Differenzialgleichungen
|
|
|
- Hilko Gerhardt
- vor 7 Jahren
- Abrufe
Transkript
1 Mathematik I für Biologen, Geowissenschaftler und Geoökologen 30. Januar 2008
2 (System von) Differenzialgleichung(en) Schwingungsgleichung Newtonsche Mechanik Populationsdynamik...DGLn höherer Ordnung auf Systeme 1. Ordung...auf autonome Gleichungen Satz von Picard und Lindelöf Folgerungen Michaelis-Menten-Kinetik
3 (System von) Differenzialgleichung(en) : Eine Differenzialgleichung (DGL) ist eine funktionale Beziehung zwischen einer Funktion x : R R d, t x(t), und ihren ersten k Ableitungen, d.h. d k ( x dt k (t) = f x(t), dx dt (t),..., dk 1 x dt k ) (t), t. ( ) Dabei heißt k die Ordnung der DGL, d die Dimension bzw. die Anzahl der Freiheitsgrade. ( ) heißt auch auch System von d gekoppelten Gleichungen (wenn man statt des Vektors x(t) R d die Komponenten x 1 (t),..., x d (t) R als abhängige Variablen auffaßt). Falls f nicht von t abhängt, so heißt die DGL autonom.
4 Schwingungsgleichung Newtonsche Mechanik Populationsdynamik Die Harmonische Schwingungsgleichung ( harmonischer Oszillator ) ẍ = ω 2 x ist autonom, in einem Freiheitsgrad und von zweiter Ordnung mit f(x, y, t) = ω 2 x und d = 1 und k = 2. Gilt u.a. für elastische Materialien, die nur in einer Richtung schwingen können (z.b. Federpendel) und für Fadenpendel bei kleiner Auslenkung. Allgemeine Lösung: x(t) = c sin(ωt + ϕ), mit c 0 und ϕ [0, 2π) beliebig (vgl. ÜA 58).
5 Schwingungsgleichung Newtonsche Mechanik Populationsdynamik Newtonsche Mechanik: Welt besteht aus n Teilchen besteht (vielleicht n = ), die sich im R 3 bewegen entlang von Bahnen r i (t) mit m i d 2 r i dt 2 und den Parametern = ( γµ i µ j q ) iq j rj r i 4πε 0 r j r i 3 j i µ i = schwere Masse, m i = träge Masse (empirisch µ i = m i ), γ = Newtonsche Gravitationskonstante, q i = elektrische Ladung, ε 0 = Dielektrizität des Vakuums. Merkregel: Kraft = Masse mal Beschleunigung. DGL: autonom, k = 2 und d = 3n.
6 Schwingungsgleichung Newtonsche Mechanik Populationsdynamik Population habe konstante Wachstumsrate mit g = Geburtenrate, s = (natürliche) Sterberate. w = g s Einfachstes Modell für Populationsgröße N(t) ist Ṅ = wn. autonome DGL erster Ordnung (k = 1) in einem Freiheitsgrad (d = 1) Allgemeinen Lösung (exponentielles Wachstum): N(t) = N 0 e wt.
7 Schwingungsgleichung Newtonsche Mechanik Populationsdynamik Entnimmt der Mensch (durch Ernten, Jagen, Fischen) die Menge E(t) dt im Zeitintervall [t, t + dt], so lautet die DGL Ṅ = wn E. Diese Gleichung ist nicht autonom, f(n, t) = wn E(t). Typische Fragestellungen: Funktion t E(t) explizit bekannt, z.b. E(t) = c sin(ωt): Bestimme Lösung N(t) (analytisch oder numerisch). Oft stellt man aber auch die Frage, wie man E wählen sollte, um ein bestimmtes Verhalten von N zu erhalten (z.b. keine dramatische Schrumpfung).
8 ...DGLn höherer Ordnung auf Systeme 1. Ordung...auf autonome Gleichungen Jede DGL ist äquivalent zu einer DGL erster Ordnung, indem man für die Ableitungen von x neue Variablen einführt. : Aus dem harmonischen Oszillator (k = 2, d = 1) machen wir ẋ = v, v = ω 2 x. DGL (System) erster Ordnung in 2 Freiheitsgraden (k = 1, d = 2) kd ändert sich nicht.
9 ...DGLn höherer Ordnung auf Systeme 1. Ordung...auf autonome Gleichungen Allgemein wird aus DGL der Ordnung k in d Freiheitsgraden eine DGL erster Ordnung in kd Freiheitsgraden: ẋ = y 1, ẏ 1 = y 2,..., ẏ k 1 = f(x, y 1,..., y k 1, t), wobei y i (t) R d. Der Raum R kd mit den Achsen x, y 1,..., y k 1 heißt Phasenraum. : (i) Harmonischen Oszillator Phasenraum: 2-dimensional Achsen: x und v (Ort und Geschwindigkeit) Allgemeine Lösung: Ellipsen x(t) = c sin(ωt + ϕ), v(t) = ωc cos(ωt + ϕ), (ii) Newtonsche Mechanik: Phasenraum 6n-dimensional.
10 ...DGLn höherer Ordnung auf Systeme 1. Ordung...auf autonome Gleichungen Reduktion auf autonome Gleichungen. Jede DGL (erster Ordnung) ist äquivalent zu einer autonomen DGL, indem man eine weitere Variable x d+1 (die Zeit) einführt und die zusätzliche Gleichung ẋ d+1 = 1, d.h. aus ẋ 1 = f 1 (x 1,..., x d, t). ẋ d = f d (x 1,..., x d, t) wird ẋ 1 = f 1 (x 1,..., x d, x d+1 ). ẋ d = f d (x 1,..., x d, x d+1 ) ẋ d+1 = 1.
11 Satz von Picard und Lindelöf Folgerungen Satz von Picard und Lindelöf (1890): Sei D R d und f ein Vektorfeld auf D, f : D R d. Wir betrachten die autonome DGL erster Ordnung als Anfangswertproblem dx dt = f(x), x(t 0) = x 0. ( ) Unter technischen Bedingungen an D und f (D eine offene Menge, f ist dehnungs-beschränkt (Lipschitz-Bedingung)) gilt: Für jedes x 0 D existiert genau eine Lösungsfunktion t x(t) von ( ). Sie ist definiert auf einem Intervall (T Anfang, T Ende ), das t 0 enthält, wobei T Anfang = und/oder T Ende = sein kann, aber nicht sein muss.
12 Folgerungen: Satz von Picard und Lindelöf Folgerungen Zwei Lösungskurven können sich nie schneiden (im Phasenraum), denn ġ = f(g) und ḣ = f(h) und g(t 0 ) = h(t 0 ) g(t) = h(t) für alle t. Bei einer DGL der Ordnung k in d Freiheitsgraden kann man kd Anfangswerte wählen (z.b. 6n in der Newtonschen Mechanik). Eine Lösung kann nach endlicher Zeit aufhören zu existieren, indem x(t) den Rand des sbereiches D erreicht. : x reell und positiv: D = [0, ). Sinkt x(t) auf Null, so kann es nicht mehr weiter sinken. sie in endlicher Zeit ins Unendliche wächst (Singularität).
13 Michaelis-Menten-Kinetik Michaelis-Menten-Kinetik (1913): Reaktion unter Einfluss eines Enzyms, S + E k 1 SE, SE k 2 P + E. k 1 S Substrat E Enzym SE Komplex P Produkt k 1, k 1 und k 2 Ratenkonstanten (Parameter); legen Reaktionsraten (Reaktionsgeschwindigkeiten) fest. Massenwirkungsgesetz: Reaktionsrate ist proportional ist zum Produkt der Konzentrationen der Reaktanten, s = [S], e = [E], c = [SE], p = [P ].
14 Michaelis-Menten-Kinetik Massenwirkungsgesetz liefert DGL-System: ds dt = k 1es + k 1 c, de dt = k 1es + (k 1 + k 2 )c dc dt = k 1es (k 1 + k 2 )c, Anfangsbedingungen: dp dt = k 2c. s(0) = s 0, e(0) = e 0, c(0) = 0, p(0) = 0. Die Lösung dieses Anfangswertproblems liefert uns die Konzentrationen als Funktion der Zeit.
15 Michaelis-Menten-Kinetik Vereinfachungen: Die letzte Gleichung ist entkoppelt (p taucht nur dort auf) t p(t) = k 2 c(u) du 0 p ist allein durch c bestimmt Enzym E ist Katalysator: Gesamtkonzentration (frei plus kombiniert) ist konstant, de dt + dc dt = 0 e(t) + c(t) = e 0. Erhaltungssatz (vgl. z.b. Energie-Erhaltungssatz in der Physik). Folgt aus DGL-System, indem man die zweite und die dritte Gleichung addiert.
16 Michaelis-Menten-Kinetik Wir erhalten somit das vereinfachte DGL-System ds dt = k 1e 0 s + (k 1 s + k 1 )c, dc dt = k 1e 0 s (k 1 s + k 1 + k 2 )c mit Anfangsbedingungen s(0) = s 0, c(0) = 0. Nicht analytisch lösbar, aber qualitatives Verhalten ablesbar: Bei t = 0 fällt s, während c steigt, von 0 beginnend solange c noch klein ist, muss s weiter fallen und c weiter steigen c steigt so lange bis dc dt = 0, d.h. c = k 1 e 0 s k 1 s+k 1 +k 2 ; an dieser Stelle gilt ds dt = k 2c, also fällt s immer noch.
Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.
Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:
C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:
C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel
Flüsse, Fixpunkte, Stabilität
1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher
Beispiel: Evolution infizierter Individuen
Differentialgleichungen sind sehr nützlich in der Modellierung biologischer Prozesse, denn: damit kann man auch sehr komplizierte Systeme beschreiben die Mathematik liefert mit der gut entwickelten Theorie
Biostatistik, Winter 2018/19
1/37 Biostatistik, Winter 2018/19 Differentialgleichungen 2. Ordnung Prof. Dr. Achim Klenke http://www.aklenke.de 5. Vorlesung: 16.11.2018 2/37 Inhalt 1 Differentialgleichungen 1. Ordnung Michaelis-Menten
Gewöhnliche Dierentialgleichungen
Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat
4. Hamiltonformalismus
4. Hamiltonormalismus Für die praktische Lösung von Problemen bietet der Hamiltonormalismus meist keinen Vorteil gegenüber dem Lagrangeormalismus. Allerdings bietet der Hamiltonormalismus einen direkten
Die Differentialgleichung :
Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen
Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016
Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der
6 Der Harmonische Oszillator
6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse
Probestudium der Physik 2011/12
Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.
Seminar Gewöhnliche Differentialgleichungen
Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden
System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:
C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art
5 Gewöhnliche Differentialgleichungen
5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und
3. Ebene Systeme und DGL zweiter Ordnung
H.J. Oberle Differentialgleichungen I WiSe 2012/13 3. Ebene Systeme und DGL zweiter Ordnung A. Ebene autonome DGL-Systeme. Ein explizites DGL-System erster Ordung, y (t) = f(t, y(t)), heißt bekanntlich
Dierentialgleichungen 2. Ordnung
Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:
5. Vorlesung Wintersemester
5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode
Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.
Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x
Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13
Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten
Deterministisches Chaos
Deterministisches Chaos Um 1900 Henri Poincaré: Bewegung von zwei Planeten um die Sonne kann zu sehr komplizierten Bahnen führen. (chaotische Bahnen) Seit ca. 1970 Entwicklung der Chaostheorie basierend
Skript zur Vorlesung Analysis 3
Skript zur Vorlesung Analysis 3 Herbstsemester 204 Prof. Benjamin Schlein Inhaltsverzeichnis Gewöhnliche Differentialgleichungen 2. Differentialgleichungen erster Ordnung, elementare Lösungsmethoden..
11.4. Lineare Differentialgleichungen höherer Ordnung
4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in
Serie 13: Online Test
D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.
Theoretische Mechanik
Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 008 Theoretische Mechanik 4. Übung Lösungen 4. Spezielle Kraftgesetze Lösen Sie die
Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden.
Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am 20.6.2015 um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Prof. Dr. Wolfgang Arendt Manuel Bernhard Sommersemester 2015 Achten
12 Gewöhnliche Differentialgleichungen
2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert
Zusätzliche Aufgabe 5:
D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas Zusätzliche Aufgabe 5: Populationsmodelle Um die Entwicklung einer Population zu modellieren, gibt es diskrete Modelle, wobei die Zeit t bei diskreten
5 Der quantenmechanische Hilbertraum
5 Der quantenmechanische Hilbertraum 5.1 Die Wellenfunktion eines Teilchens Der Bewegungs- Zustand eines Teilchens Elektrons zu einem Zeitpunkt t, in der klassischen Mechanik das Wertepaar r,p von Ort
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das
Differentialgleichungen sind überall!
Differentialgleichungen sind überall! Helmut Abels Fakultät für Mathematik Universität Regensburg Folien und Co.: http://www.uni-r.de/fakultaeten/nat Fak I/abels/Aktuelles.html Tag der Mathematik am Albrecht-Altdorfer-Gymnasium
9 Lineare Di erentialgleichungen
9. Definition. Lineare Systeme Sei I R ein o enes Intervall und A : I! M(n, R) eine stetige Abbildung mit Werten in den reellen n n-matrizen. (a) Man nennt dann die Di erentialgleichung = A(t) ein nicht-autonomes,
Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2012): Differential und Integralrechnung 8 8.1 (Herbst 2002, Thema 1, Aufgabe 6) y = 3y +2x x 8.2 (Frühjahr 2005, Thema 1, Aufgabe 6) (x > 0) y(1)
X.4 Elektromagnetische Wellen im Vakuum
X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen
7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen
Prof. Dr. Walter Arnold Lehrstuhl für Materialsimulation Universität des Saarlandes 5. Januar 2016 7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Abgabe des Übungsblattes
Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 2
Prof. Roland Gunesch Sommersemester 00 Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt Aufgabe : a Zeigen Sie: Für alle Anfangsdaten u 0, t 0 R R hat das Anfangswertproblem
1 Debye-Abschirmung. 1.1 Grundlagen. Φ = q r exp ( r/λ D), λ D =
1 Debye-Abschirmung Bringt man eine zusätzliche estladung in ein Plasma ein, so wird deren elektrisches Feld durch die Ladungen des Plasmas mit entgegengesetztem Vorzeichen abgeschirmt. Die charakteristische
2.9 Gedämpfter Harmonischer Oszillator
72 KAPITEL 2. DYNAMIK EINES MASSENPUNKTES 2.9 Gedämpfter Harmonischer Oszillator In diesem Abschnitt wollen wir die Bewegung eines Massenpunktes betrachten, der sich in einer Raumrichtung x in einer Harmonischen
Theoretische Physik 2 (Theoretische Mechanik)
Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)
Name: Gruppe: Matrikel-Nummer:
Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:
Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen
Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt
D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1
D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler Übungsblatt 5 1. Gegeben sei die Matrix 1 1 0 A := 0 1 0 0 0 2 a) Bestimmen Sie ein Fundamentalsystem (das heisst eine Basis des Lösungsraums)
Gewöhnliche Differentialgleichungen Aufgaben, Teil 1
Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe
32.8 Die lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten
3 Die lineare Differentialgleichung. Ordnung mit konstanten Koeffizienten 3.1 Lösungsbegriff für explizite Differentialgleichungen n-ter Ordnung 3. Das Anfangswertproblem für explizite Differentialgleichungen
Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya
Fundamentale Lösungen von linearen homogenen Differentialgleichungen 1-E Eigenschaften einer linearen DGL 2. Ordnung Eine homogene lineare Differenzialgleichung 2. Ordnung mit konstanten Koeffizienten
Übungen zu Differentialgleichungen (WiSe 12/13)
Übungen zu Differentialgleichungen WiSe 2/) Blatt 6 22 November 202 Gruppenübung Aufgabe G Sei f t, p) := p 5, t, p) R 2 Gegeben sei das Anfangswertproblem ẋ = f t,x), x0) = ) Bestimmen sie das maximale
Serie 4: Gradient und Linearisierung
D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die
12 Gewöhnliche Differentialgleichungen
12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit
Lösung - Schnellübung 13
D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene
Inhalt der Vorlesung A1
PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung
Differentialgleichungen
Differentialgleichungen Eine einfache Differentialgleichung löst man bereits beim Integrieren in der Oberstufe. Sie hat die Form y (x) = f(x) und y wird gesucht. Beispiel: y (x) = 6x² - 4x + 1 fl y(x)
Partielle Differentialgleichungen
Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler
Floquet-Theorie IV. 1 Hills Gleichung
Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 08.11.2011 Tobias Roidl Dieser Vortrag befasst sich mit der Hills Gleichung und gibt eine Einführung in die Periodischen Orbits von linearen Systemen.
Universität Ulm Abgabe: Donnerstag,
Universität Ulm Abgabe: Donnerstag,.5.03 Prof. Dr. W. Arendt Stephan Fackler Sommersemester 03 Punktzahl: 0 Lösungen Elemente der Differenzialgleichungen: Blatt 4. Gradientenfelder. Welche der folgenden
Differentialgleichungen
Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der
Differentialgleichungen
Kapitel 14 Differentialgleichungen Josef Leydold Mathematik für VW WS 2017/18 14 Differentialgleichungen 1 / 41 Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen:
Lösung der harmonischen Oszillator-Gleichung
Lösung der harmonischen Oszillator-Gleichung Lucas Kunz 8. Dezember 016 Inhaltsverzeichnis 1 Physikalische Herleitung 1.1 Gravitation................................... 1. Reibung.....................................
TEIL I: KINEMATIK. 1 Eindimensionale Bewegung. 1.1 Bewegungsfunktion und s-t-diagramm
TEIL I: KINEMATIK Unter Kinematik versteht man die pure Beschreibung der Bewegung eines Körpers (oder eines Systems aus mehreren Körpern), ohne nach den Ursachen dieser Bewegung zu fragen. Letzteres wird
T0: Rechenmethoden WiSe 2011/12. Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen
T0: Rechenmethoden WiSe 20/2 Prof. Jan von Delft http://homepages.physik.uni-muenchen.de/~vondelft/lehre/2t0/ Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen Aufgabe. (**)
Probestudium der Physik 2011/12
Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion
Analysis und Lineare Algebra mit MuPAD
Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1
Beispiele zu Teil 3: Differentialgleichungen
Beispiele zu Teil 3: Differentialgleichungen 1. Geben Sie die Ordnung der nachstehenden DGL an und geben Sie an ob die DGL in ihrer impliziten oder in ihrer expliziten Form vorliegt. x 2 tx 2 0 xx t 0
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
Gewöhnliche Differentialgleichungen Woche 6. Existenz nach Picard-Lindelöf
d Gewöhnliche Differentialgleichungen Woche 6 Existenz nach Picard-Lindelöf 6.1 Vorbereitung für den Existenzsatz 6.1.1 Stetigkeit und Lipschitz-Stetigkeit Definition 6.1 Seien (V 1, 1 und (V 2, 2 zwei
Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme
Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General
Hamilton-Systeme. J. Struckmeier
Invarianten für zeitabhängige Hamilton-Systeme J. Struckmeier Vortrag im Rahmen des Winterseminars des Instituts für Angewandte Physik der Johann-Wolfgang-Goethe-Universität Frankfurt a.m. Hirschegg, 04.
Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =
Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...
Skalare Differenzialgleichungen
3 Skalare Differenzialgleichungen Differenzialgleichungen stellen eine Beziehung her zwischen einer oder mehreren Funktionen und ihren Ableitungen. Da Ableitungen Veränderungen beschreiben, modellieren
D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2
D-MAVT/D-MATL Analysis II FS 07 Dr. Andreas Steiger Lösung - Serie 6. Es ist das folgende autonome System ẋ = x + x + 3 ẋ = x + x von linearen Differenzialgleichungen. Ordung gegeben. Welche der folgenden
MATHEMATISCHE METHODEN DER PHYSIK 1
MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen
Blatt 11.1: Fourier-Integrale, Differentialgleichungen
Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt.:
1 Einführung, Terminologie und Einteilung
Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen
Vektoranalysis [MA2004]
Technische Universität München WS 4/5 Zentrum Mathematik Blatt 5 Prof. Dr. Simone Warzel Michael Fauser Vektoranalysis [MA4] Tutoraufgaben Besprechung am 3..5 und 4..5 T 5. Elektrostatik Es seien N elektrische
Differentialgleichungen
Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig
Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung ( y
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
5. Zustandsgleichung des starren Körpers
5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch
Gewöhnliche Differentialgleichungen Woche 1
Gewöhnliche Differentialgleichungen Woche Einführung. Modelle Eine gewöhnliche Differentialgleichung gibt eine Relation zwischen einer unbekannten Funktion und deren Ableitung(en). Nun kann man unendlich
Differentialgleichungen 2. Ordnung
Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei
Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (
Lineare Differenzen- und Differenzialgleichungen
Lineare Differenzen- und Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Lineare Differenzen- und Differenzialgleichungen Übersicht 1 Beispiele Anwendung auf Fragen der dynamischen
5. Fourier-Transformation
Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf
Blatt 1. Kinematik- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die
Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner
Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt, Punkte Dr. P. P. Orth Abgabe und Besprechung 24..24. Nicht so schnell
Analysis II. 8. Klausur mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge
