C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:

Größe: px
Ab Seite anzeigen:

Download "C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:"

Transkript

1 C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel C7 weicht ab vom Altland-Delft-Text] Geschwindigkeit: Ort: Kraft Beschleunigung: Typische Problemstellung: für orts - und/oder zeitabhängige Kraft, bestimme die Trajektorie! Das führt zu einer "Differentialgleichung" (DGL): Beispiel 1: Harmonischer Oszillator in einer Dimension: "Rückstellkraft" "Antriebskraft" Beispiel 2: Radioaktiver Zerfall Zerfallsrate (proportional zur Zahl der Atome!) Zahl der radioaktiven Atome Zerfallskonstante [Dimension: 1/Zeit] Anfangswert: Atome zum Zeitpunkt. Aufgabe: finde! Lösung: Schlau geraten: welche Funktion ist proportional zu ihrer Ableitung? Exponentialfunktion! Also Ansatz: Grafische Analyse: Steigung negativ Steigung weniger negativ kleines größeres (3) in (1): Anfangswert: Gesuchte Lösung:

2 Weitere Beispiele: wichtige Differentialgleichungen in der Physik: Ort Mechanik: Newton 2: (gewöhnliche DGL 2. Ordnung): (gesuchte Funktion hängt nur von einer Variable ab, hier t) (Ableitungen 2. Ordnung kommen vor) Elektrodynamik: Maxwell-Gleichungen (gekoppelte partielle DGL 1. Ordnung) Magnetfeld Elektrisches Feld (nur Ableitungen 1. Ordnung kommen vor) (gesuchte Funktion hängt von mehreren Variablen ab, hier x,y,z,t) Quantenmechanik: Schrödinger-Gleichung: (partielle DGL 2. Ordnung) Hydrodynamik: Navier-Stokes-Gleichung: (nicht-lineare partielle DGL 2. Ordnung) (gesuchte Funktion kommt nicht nur linear vor) Wellenfunktion Geschwindigkeitsfeld einer Flüssigkeit AllgemeinerTrick: durch Einführen neuer Variablen lassen sich höhere Ableitungen eliminieren; der Preis ist ein System von mehreren DGL. Beispiel: Newton 2: lässt sich schreiben als: Im Folgenden betrachten wir folglich nur DGL, die nur erste Ableitungen enthalten. Definition: Sei auf einem Gebiet eine stetige Funktion gegeben, d.h. ein stetiges (zeitabhängiges) Vektorfeld. Dann ist ein "System von gewöhnlichen Differentialgleichungen (DGL) erster Ordnung". (gesuchte Vektorfunktion hängt nur von einer Variable ab, partiellen Ableitungen kommen nicht vor) (keine höheren Ableitungen) Gesucht wird nach Lösung(en) auf einem Intervall, also eine differenzierbare, vektorwertige Funktion mit den Eigenschaften: und

3 "Anfangswertproblem": Finde Lösungen mit "Anfangsbedingungen" so, dass Visualisierung der Fragestellung für n = 2: Gegeben: Kraft als Funktion von Ort und Zeit: Zeit Raum Kraft Gesucht: Trajektorie Raum Existenz und Eindeutigkeit von Lösungen einer DGL? Ist in der Physik immer gewährleistet, falls Problem physikalisch sinnvoll gestellt ist! Mathematisch gibt es für gewöhnliche DGL erster Ordnung mehrere denkbare Möglichkeiten (abhängend von der Form der Gleichung, d.h. der Form von ): - es gibt gar keine Lösung, - es gibt eine und genau eine Lösung, ("eine eindeutige") - es gibt mehrere Lösungen, die die angegebene Anfangsbedingung erfüllt erfüllen - oder: es gibt zwar eine Lösung, aber nur in einer hinreichend kleinen Umgebung des Anfangswertes ("lokale Existenz") - oder: es existiert eine Lösung für alle ("globale" Lösung) Theorie der Existenz v. Lösungen einer gegebenen DGL ist i.a. ein schwieriges mathematisches Problem!

4 Satz (Picard & Lindelöf): Falls Lipshitz-stetig in und stetig differenzierbar in ist, existiert eindeutig eine lokale Lösung des Anfangswertproblems. "Stetig differenzierbar": Ableitung ist stetig, d.h., Funktion hat "keine Zacken": "Lipshitz-stetig": Steigung zwischen zwei beliebigen Punkte auf der Kurve ist begrenzt, d.h., Funktion hat "keine Sprünge": Steigung endlich: Steigung unendlich: Bemerkungen zur physikalischen Anwendung: (i) Satz (1) gewährleistet Determinismus a la Newton: Spezifikation von Anfangsort und - Geschwindigkeit [in Gl. (c.1), (c.2)] legt weitere Bewegung eindeutig fest! (ii) Allgemeiner: DGL sind für sinnvolle Beschreibung physikalischer Prozesse geeignet. C7.2 Lösungstrategien im Eindimensionalen Im Folgenden: stetig differenzierbar a) Trivialfall: rechte Seite unabhängig von x Integration: Lösung: Fazit: Das Lösen von (1) entspricht dem Finden der Stammfunktion v. g(t) b) "Autonome" DGL: [siehe Altland-Delft, Abschnitt C7.4] rechte Seite hat keine explizite Abhängigkeit von t [explizite t-abhängigkeit wäre gegebn, falls ] Umstellen: Sei die Stammfunktion von also:

5 Definiere: Kettenregel Dann: Integration: Auflösen nach x(t): Umkehrfunktion v. H Kurzfassung dieser Rechnung: "Trennung (oder Separation) der Variablen" x nach links, t nach rechts: Fläche = letzter Schritt: Auflösen nach x(t)... Beispiel 3: mit Anfangsbedingung: Grafische Analyse: Steigung = 1 je größer, je größer die Steigung! je größer, je größer die Steigung!

6 Beispiel 3, explizit gerechnet, mittels "Trennung der Variablen" (Gl. j.1-4): Trennung der Integration: Einsetzen der Anfangsbedingung: Umkehrfunktion: (6) aufgelöst nach x(t): Check: Produktregel Die Lösung gilt nur im dann c) "Separable DGL" (lösbar durch Trennung oder "Separation" der Variablen) [analog zu (h.4), aber mit extra g(t)] Umstellen: Stammfunktion: also Substitution: Kettenregel Differenzieren: (6) Stammfunktion: Einsetzen: letzter Schritt: auflösen nach x(t)

7 Kurzfassung: Lösungschema für separable DGL: WICHTIG! Trennen: Ausgedrückt durch Stammfunktionen: gemeint ist: Umkehrfunktion: Beispiel 4: mit Grafische Analyse Bereich: Steigung Trennen: divergiert wie verschwindet wie Anfangsbedingung (2): Umkehrfunktion = gesuchte Lösung: Steigung [für t > würde (7) die Lösung x(t), liefern, was nicht erlaubt ist, da x(t) > x(0) = 1] Fazit: Lösung existiert nur mit

8 C7.3 Autonome DGL in zwei Dimensionen Betrachte DGL mit stetig differenzierbaren "Autonom": rechte Seite ist zeitunabhängig: Gesucht sind Lösungen Direkte Lösung ist oft schwierig. Trick: Überführung in 1-dimensionale DGL! Interpretiere die gesuchte Lösung als eine durch parametrisierte Bahnkurve; entlang dieser ist eine von abhängige Variable: Kettenregel Wir erhalten eine 1-dimensionale DGL für Man merke sich (5) mit der Eselsbrücke: Beispiel 5: Newton 2: (siehe C7d.2,3) (m = Masse, p = Impuls) (= Kraftfeld) Bahnkurve: DGL (o.7) für Bahnkurve: Eselsbrücke (o.7)! Trennen der Variablen: Annahme: F(x) habe die Form: (Vorzeichen per Konvention) Fazit: Energie-Erhaltung!

9 Beispiel 6: Feldlinien in 2 Dimensionen sei ein Vektorfeld. Zeichne die Feldlinien! Strategie: Finde Raumkurve mit Dann ist Vektorfeld ist tangential an Raumkurve (verschiedene Anfangsbedingungen liefern verschiedene Raumkurven) In 2d: Feldlinie: DGL für Feldlinie: Eselsbrücke (o.7)! Beispiel: DGL für Feldlinie: Trennen, Umgestellt: Feldlinien bilden Kreise! Konstante unabhängig von x und y

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält.

