft

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Klassische Theoretische Physik I

Klassische Theoretische Physik I Universität KarlsruheTH) WS 008/09 Klassische Theoretische Physik I V:Prof. Dr. D. Zeppenfeld,Ü: Dr. S. Gieseke Prüfung Nr. 1 Lösungsvorschläge Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren

Mehr

Höhere Mathematik III für die Fachrichtung Physik

Höhere Mathematik III für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Ioannis Anapolitanos Dipl.-Math. Sebastian Schwarz WS 5/6 6..5 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt

Mehr

Elektromagnetische Eigenschaften von Metallen, Potentiale

Elektromagnetische Eigenschaften von Metallen, Potentiale Übung 8 Abgabe: 02.05. bzw. 05.05.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Elektromagnetische Eigenschaften von Metallen, Potentiale

Mehr

Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren a = (1,2,3) und b = (3,1,2). BerechnenSiedieKomponente a von a,die auf b senkrecht steht.

Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren a = (1,2,3) und b = (3,1,2). BerechnenSiedieKomponente a von a,die auf b senkrecht steht. Aufgabe 1: Senkrechtkomponente [8] GegebensinddieVektoren a = (1,2,3) und b = (3,1,2). BerechnenSiedieKomponente a von a,die auf b senkrecht steht. Aufgabe 2: ǫ Tensor [6] Gegeben sind die Vektoren a =

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

Übungen zur Theoretischen Physik I: Mechanik

Übungen zur Theoretischen Physik I: Mechanik Prof Dr H Friedrich Physik-Departent T30a Technische Universität München Blatt 4 Übungen zur Theoretischen Physik I: Mechanik (Abgabe schriftlich, in der Übungsgruppe in der Woche vo 805-2205) Betrachten

Mehr

Übungen zur Klassischen Theoretischen Physik I WS 2016/17

Übungen zur Klassischen Theoretischen Physik I WS 2016/17 Karlsruher Institut für Technologie Institut für Theoretische Festörperphysi Übungen zur Klassischen Theoretischen Physi I WS 016/17 Prof. Dr. Carsten Rocstuhl Lösung - Blatt 9 Dr. Andreas Poenice, MSc.

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 008 Theoretische Mechanik 4. Übung Lösungen 4. Spezielle Kraftgesetze Lösen Sie die

Mehr

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch Vorkurs Matheatik-Physik, Teil 8 c 26 A. Kersch Dynaik. Newton sche Bewegungsgleichung Reaktionsgesetz F geändert Der Bewegungszustand eines Körpers wird nur durch den Einfluss von (äußeren) Kräften F

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 3 Tobias Spranger - Prof. Tom Kirchner WS 5/6 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 5 Übungsblatt 6 Lösungsvorschlag 3 ufgaben,

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr

2λ e λ x ermittelt. Bestimmen Sie mit deren Hilfe die

2λ e λ x ermittelt. Bestimmen Sie mit deren Hilfe die Klassische Theoretische Physik I, WiSe 27/8 Aufgabe : Verständnisfragen und kleine Aufgaben 6P Beantworten Sie die Fragen kurz, aber vollständig. a) 4P Berechnen Sie die Taylorreihe von fx) = sinx 2 )

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise

Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Prof. H. Monien St. Kräer R. Sanchez SS2014 Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Hinweise: Diese Lösung/Lösungshinweise erhebt keinen Anspruch auf Richtigkeit oder Vollständigkeit,

Mehr

x(t) := 1 k definierte Funktion. (a) Berechnen Sie ẋ(t) und ẍ(t). (b) Zeigen Sie, daß die Funktion x = x(t) eine Lösung der Differentialgleichung

x(t) := 1 k definierte Funktion. (a) Berechnen Sie ẋ(t) und ẍ(t). (b) Zeigen Sie, daß die Funktion x = x(t) eine Lösung der Differentialgleichung Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Algebra II SS 26 Blatt 7 3.5.26 Aufgabe 33: Die Funktion f : R R sei stetig. Betrachten Sie die durch x(t) : 1 k f(u) sin (k(t u)) du definierte Funktion.

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 12

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 12 D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Lösung - Serie MC-Aufgaben Online-Abgabe. Liegt der Schwerpunkt eines rotationssymmetrischen Körpers immer auf dessen Rotationsachse? a Nein. Dies würde

Mehr

Spezieller Ansatz bei spezieller Inhomogenität.

Spezieller Ansatz bei spezieller Inhomogenität. Spezieller Ansatz bei spezieller Inhomogenität. Bei Inhomogenitäten der Form h(t) = e µt kann man spezielle Ansätze zur Bestimmung von y p (t) verwenden: Ist µ keine Nullstelle der charakteristischen Gleichung

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4. Umkehrbarkeit I Man betrachte die durch g(s, t = (e s cos(t, e s sin(t gegebene Funktion g : R R. Zeigen Sie, dass

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann.9. Bergische Universität Wuppertal Modul: Mathematik b für Ingenieure, Bachelor Sicherheitstechnik PO Aufgabe a Berechnen Sie das Integral I : e x + ln

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 017/18 Klassische Theoretische Physik III (Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 10 Ausgabe: Fr, 1.01.18 Abgabe: Fr, 19.01.17 Besprechung: Mi, 4.01.18

Mehr

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man:

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man: Aufgabe 29 Ein Stromkreis bestehe aus einer Spannungsquelle mit Spannung U 0 in Reihe mit einer Induktivität(Spule) L = 0.8H und einem Widerstand R = 10Ω. Zu dem Zeitpunkt t = 0 werde die Spannungsquelle

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik 2 Klassische Mechanik 1. August 216 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 25 Punkten. Die Klausur

Mehr

Musterlösung Prüfung

Musterlösung Prüfung D-BAUG Analysis I/II Winter 24 Meike Akveld Theo Bühler Musterlösung Prüfung. (a) Bestimmen Sie die reellen Koeffizienten p und q, so dass z = 2 3i eine Lösung der Gleichung z 3 3z 2 + pz + q = ist. Bestimmen

Mehr

Lösung Repetitionsübung

Lösung Repetitionsübung Lösung Repetitionsübung A1: Differential- un Integralrechnung a) x e x2 /4 = x 2 e x2 /4 x ln sinh(x ex +1) = cosh(x ex +1) sinh(x e x +1) (ex +x e x ) = e x (1 + x) coth(x e x +1) x y e xy = x x = ( 1

Mehr

Klassischer Ladungstransport. Faouzi Saidani. Auf dem Weg zur Nanoelektronik. Faouzi Saidani. Universität Freiburg

Klassischer Ladungstransport. Faouzi Saidani. Auf dem Weg zur Nanoelektronik. Faouzi Saidani. Universität Freiburg Auf dem Weg zur Nanoelektronik Universität Freiburg 12. Mai 2010 Inhalt Das Drudemodell und seine Grundannahmen Gleichstromleitfähigkeit Halleffekt und Magnetwiderstand Wechselstromleitfähigkeit Wärmeleitfähigkeit

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 8 06..0 Musterlösungen Theoretische Physik I: Klassische Mechanik Schwingungen z und Wellen Prof. Dr. G. Alber MSc Nenad Balanesković. g x y Ein Massenpunkt der Masse m bewegt sich unter dem Einfluß

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 1

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 1 Prof.. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physi 2 Lösungen zu Blatt 1 Aufgabe 1: Differentialoperatoren der Vetoranalysis (a) Aus der Definition des Nabla-Operators folgt

Mehr

1. Geschwindigkeit von Elektronen in Drähten (2+2+2)

1. Geschwindigkeit von Elektronen in Drähten (2+2+2) Lösungen zur Übungen zur Physik (Elektrodynaik) SS 5 6 Übungsblatt 955 Bearbeitung bis Mi 555 Geschwindigkeit on Elektronen in Drähten (++) Ein Kupferdraht it de Durchesse durchflossen Berechnen Sie a)

Mehr

Ferienkurs Theoretische Mechanik Frühjahr 2009

Ferienkurs Theoretische Mechanik Frühjahr 2009 Physik Departent Technische Universität München Ahed Oran Blatt 5 Ferienkurs Theoretische Mechanik Frühjahr 009 Hailton Mechanik Lösungen) 1 Poisson-Klaern *) I Folgenden bezeichnen l i, i 1,, 3 die Koponenten

Mehr

1. Haupttest (16. Dezember 2011) Gruppe bunt (mit Lösung ) kein Taschenrechner; Unterlagen: eigenes Skriptum gestattet

1. Haupttest (16. Dezember 2011) Gruppe bunt (mit Lösung ) kein Taschenrechner; Unterlagen: eigenes Skriptum gestattet Institut für Analysis und Scientific Computing WS / O. Koch P R A K T I S C H E M A T H E M A T I K I F Ü R T P H. Haupttest (6. Dezember ) Gruppe bunt (mit Lösung ) FAMILIENNAME Vorname Studium / MatrNr

Mehr

Moderne Theoretische Physik II. V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch. Klausur 2 Lösung. 04. April 2017, 11:00-13:00 Uhr

Moderne Theoretische Physik II. V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch. Klausur 2 Lösung. 04. April 2017, 11:00-13:00 Uhr KIT WS 6/7 Moderne Theoretische Physik II V: Prof. Dr. D. Zeppenfeld, Ü: Dr. M. Rauch Klausur Lösung 4. April 7, :-: Uhr Aufgabe : Störung zum zweidimensionalen harmonischen Oszillator ++7 Punkte a Die

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Universität Heielberg Mathematischer Vorkurs zum Stuium er Physik Übungen Aufgaben zu Kapitel 5 aus: K. Hefft, Mathematischer Vorkurs zum Stuium er Physik, sowie Ergänzungen Aufgabe 5.: Differenzierbarkeit

Mehr

Lösung der Zusatzaufgabe von Blatt 13

Lösung der Zusatzaufgabe von Blatt 13 Lösung der Zusatzaufgabe von Blatt 13 (1) Freier Fall (Fall eines Körpers i Vakuu, d.h. ohne Reibungswiderstand): (i) s = g. (a) Lösung von (i) it den Anfangsbedingungen s(0) = h und v(0) = ṡ(0) = 0: Integrieren

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 223 Tobias Spranger - Prof. To Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.htl 23. Noveber 25 Übungsblatt 3 Vorrechnen & Diskussion:

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

19. Weitere elementare Funktionen

19. Weitere elementare Funktionen 19. Weitere elementare Funktionen 1. Der Arcussinus Die Sinusfunktion y = f(x) = sin x (mit y = cos x) ist im Intervall [ π, π ] streng monoton wachsend und somit existiert dort eine Umkehrfunktion. f

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Gedämpftes Quantentunneln in makroskopischen Systemen

Gedämpftes Quantentunneln in makroskopischen Systemen Gedämpftes Quantentunneln in makroskopischen Systemen Kerstin Helfrich Seminar über konforme Feldtheorie, 27.06.06 Gliederung 1 Motivation 2 Voraussetzungen Allgemein Ungedämpfter Fall 3 Gedämpftes Tunneln

Mehr

Physik I Übung 12 - Lösungshinweise

Physik I Übung 12 - Lösungshinweise Physik I Übung - Lösungshinweise Stefan Reutter WS 0/ Moritz Kütt Stand: 7. Februar 0 Franz Fujara Aufgabe Zielich Koplex Das Ganze a) Stelle eine Differentialgleichung für ein ungedäpftes Federpendel

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartent E13 WS 011/1 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbau, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung

Mehr

Mathematische Methoden Wintersemester 2018/19

Mathematische Methoden Wintersemester 2018/19 Mathematische Methoden Wintersemester 08/9 Blatt, Abgabe 0.0.09 bis 3:30 Institut für Biologische Physik J. Berg U. Michel, S. Kleinbölting Hinweis Dieses Übungsblatt dient der Wiederholung des bisher

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2 D-MAVT/D-MATL Analysis II FS 07 Dr. Andreas Steiger Lösung - Serie 6. Es ist das folgende autonome System ẋ = x + x + 3 ẋ = x + x von linearen Differenzialgleichungen. Ordung gegeben. Welche der folgenden

Mehr

Mathematik für Anwender I. Beispielklausur 3 mit Lösungen

Mathematik für Anwender I. Beispielklausur 3 mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur mit en Dauer: Zwei volle Stunden + 0 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

2. Klausur zur Vorlesung Theoretische Physik A Universität Karlsruhe WS 2004/05

2. Klausur zur Vorlesung Theoretische Physik A Universität Karlsruhe WS 2004/05 . Klausur zur Vorlesung Theoretische Physik A Universität Karlsruhe WS 004/05 Prof. Dr. Gerd Schön Dr. Matthias Eschrig Dauer: Stunden Gesamtpunktzahl: 30 Punkte + 5 Zusatzpunkte Hinweise: Beginnen Sie

Mehr

Lösungen zu den Übungen zur Newtonschen Mechanik

Lösungen zu den Übungen zur Newtonschen Mechanik Lösungen zu den Übungen zur Newtonschen Mechanik Jonas Probst.9.9 1 Bahnkurve eines Massenpunktes Aufgabe: Ein Massenpunkt bewegt sich auf folgender Trajektorie: 1. Skizzieren Sie die Bahnkurve. r(t) (a

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Lösung 12 Klassische Theoretische Physik I WS 15/16

Lösung 12 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu ösung 1 Klassische Theoretische Physik I WS 1/16 Prof. Dr. G. Schön + Punkte Sebastian Zanker, Daniel Mendler

Mehr

Bachelor Modulprüfung. Höhere Mathematik III für die Fachrichtung Physik. Lösungsvorschläge

Bachelor Modulprüfung. Höhere Mathematik III für die Fachrichtung Physik. Lösungsvorschläge KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT) Institut für Analysis Priv.-Doz. Dr. Peer Kunstmann Markus Antoni WS 22/23 Bachelor Modulprüfung Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

2.5 Pfaffsche Formen. Definition Satz

2.5 Pfaffsche Formen. Definition Satz 39 2.5 Pfaffsche Formen Sei B R n offen. Eine Pfaffsche Form oder Differentialform vom Grad 1 auf B ist eine beliebig oft differenzierbare Funktion ω : B R n R, die im zweiten Argument linear ist. (Gelegentlich

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik Klassische Mechanik 30. September 016 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 5 Punkten. Die Klausur

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

Stabilität von Gleichgewichtslagen

Stabilität von Gleichgewichtslagen Stabilität von Gleichgewichtslagen Sina Loriani Fard und Fabian Anders 3. Juli 203 Prinzip der linearen Stabilität. Linearisierung I Folgenden untersuchen wir die Gleichgewichtslage eines zeitkontinuierlichen

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Modernen Theoretischen Physik I SS 14 Prof. Dr. Gerd Schön Lösungen zu Blatt 2 Andreas Heimes, Dr. Andreas Poenicke

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1

Lösung 03 Klassische Theoretische Physik I WS 15/16. x 2n+1 (2n + 1)! = x 2n (2n)! + ( x) 2n (2n)! ( x) 2n+1 Karlsruher Institut für Technoloie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösun 3 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

Vorlesung 6. Übertragungsfunktion der linearen Regelkreisglieder Textuell: FederPendel. DGL: als Sprungantwort

Vorlesung 6. Übertragungsfunktion der linearen Regelkreisglieder Textuell: FederPendel. DGL: als Sprungantwort Textuell: FederPendel yste FederPendel Dreh- Magnet Feder c Masse l Däpfer d lf ld ollwertgeber Regler Winkelsensor Regelungstechnische Begriffe: PT-Glied it Verstärkung Kp, Däpfung D, Zeitkonstante T

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 2

Grundlagen der Physik 1 Lösung zu Übungsblatt 2 Grundlagen der Physik Lösung zu Übungsblatt 2 Daniel Weiss 23. Oktober 29 Aufgabe Angaben: v F = 4 km h α = 58 β = 95 v W = 54 km h Abbildung : Skizze zu Aufgabe a Wie aus Abbildung leicht ersichtlich

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann 6.9.6 Bergische Universität Wuppertal Aufgabe ( Punkte Modul: Mathematik I und II, Bachelor Maschinenbau a Zeigen Sie durch Induktion nach n die Summenformel

Mehr

15. Vorlesung Sommersemester

15. Vorlesung Sommersemester 15. Vorlesung Soerseester 1 Kontinuusgrenzfall der Bewegungsgleichungen Was wird aus den Bewegungsgleichungen i Kontinuusgrenzwert? I diskreten Fall sind diese η j = kη j+1 η j + η j 1 1 und an führt wieder

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Laplace Transformation

Laplace Transformation Department Mathematik der Univerität Hamburg SoSe 29 Dr. Hanna Peywand Kiani Laplace Tranformation Die in Netz getellten Kopien der Anleitungfolien ollen nur die Mitarbeit während der Verantaltung erleichtern.

Mehr