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält. C7 Differentgleichungen (DG) (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel C7 weicht ab vom Altland-Delft-Text] C7.1 Was ist eine DG, wozu wird sie gebraucht?

Mehr

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x

C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung. rechte Seite der DG ist unabhängig von x C7.3' Allgemeine Lösungstrategien für Differentialgleichungen 1. Ordnung (a) Trivialfall: rechte Seite der DG ist unabhängig von x Integration: Substitution auf linker Seite: Lösung: Fazit: Das Lösen von

Mehr

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält.

Eine DG ist eine Gleichung, die Ableitungen der gesuchten Funktion enthält. C7 Differentgleichungen (DG) (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel C7 weicht ab vom Altland-Delft-Text] C7.1 Was ist eine DG, wozu wird sie gebraucht?

Mehr

Kapitel L. Gewöhnliche Differentialgleichungen

Kapitel L. Gewöhnliche Differentialgleichungen Kapitel L Gewöhnliche Differentialgleichungen Inhalt dieses Kapitels L000 1 Erste Beispiele von Differentialgleichungen 2 Exakte Differentialgleichungen 3 Fazit: Existenz, Eindeutigkeit, Lösungsmethoden

Mehr

9.4 Lineare gewöhnliche DGL

9.4 Lineare gewöhnliche DGL 9.4 Lineare gewöhnliche DGL Allgemeinste Form einer gewöhnlichen DGL: Falls linear in ist, sprechen wir von einer "linearen" DGL: und eine Matrix zeitabhängigen Komponenten ein zeitabhängiger Vektor In

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

Differenzialgleichungen

Differenzialgleichungen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 30. Januar 2008 (System von) Differenzialgleichung(en) Schwingungsgleichung Newtonsche Mechanik Populationsdynamik...DGLn höherer Ordnung auf

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

Hamilton-Jacobi-Theorie

Hamilton-Jacobi-Theorie Hamilton-Jacobi-Theorie Bewegungsgleichungen werden einfacher, wenn alle (!) neuen Koordinaten zyklisch sind. Dies ist insbesondere dann der Fall, wenn eine zeitabhängige kanonische Transformation existiert,

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-r.de/fakultaeten/nat Fak I/abels/Aktuelles.html Tag der Mathematik am Albrecht-Altdorfer-Gymnasium

Mehr

Skalare Differenzialgleichungen

Skalare Differenzialgleichungen 3 Skalare Differenzialgleichungen Differenzialgleichungen stellen eine Beziehung her zwischen einer oder mehreren Funktionen und ihren Ableitungen. Da Ableitungen Veränderungen beschreiben, modellieren

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung:

Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: Anwendung: gedämpfter harmonischer Oszillator (ohne Antrieb) Exponentialansatz: Eigenwertproblem: Charakteristisches Polynom: Zwischenbemerkung: (3q.6) folgt auch direkt, wenn ein exp-ansatz für x(t),

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 37 Wir haben schon im ersten Semester gewöhnliche Differentialgleichungen samt einiger Lösungsverfahren besprochen. Dort ging

Mehr

Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h.

Definition: Variablentransformation d. Form (2) heisst kanonisch, wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h. Zusammenfassung: kanonische Transformationen Definition: Variablentransformation d. Form (2) heisst "kanonisch", wenn sie d. Form der kanonischen Bewegungsgleichungen erhält, d.h., wenn ein existiert,

Mehr

MATHEMATISCHE METHODEN DER PHYSIK 1

MATHEMATISCHE METHODEN DER PHYSIK 1 MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit

Mehr

Vorlesung Mathematik 2 für Ingenieure (A)

Vorlesung Mathematik 2 für Ingenieure (A) 1 Vorlesung Mathematik 2 für Ingenieure (A) Sommersemester 2017 Kapitel 8: Gewöhnliche Differenzialgleichungen Prof. Dr. Gerald Warnecke Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke

Mehr

Lernziel: verallgemeinerbare Interpretation des Begriffs 'Ableitung einer Funktion' am Punkt

Lernziel: verallgemeinerbare Interpretation des Begriffs 'Ableitung einer Funktion' am Punkt C: Calculus C1: Differenzieren (Ableiten) 1-dimensionaler Funktionen Lernziel: verallgemeinerbare Interpretation des Begriffs 'Ableitung einer Funktion' C1.1 Def. der Ableitung sei glatte Funktion. 'Ableitung

Mehr

Gewöhnliche Differentialgleichungen Woche 7. Nicht-lineare und linearisierte Systeme

Gewöhnliche Differentialgleichungen Woche 7. Nicht-lineare und linearisierte Systeme Gewöhnliche Differentialgleichungen Woche 7 Nicht-lineare und linearisierte Systeme d 71 Gleichgewichtspunkte Wir werden uns mit Anfangswertproblemen der folgenden Form beschäftigen: { y (t f (t, y(t,

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr

8.1 Begriffsbestimmung

8.1 Begriffsbestimmung 8 Gewöhnliche Differentialgleichungen 8 Gewöhnliche Differentialgleichungen 8.1 Begriffsbestimmung Wir betrachten nur Differentialgleichungen für Funktionen einer (reellen) Variablen. Definition: Für eine

Mehr

Rand der Fläche = Linie. suggestive Notation. "Zirkulation pro gerichteter Fläche" Vorschau: Eine komplexe Funktion sei nur von der Kombination

Rand der Fläche = Linie. suggestive Notation. Zirkulation pro gerichteter Fläche Vorschau: Eine komplexe Funktion sei nur von der Kombination Zusammenfassung: Satz von Stokes Satz v. Stokes: Flussintegral der Rotation = Linienintegral Fläche Rand der Fläche = Linie Symbolisch: suggestive Notation Geometrische Definition der Rotation: "Zirkulation

Mehr

Skript zur Vorlesung Analysis 3

Skript zur Vorlesung Analysis 3 Skript zur Vorlesung Analysis 3 Herbstsemester 204 Prof. Benjamin Schlein Inhaltsverzeichnis Gewöhnliche Differentialgleichungen 2. Differentialgleichungen erster Ordnung, elementare Lösungsmethoden..

Mehr

Differenzialgleichungen

Differenzialgleichungen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 2. Februar 2015 : Luftdruck Definition e: Populationsdynamik Satz von Picard und Lindelöf Folgerungen/Bemerkungen...von DGLn höherer Ordnung

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen

Mehr

Vorschau: Eine komplexe Funktion sei nur von der Kombination. und "komplex differenzierbar" ( existiert) in. Dann gelten (u.a.):

Vorschau: Eine komplexe Funktion sei nur von der Kombination. und komplex differenzierbar ( existiert) in. Dann gelten (u.a.): C8: Komplexe Analysis (KA) Saff & Snyder, Fundamentals of Complex Analysis", Prentice Hall, 1976. Motivation: Differenzieren und Integrieren in der komplexen Ebene Vorschau: Eine komplexe Funktion sei

Mehr

Höhere Mathematik III

Höhere Mathematik III Universität Stuttgart Fachbereich Mathematik Prof. Dr. J. Pöschel Dr. D. Zimmermann Dipl.-Math. K. Sanei Kashani Blatt 5 Höhere Mathematik III el, kb, mecha, phs Vortragsübungen (Musterlösungen) 7..4 Aufgabe

Mehr

und "komplex differenzierbar" ( existiert) in. Dann gelten (u.a.):

und komplex differenzierbar ( existiert) in. Dann gelten (u.a.): C8: Komplexe Analysis (KA) Saff & Snyder, Fundamentals of Complex Analysis", Prentice Hall, 1976. Motivation: Differenzieren und Integrieren in der komplexen Ebene Vorschau: Eine komplexe Funktion abhängig,

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Differenzialgleichungen erster Ordnung

Differenzialgleichungen erster Ordnung Differenzialgleichungen erster Ordnung Fakultät Grundlagen Mai 2011 Fakultät Grundlagen Differenzialgleichungen erster Ordnung Übersicht Grundsätzliches 1 Grundsätzliches Geometrische Deutung Numerik 2

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

T1: Theoretische Mechanik, SoSe 2016

T1: Theoretische Mechanik, SoSe 2016 T1: Theoretische Mechanik, SoSe 2016 Jan von Delft http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik Newtonsche Sätze (Originalformulierung) 1. Jeder Körper verharrt in seinem

Mehr

Übungen zu Differentialgleichungen (WiSe 12/13)

Übungen zu Differentialgleichungen (WiSe 12/13) Übungen zu Differentialgleichungen WiSe 2/) Blatt 6 22 November 202 Gruppenübung Aufgabe G Sei f t, p) := p 5, t, p) R 2 Gegeben sei das Anfangswertproblem ẋ = f t,x), x0) = ) Bestimmen sie das maximale

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)

Mehr

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik!

Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Anwendung: Gedämpfter, getriebener harmonischer Oszillator Unendlich viele Anwendungen in der Physik, auch außerhalb der Mechanik! Bewegungsgleichung: Dämpfungsrate: Einheit: Kreisfrequenz des Oszillators:

Mehr

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 2. Vorlesung. Pawel Romanczuk WS 2017/18

Theoretical Biophysics - Quantum Theory and Molecular Dynamics. 2. Vorlesung. Pawel Romanczuk WS 2017/18 Theoretical Biophysics - Quantum Theory and Molecular Dynamics 2. Vorlesung Pawel Romanczuk WS 2017/18 1 Eine kurze Exkursion in die Wahrscheinlichkeitstheorie 2 Diskrete Variable Wahrscheinlichkeit Wert

Mehr

Hamiltonsche Mechanik (Kanonische Mechanik)

Hamiltonsche Mechanik (Kanonische Mechanik) Hamiltonsche Mechanik (Kanonische Mechanik) Hamilton-Funktion und Hamiltonsche Bewegungsgleichungen Motivation: Die Hamiltonsche Formulierung der klassischen Mechanik - erweiterert Klasse der zulässigen

Mehr

1. Übungsblatt Aufgaben mit Lösungen

1. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Sei I R ein Intervall. Geben Sie Beispiele für Differentialgleichungen für Funktionen y = y in I mit den folgenden Eigenschaften an: Beispiel separabel, nicht

Mehr

V: Vektor-Kalkulus. Euklidischer Raum (ER) = Ursprung + Euklidischer Vektorraum (Raum unserer Wahrnehmung) Punkt im ER:

V: Vektor-Kalkulus. Euklidischer Raum (ER) = Ursprung + Euklidischer Vektorraum (Raum unserer Wahrnehmung) Punkt im ER: V: Vektor-Kalkulus Euklidischer Raum (ER) = Ursprung + Euklidischer Vektorraum (Raum unserer Wahrnehmung) Punkt im ER: Differenzen v. Punkten sind Vektoren: V1 Kurven V1.1 Definition einer Kurve Intervall:

Mehr

Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa

Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa 103 Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Was bedeutet das für die Ableitungen? Was ist eine

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Differentialgleichungen sind überall!

Differentialgleichungen sind überall! Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-regensburg.de/mathematik/mathematik-abels/aktuelles/index.html Schnupperstudium

Mehr

Exakte Differentialgleichungen

Exakte Differentialgleichungen Exakte Differentialgleichungen M. Vock Universität Heidelberg Seminar Mathematische Modellierung am 11.11.2008 Gliederung Differentialgleichungen eine erste Begegnung Definition Gewöhnliche DGL Die exakte

Mehr

3 Gewöhnliche Differentialgleichungen 23.4.

3 Gewöhnliche Differentialgleichungen 23.4. 3 Gewöhnliche Differentialgleichungen 23.4. 3.1 Differentialgleichungen erster Ordnung 3.1.1 Fundamentalsätze Definition 3.1. Es sei Ω R d eine offene Menge und V : Ω R d eine Vektorfunktion. Eine Kurve

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

5.4 Uneigentliche Integrale

5.4 Uneigentliche Integrale 89 Wir dividieren die Potenzreihe von sin(t) gliedweise durch t und erhalten sint t = t (t t3 3! + t5 5! + ) = t2 3! + t4 5! +. Diese Reihe ist konvergent für alle t R. Nun integrieren wir gliedweise.

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( )

Übungen Theoretische Physik I (Mechanik) Blatt 5 ( ) TU München Prof. P. Vogl Beispiel 1: Übungen Theoretische Physik I (Mechanik) Blatt 5 (26.08.11) Nach Gompertz (1825) wird die Ausbreitung von Rostfraß auf einem Werkstück aus Stahl durch eine lineare

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Höhere Mathematik III für die Fachrichtung Physik

Höhere Mathematik III für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Ioannis Anapolitanos Dipl.-Math. Sebastian Schwarz WS 5/6 6..5 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt

Mehr

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.

- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2. - 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel

Mehr

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren?

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? V4 Vektorfelder Vektorfelder haben oft Struktur: quellfrei, wirbelfrei Quellfeld Wirbelfeld Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? Zunächst brauchen wir

Mehr

Interpretation: f(x) wird zerlegt als Summe von unendlich vielen Funktionen

Interpretation: f(x) wird zerlegt als Summe von unendlich vielen Funktionen C6.3 Fourier-Transformation Entspricht Fourier-Reihe für 'Fourier-Integral' Für endliches L: (C6.1b.3) Für stellt eine kontinuierliche Funktion dar: und Fourier-Summe wird ein Integral: 'Fourier-Transformation'

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Differenzialrechnung. Mathematik-Repetitorium

Differenzialrechnung. Mathematik-Repetitorium Differenzialrechnung 5.1 Die Ableitung 5.2 Differentiation elementarer Funktionen 5.3 Differentiationsregeln 5.4 Höhere Ableitungen 5.5 Partielle Differentiation 5.6 Anwendungen Differenzialrechnung 1

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Gewöhnliche Differentialgleichungen: Einleitung

Gewöhnliche Differentialgleichungen: Einleitung Gewöhnliche Differentialgleichungen: Einleitung Die Sprache des Universums ist die Sprache der Differentialgleichungen. 1-E1 Faszinierender Anwendungsreichtum cc 1-E2 Wie verstanden die Alten das Naturgesetz?

Mehr

V2 Felder (Funktionen mehrerer unabhängigen Variablen)

V2 Felder (Funktionen mehrerer unabhängigen Variablen) V2 Felder (Funktionen mehrerer unabhängigen Variablen) Orts- und zeitabhängige physikalische Größen werden durch "Felder" beschrieben. Beispiel: Maxwell-Gleichungen der Elektrodynamik: Vektor-Analysis:

Mehr

Zusammenfassung : Fourier-Reihen

Zusammenfassung : Fourier-Reihen Zusammenfassung : Fourier-Reihen Theorem : Jede (nicht-pathologische) periodische Funktion läßt sich schreiben als "Fourier-Reihe" der Form: Vorzeichen ist Konvention, in Mathe : + Fourier-Transformation

Mehr

Zusammenfassung: Hamilton-Jacobi-Theorie

Zusammenfassung: Hamilton-Jacobi-Theorie Zusammenfassung: Hamilton-Jacobi-Theorie Anwendbar für: Ziel: finde kanonische Transformation, so dass folgende Größen automatisch erhalten sind: Formale Forderung: Bewegungsgleichungen für neue Variablen:

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik Prof. Dr. Th. Feldmann 21. Januar 2014 Kurzzusammenfassung Vorlesung 23 vom 21.1.2014 Satz von Liouville Der Fluß eines Hamilton schen Systems im Phasenraum

Mehr

Beispiel: Rollender Reifen mit

Beispiel: Rollender Reifen mit Beispiel: Rollender Reifen mit Kinetische Energie: Trägheitsmoment Potenzielle Energie: Zwangsbedingung: konstant nicht-gleitendes Rollen, holonome ZB Erweiterte Lagrange-Fkt.: t-abhängig: Interpretation:

Mehr

Gewöhnliche Differentialgleichungen Woche 1

Gewöhnliche Differentialgleichungen Woche 1 Gewöhnliche Differentialgleichungen Woche Einführung. Modelle Eine gewöhnliche Differentialgleichung gibt eine Relation zwischen einer unbekannten Funktion und deren Ableitung(en). Nun kann man unendlich

Mehr

2. Quasilineare PDG erster Ordnung

2. Quasilineare PDG erster Ordnung H.J. Oberle Differentialgleichungen II SoSe 2013 2. Quasilineare PDG erster Ordnung Eine skalare PDG erster Ordnung hat die allgemeine Form F (x, u(x), u x (x)) = 0. (2.1) Dabei ist u : R n G R die gesuchte

Mehr

Implizite Funktionen

Implizite Funktionen Implizite Funktionen Durch die Bedingung F (x, y) = C, C R wird eine bestimmte Teilmenge des R 2 festgelegt, zb durch die Bedingung x y = 4 Dabei können wir obda C = 0 annehmen, da wir stets zur Betrachtung

Mehr

Eichtransformationen. i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf.

Eichtransformationen. i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf. Eichtransformationen i) Satz: HP impliziert Kovarianz der Lagrange-Gl. 2. Art unter Koord.-Transf. Beweis: Wirkung S ist unabhängig von Parametrisierung für gegebene physikalische Bahnkurve; folglich haben

Mehr

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 1 Prof Dr Alexander Shnirman Blatt 7 Dr Boris Narozhny, Dr Holger Schmi 25521 1 Die

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

falls falls Tiefpassfilter lässt tiefe Frequenzen durch und dämpft hohe Frequenzen.

falls falls Tiefpassfilter lässt tiefe Frequenzen durch und dämpft hohe Frequenzen. Anwendung v. Faltungstheorem: Tiefpassfilter Wähle so, dass Dann: Somit: Tiefpassfilter lässt tiefe Frequenzen durch und dämpft hohe Frequenzen. Zusammenfassung habe Periode, mit stückweise stetig und

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Eine einfache Differentialgleichung löst man bereits beim Integrieren in der Oberstufe. Sie hat die Form y (x) = f(x) und y wird gesucht. Beispiel: y (x) = 6x² - 4x + 1 fl y(x)

Mehr

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 1

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 1 Prof. Roland Gunesch Sommersemester 00 Übungen zur Vorlesung Einführung in Dnamische Ssteme Musterlösungen zu Aufgabenblatt Aufgabe : Sei A 0 4. a Bestimmen Sie für jeden Anfangswert 0 R das Verhalten

Mehr

Gewöhnliche Differentialgleichungen Woche 10. Spezielles für zweite Ordnung

Gewöhnliche Differentialgleichungen Woche 10. Spezielles für zweite Ordnung d Gewöhnliche Differentialgleichungen Woche 0 Spezielles für zweite Ordnung 0. Phasenebene Wenn wir die autonome Differentialgleichung zweiter Ordnung u (t = f (u(t, u (t (0. studieren wollen, ist ein

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Exakte Differentialgleichungen

Exakte Differentialgleichungen Kapitel 4 Exakte Differentialgleichungen 4.1 Kurvenscharen Sei D R 2 ein offenes und zusammenhängendes Gebiet. Dann kann man zu jeder D einfach überdeckenden Kurvenschar eine Differentialgleichung erster

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Monotonie, Konkavität und Extrema

Monotonie, Konkavität und Extrema Kapitel 8 Monotonie, Konkavität und Extrema Josef Leydold Auffrischungskurs Mathematik WS 2017/18 8 Monotonie, Konkavität und Extrema 1 / 55 Monotonie Eine Funktion f heißt monoton steigend, falls x 1

Mehr

Dass die Rotation eines konservativen Kraftfeldes null ist, folgt direkt aus der Identität C 1 C 2 C 2 C 1

Dass die Rotation eines konservativen Kraftfeldes null ist, folgt direkt aus der Identität C 1 C 2 C 2 C 1 I.1 Grundbegriffe der newtonschen Mechanik 11 I.1.3 c Konservative Kräfte Definition: Ein zeitunabhängiges Kraftfeld F ( r) wird konservativ genannt, wenn es ein Skalarfeld (3) V ( r) gibt, das F ( r)

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 2 15. April 2010 Kapitel 6. Integralrechnung Einseitig unbeschränkter Definitionsberech Beidseitig unbeschränkter Definitionsberech Unbeschränkte

Mehr

1.3.2 Partielle und totale Ableitung

1.3.2 Partielle und totale Ableitung 0 1.3. Partielle und totale Ableitung Ziel: Verallgemeinerung der Differential- und Integralrechnung auf mehrere Dimensionen Eine Verallgemeinerung von einfachen (eindimensionalen, 1D skalaren Funktion

Mehr

Hamiltonsche Mechanik (Kanonische Mechanik)

Hamiltonsche Mechanik (Kanonische Mechanik) Hamiltonsche Mechanik (Kanonische Mechanik) Hamilton-Funktion und Hamiltonsche Bewegungsgleichungen Motivation: Die Hamiltonsche Formulierung der klassischen Mechanik - erweiterert Klasse der zulässigen

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr