FK Experimentalphysik 3, Lösung 3
|
|
|
- Wilhelm Jörg Giese
- vor 9 Jahren
- Abrufe
Transkript
1 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl N = 1000, Strichabstand d = 0, 01 mm). Hinter dem Gitter befindet sich in 1 m Entfernung ein unendlich großer Schirm. a) Bestimmen Sie die Breite x, die der Spalt höchstens haben darf, damit das Interferenzmuster des Gitters für Wellenlängen im Bereich von λ = 500 nm nicht beeinträchtigt wird. Lösung Damit das Interferenzmuster durch die Beugung am Spalt nicht beeinträchtigt wird, muss das Gitter vollständig im Hauptmaximum des Beugungsmusters liegen. Die Breite des Maximums lässt sich durch den Abstand der Minima 1. Ordnung berechnen (Kleinwinkelnäherung) λ = x sin θ tan θ = Nd l x = λl Nd = m (1) b) Wie viele Interferenzmaxima sind auf dem Schirm zu sehen. Lösung Es sind alle Maxima auf dem Schirm zu sehen, deren Ablenkung unter α < 90 liegt. Das ergibt für die Anzahl der Maxima: mλ < d sin(90 ) = d m < d λ = 0 () Daher sind 19 Maxima auf beiden Seiten plus das nullte gibt 9 Maxima auf dem Schirm. c) Wie weit liegen die Maxima. Ordnung für die Wellenlängen λ 1 = 400 nm und λ = 410 nm auseinander? Lösung Für die Maxima. Ordnung gilt m = für den Abstand g vom Maximum 0. Ordnung gilt g = a sin(α) (3) 1
2 Dreifachspalt Setzt man für die Bedingung für Maximum. Ordnung ein erhält man für den Abstand: Dreifachspalt g = a d (λ λ 1 ) = mm (4) Abbildung 1: Dreifachspalt Gegeben ist ein Dreifachspalt 1. Alle Spaltbreiten seien gleich. Die Spaltabstände seien d bzw. 3=d. a) Bei welchem Winkel θ tritt das erste Hauptmaximum auf? Lösung Die elektrische Feldstärke am Schirm ist die Summe der Feldstärken der einzelnen Spalten: E()θ) = E 1 + E + E 3 = A + Ae iδ + Ae i 5 δ (5) mit dem Phasenunterschied δ = πd λ sin θ. Die Intensität ist proportional zum Betragsquadrat der Feldstärke. ( I(θ) A [3 + cos θ + cos ( ) 3δ + cos ( ))] 5δ (6) Für θ = 0 erhalten wir I(0) 9A (7)
3 3 Ölschicht auf Wasser Das erste Hauptmaximum tritt bei δ = 4π auf. Der Zugehörige Winkel ist: sin θ = λ d (8) b) Das Ergebnis aus a) sei θ 1. Die Intensität in Richtung des Maximums nullter Ordnung sei I 0. Wie groß ist die Intensität in Richtung θ 1? Lösung I( θ 1 ) A [3 + (cos π + cos 3π + cos 5π)] = A I 0 9 (9) 3 Ölschicht auf Wasser Das an einer auf Wasser (n = 1, 3) schwimmenden dünnen Ölschicht (n = 1, 6) reflektierte Sonnenlicht erscheint bei schräger Beleuchtung unter dem Winkel α = 45 grün (λ = 500 nm). a) Wie dick ist die Schicht Lösung Die Phasendifferenz zwischen an den beiden Grenzschichten Luft-Öl und Öl-Wasser reflektierten Teilwellen wegen des Phasensprunges Für konstruktive Interferenz muss φ = πm sein Mit s = d n sin α, folgt mit λ 0 = 500 nm (grün) φ = π λ 0 s π (10) s = m + 1 λ 0 (11) d = 3λ 4 n sin α = 61 nm (1) b) Welche Wellenlänge würde bei senkrechter (α = 0) Beobachtung bevorzugt reflektiert? Lösung Für senkrechten Einfall (α = 0) ergibt sich folgender Zusammenhang für 3
4 4 Bragg-Reflexion an kubischem Kristall die bevorzugte Wellenlänge λ 0 = 4 dn = 557 nm (13) 3 4 Bragg-Reflexion an kubischem Kristall Abbildung : Schematische Darstellung An einem kubischen Kristall (Dichte ρ = 8, 5 g cm 3, Atomgewicht A = 63, 5u)(1u = 1, kg) soll mit Hilfe der Bragg-Reflexion die Wellenlänge von Röntgenlicht gemessen werden. Die Reflexion soll in der x-z-ebene erfolgen. Der Röntgenstrahl fällt mit einem Einfallswinkel von δ = 45 zur x-y-ebene auf den Kristall. a) Berechnen Sie die Gitterkonstante a. Lösung Die Gitterkonstante ist der Abstand zwischen Atomen des Gitters. Im kubischen Kristall nimmt jedes Atom das gleiche kubische Volumen ein. Daher gilt: a = 3 A ρ =, m (14) b) Welche Wellenlänge haben Röntgenstrahlen, die um 90 abgelenkt wurden? Lösung Eine Ablenkung von 90 entspricht dem Bragg-Winkel von 45. Es gilt die Bragg-Bedingung für m = 1 λ = a sin(δ) = 3, m (15) 4
5 5 Michelson-Interferometer 5 Michelson-Interferometer Abbildung 3: Schematische Darstellung a) Die Quelle S emittiere zunächst monochromatische Strahlung der Wellenlänge λ. Im Punkt B beobachtet man das Auftreten von 10 Interferenzmaxima, wenn der Spiegel M1 um die Strecke d =, 5µm in Strahlrichtung verschoben wird. Bestimmen sie die Wellenlänge λ. Lösung Die zusätzliche Weglänge, die der Strahl nach der Verschiebung durchlaufen hat, ist: s = d = 10λ (16) Damit ergibt sich eine Wellenlänge von 450 nm. b) Zwischen Strahlteiler T und Spiegel M1 wird nun eine evakuierte Zelle der länge L = 10 cm gestellt. Während des Auffüllens der Zelle mit CO- Gas bis zum Atmosphärendruck wird das Auftreten von 00 Interferenzmaxima beobachtet. Bestimmen Sie den Brechungsindex n von CO bei Atmosphärendruck. Wie lang muss dazu die Köheränzzeit des Lasers sein? Lösung Nun wird der Spiegel nicht mehr verschoben. Anfangs ist eine evakuierte Zelle im Strahlweg, die einen optischen Weg von Ln vac = L darstellt. Füllt man die Zelle mit CO, so ändert sich der Brechungsindex in der Zelle und somit der optische Weg. Nach Aufgabenstellung werden 00 Maxima durchlaufen, 5
6 5 Michelson-Interferometer weswegen der zusätzliche Wegunterschied wie folgt ist: s = L(nCO 1) = 00λ (17) Daraus folgt n CO = 1, Die Kohärenzzeit lässt sich aus der Kohärenzlänge berechnen, diese muss mindestens dem Gangunterschied entsprechen. t c = L c c = s ges c = 10λ + 00λ c = 3, s (18) c) Mit dem Michelson-Interferometer können zwei eng benachbarte Wellenlängen aufgelöst werden. In Abhängigkeit von der Verschiebung d des Spiegels M1 beobachtet man maximale Intensität, wenn die einzelnen Interferenzbilder für die Strahlung der beiden Wellenlängen zusammenfallen. Die Quelle S emittiere nun zwei Strahlungen der Wellenlangen λ und λ mit λ λ = 450 nm. Die Strecke, die der Spiegel M1 zwischen zwei benachbarten maximaler Intensität verschoben werden muss, ist d = 90µm. Bestimmen Sie λ = λ λ. Lösung Verschieben wir nun wieder den Spiegel. Anfangs schieben wir den Spiegel so in Position, dass wir eine konstruktive Interferenz erreichen (sowohl λ als auch λ interferieren konstruktiv). Nun verschieben wir den Spiegel um d und erhalten erst wieder ein Maximum, wenn sowohl die Wellenlänge λ, als auch λ wieder ein Maximum am Schirm haben. Mit λ > λ gilt: s = d = Nλ = (N + 1)λ N = d λ = 400 λ = λ λ = d N d N + 1 = 1, 1nm (19) d) Wieviele Spalte muss ein Gitterspektrograph mindestens besitzen, wenn dieselben Wellenlängen λ und λ in erster Ordnung aufgelöst werden sollen. Lösung Die Auflösung eines Gitters mit M Strichen ist gegeben durch: Für die 1. Ordnung folgt M = 401. λ = km (0) λ 6
7 6 Photoeffekt 6 Photoeffekt Blaues Licht der Wellenlänge λ = 430 nm falle auf eine Photozelle, deren lichtelektrische Schicht eine Quantenausbeute von η = N e N ph = 0, 14 vorweist. a) Wie groß ist die Strahlungsleistung des auf die Photozelle fallenden blauen Lichts, wenn ein maximaler Photoelektronenstrom von 0.5 ma fließt? Lösung Maximaler Photostrom bedeutet, dass alle freigeschlagenen Elektronen die Kathode erreichen. Wir benutzen: I = Q t E = hν N e = ηn ph N e = Q e Es gilt: P = E t = N ph E ph t = N ee η t = hνi ηe = hci ηeλ 1 10 W (1) b) Welche Austrittsarbeit W A hat das Material der lichtelektrischen Schicht, wenn durch ein Gegenfeld der Spannung U = 0.94 V der Strom vollständig unterdrückt werden kann? Lösung Hier können selbst die energiereichen Elektronen die Kathode nicht erreichen E = eu = hν W A () Umstellen ergibt W A = hc λ Ue 1, 94 ev (3) c) Berechnen sie die Geschwindigkeit der Photoelektronen wenn keine Gegenspannung angelegt ist. Lösung Da die Ruheenergie deutlich höher ist las die Ruheenergie von Elektronen können wir klassisch rechnen. E = hc λ w A = 1 mv (4) auflösen nach der Geschwindigkeit liefert v = ( hc λ ) W A m 5, m s (5) 7
8 6 Photoeffekt d) Ab welcher Wellenlänge tritt kein Strom auf, wenn sie annehmen, dass die lichtelektrische Schicht aus Cäsium besteht, dessen Austrittsarbeit W A =, 14 ev beträgt? Lösung Hier muss die Photonenenergie kleiner als die Austrittsarbeit sein E ph = hc λ < W A (6) daraus folgt λ > hc W A 579 nm (7) 8
Lösungen zu Interferenz und Beugung
Lösungen zu Interferenz und Beugung ˆ Aufgabe : Interferenzmaxima a) Für die Intensitätsmaxima bei der Beugung an einem Gitter gilt: d sin Θ = mλ. Da es sich um kleine Winkel handelt, kann die Kleinwinkelnäherung
Lösungen der Übungsaufgaben zum Experimentalphysik III Ferienkurs
1 Lösungen der Übungsaufgaben zum Experimentalphysik III Ferienkurs Max v. Vopelius, Matthias Brasse 25.02.2009 Aufgabe 1: Dreifachspalt Abbildung 1: Spalt Gegeben ist ein Dreifachspalt 1. Alle Spaltbreiten
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Donnerstag, 08.03.2012 1 Schwarzer Körper Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer
Übungsaufgaben zu Interferenz
Übungsaufgaben zu Interferenz ˆ Aufgabe 1: Interferenzmaxima Natrium der Wellenlänge λ = 589 nm falle senkrecht auf ein quadratisches Beugungsgitter mit der Seitenlänge cm mit 4000 Linien pro Zentimeter.
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung Probeklausur Aufgabe 1: Lichtleiter Ein Lichtleiter mit dem Brechungsindex n G = 1, 3 sei hufeisenförmig gebogen
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 3 Beugung und Interferenz Aufgabe 1: Seifenblasen a) Erklären Sie, warum Seifenblasen in bunten Farben schillern.
Übungsaufgaben zum Experimentalphysik III Ferienkurs
1 Übungsaufgaben zum Experimentalphysik III Ferienkurs Max v. Vopelius, Matthias Brasse 6.0.009 Aufgabe 1: Gegeben sei ein Michelson-Interferometer. a) Die Quelle S emittiere zunächst monochromatische
Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch 16/03/16
Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch 16/03/16 Inhaltsverzeichnis Technische Universität München 1 Kohärenz 1 2 Beugung 1 2.1 Huygenssches Prinzip.............................
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode
Ferienkurs Experimentalphysik III
Ferienkurs Experimentalphysik III 24. Juli 2009 Vorlesung Mittwoch - Interferenz und Beugung Monika Beil, Michael Schreier 1 Inhaltsverzeichnis 1 Phasendierenz und Kohärenz 3 2 Interferenz an dünnen Schichten
1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter
1 Beugungsmuster am Gitter Ein Gitter mit 1000 Spalten, dessen Spaltabstand d = 4, 5µm und Spaltbreite b = 3µm ist, werde von einer kohärenten Lichtquelle mit der Wellenlänge λ = 635nm bestrahlt. Bestimmen
Wellen und Dipolstrahlung
Wellen und Dipolstrahlung Florian Hrubesch 25. März 2010 1 Bragg Reflexion 1.1 Natriumkristall a) In kristallinem Natrium sitzen die Atome auf den Eck- und Mittelpunkten eines (flachenzentriert kubisches
Übungen zur Physik des Lichts
) Monochromatisches Licht (λ = 500 nm) wird an einem optischen Gitter (000 Striche pro cm) gebeugt. a) Berechnen Sie die Beugungswinkel der Intensitätsmaxima bis zur 5. Ordnung. b) Jeder einzelne Gitterstrich
Überlagerung monochromatischer Wellen/Interferenz
Überlagerung monochromatischer Wellen/Interferenz Zwei ebene monochromatische Wellen mit gleicher Frequenz, gleicher Polarisation, überlagern sich mit einem sehr kleinen Relativwinkel ε auf einem Schirm
Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min
Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische
Lösung: a) b = 3, 08 m c) nein
Phy GK13 Physik, BGL Aufgabe 1, Gitter 1 Senkrecht auf ein optisches Strichgitter mit 100 äquidistanten Spalten je 1 cm Gitterbreite fällt grünes monochromatisches Licht der Wellenlänge λ = 544 nm. Unter
Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min
Thema: Wellen und Quanten Interferenzphänomene werden an unterschiedlichen Strukturen untersucht. In Aufgabe 1 wird zuerst der Spurabstand einer CD bestimmt. Thema der Aufgabe 2 ist eine Strukturuntersuchung
3.9 Interferometer. 1 Theoretische Grundlagen
FCHHOCHSCHULE HNNOVER Physikalisches Praktikum 3.9. 3.9 Interferometer 1 Theoretische Grundlagen Licht ist eine elektromagnetische Strahlung mit sehr geringer Wellenlänge (auf den Welle - Teilchen - Dualismus
Interferenz und Beugung - Optische Instrumente
Interferenz und Beugung - Optische Instrumente Martina Stadlmeier 25.03.2010 1 Inhaltsverzeichnis 1 Kohärenz 3 2 Interferenz 3 2.1 Interferenz an einer planparallelen Platte...............................
Besprechung am
PN2 Einführung in die Physik für Chemiker 2 Prof. J. Lipfert SS 2016 Übungsblatt 10 Übungsblatt 10 Besprechung am 27.6.2016 Aufgabe 1 Interferenz an dünnen Schichten. Weißes Licht fällt unter einem Winkel
08 Aufgaben zur Wellenoptik
Profilkurs Physik ÜA 08 Aufgaben zur Wellenoptik 2017 Seite 1 A Überlagerung zweier Kreiswellen Aufgabe A 1 08 Aufgaben zur Wellenoptik Zwei Lautsprecher schwingen mit f = 15 khz und befinden sich im Abstand
2. Wellenoptik Interferenz
. Wellenoptik.1. Interferenz Überlagerung (Superposition) von Lichtwellen i mit gleicher Frequenz, E r, t Ei r, i gleicher Wellenlänge, gleicher Polarisation und gleicher Ausbreitungsrichtung aber unterschiedlicher
1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen
Klausur Klasse 2 Licht als Wellen (Teil ) 26..205 (90 min) Name:... Hilfsmittel: alles verboten. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen Lichtstrahls durch eine Glasplatte, bei dem Reflexion
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 10. Übungsblatt - 10. Januar 2011 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (6 Punkte) a)
Physik 4, Übung 2, Prof. Förster
Physik 4, Übung, Prof. Förster Christoph Hansen Emailkontakt 4. April 03 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit.
Verwandte Begriffe Huygens-Prinzip, Interferenz, Fraunhofer- und Fresnel-Beugung, Kohärenz, Laser.
Verwandte Begriffe Huygens-Prinzip, Interferenz, Fraunhofer- und Fresnel-Beugung, Kohärenz, Laser. Prinzip Ein Einfachspalt, Mehrfachspalte mit gleicher Breite und gleichem Abstand zueinander sowie Gitter
Auswertung: Laser A. Axel Müller & Marcel Köpke Gruppe:
Auswertung: Laser A Axel Müller & Marcel Köpke Gruppe: 30 10.05.2012 Inhaltsverzeichnis 1 Brewsterwinkel 3 1.1 Brewsterfenster im Laser............................ 3 1.2 Bestimmung des Brechungsindexes......................
Interferenz von Licht. Die Beugung von Lichtwellen an einem Doppelspalt erzeugt ein typisches Interferenzbild.
Interferenz von Licht Die Beugung von Lichtwellen an einem Doppelspalt erzeugt ein typisches Interferenzbild. Verbesserung der Sichtbarkeit? (1) kleinerer Spaltabstand b s~ 1 b (2) mehrere interferierende
Praktikum GI Gitterspektren
Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Beugung und Interferenz Qi Li, Bernhard Loitsch, Hannes Schmeiduch Mittwoch, 07.03.01 Inhaltsverzeichnis 1 Kohärenz Beugung.1 Beugung am Einzelspalt........................
Interferenz und Beugung
Interferenz und Beugung In diesem Kapitel werden die Eigenschaften von elektromagnetischen Wellen behandelt, die aus der Wellennatur des Lichtes resultieren. Bei der Überlagerung zweier Wellen ergeben
Beugung, Idealer Doppelspalt
Aufgaben 10 Beugung Beugung, Idealer Doppelspalt Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt
Physikklausur Nr.4 Stufe
Physikklausur Nr.4 Stufe 12 08.05.2009 Aufgabe 1 6/3/5/4 Punkte Licht einer Kaliumlampe mit den Spektrallinien 588nm und 766nm wird auf einen Doppelspalt des Spaltmittenabstands 0,1mm gerichtet. a.) Geben
= 6,63 10 J s 8. (die Plancksche Konstante):
35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese
1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen
Klausur Klasse 2 Licht als Wellen (Teil ) 2.2.204 (90 min) Name:... Hilfsmittel: alles veroten. Die Aildung zeigt den Strahlenverlauf eines einfarigen Lichtstrahls durch eine Glasplatte, ei dem Reflexion
Lk Physik in 13/1 1. Klausur Nachholklausur Blatt 1 (von 2)
Blatt 1 (von 2) 1. Elektronenausbeute beim Photoeekt Eine als punktförmig aufzufassende Spektrallampe L strahlt eine Gesamt-Lichtleistung von P ges = 40 W der Wellenlänge λ = 490 nm aus. Im Abstand r =
1.1 Auflösungsvermögen von Spektralapparaten
Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.1 Auflösungsvermögen von Spektralapparaten Sitchwörter: Geometrische Optik, Wellenoptik, Auflösungsvermögen, Rayleigh Kriterium, Spektrograph,
Abiturprüfung Physik, Grundkurs
Seite 1 von 7 Abiturprüfung 2011 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Der Doppelspalt 1.1 Interferenzen bei Licht In einem ersten Experiment untersucht man Interferenzen von sichtbarem Licht,
AUSWERTUNG: LASER A FREYA GNAM, TOBIAS FREY
AUSWERTUNG: LASER A FREYA GNAM, TOBIAS FREY 1. BREWSTERWINKEL UND BRECHUNGSINDEX Da ein Laser linear polarisiertes Licht erzeugt, lässt sich der Brewsterwinkel bestimmen, indem man den Winkel sucht, bei
Lösungen zur Experimentalphysik III
Lösungen zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. L. Oberauer Blatt 11 19.01.09 Aufgabe 1: a) Die Bedingung für ein Maximum erster Ordnung am Gitter ist: sinα = λ b mit b = 10 3 570
Versuch 4.1b: Interferenzrefraktor von Jamin
PHYSIKALISCHES PRAKTIKUM FÜR FORTGESCHRITTENE Technische Universität Darmstadt Abteilung A: Institut für Angewandte Physik Versuch 4.1b: Interferenzrefraktor von Jamin Vorbereitung: Interferenzen gleicher
Lösungen zu den Aufg. S. 363/4
Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f
Physik, grundlegendes Anforderungsniveau
Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische
Examensaufgaben - WELLENOPTIK
Examensaufgaben - WELLENOPTIK Aufgabe 1 Der Abstand g der beiden Spalten eines Doppelspaltes ist unbekannt. Mit Hilfe dieses Doppelspaltes soll die Wellenlänge des Lichtes bestimmt werden, welches ein
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 9. Übungsblatt - 20.Dezember 2010 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (5 Punkte) Mit
Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes
PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 2: Beugung am Gitter Beugung am Gitter Theoretische Grundlagen Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes beeinträchtigen.
Aufgabe 1: Kristallstrukturuntersuchungen
Aufgabe 1: Kristallstrukturuntersuchungen Röntgenstrahlung entsteht in unserem Gerät durch das Auftreffen hochenergetischer Elektronen auf eine Molybdän-Anode (Abbildung 1). Im Spektrum der Strahlung (Abbildung
Versuch P2-16,17,18: Laser A. Auswertung. Von Jan Oertlin und Ingo Medebach. 7. Juni 2010
Versuch P2-16,17,18: Laser A Auswertung Von Jan Oertlin und Ingo Medebach 7. Juni 2010 Inhaltsverzeichnis 1 Brewsterwinkel 2 1.1 Aufbau des Experimentier-Gaslasers............................ 2 1.2 Bestimmung
Prüfung aus Physik IV (PHB4) 26. Januar 2010
Fachhochschule München FK06 Wintersemester 2009/10 Prüfer: Prof. Dr. Maier Zweitprüfer: Prof. Dr. Herberg Prüfung aus Physik IV (PHB4) 26. Januar 2010 Zulassungsvoraussetzungen:./. Zugelassene Hilfsmittel:
Physikalisches Praktikum II. Fabry-Perot-Resonator (FPR)
Physikalisches Praktikum II Fabry-Perot-Resonator (FPR) Stichworte: Superposition von Wellen, Interferenz, Vielstrahlinterferenz, optische Weglänge, optische Wegdifferenz OPD, Gangunterschied, Kohärenz,
8. GV: Interferenz und Beugung
Protokoll zum Physik Praktikum I: WS 2005/06 8. GV: Interferenz und Beugung Protokollanten Jörg Mönnich - Anton Friesen - Betreuer Maik Stuke Versuchstag Dienstag, 31.01.2006 Interferenz und Beugung 1
Physik ea Klausur Nr Oktober 2013
Name: BE: / 77 = % Note: P. 1. Aufgabe: Röntgenstrahlung a. Skizziere den Aufbau einer Vorrichtung zur Herstellung eines gebündelten Röntgenstrahls, beschrifte ihre Bauteile und erläutere die Prozesse,
Ferienkurs Experimentalphysik III - Optik
Ferienkurs Experimentalphysik III - Optik Max v. Vopelius, Matthias Brasse 26.02.09 Inhaltsverzeichnis 1 Interferenz 1 1.1 Interferenz durch Mehrfachreflexion.......................... 1 1.1.1 Interferenz
Vorbereitung. Laser A. Eigentliches Versuchsdatum:
Vorbereitung Laser A Stefan Schierle Carsten Röttele Eigentliches Versuchsdatum: 03. 07. 2012 Inhaltsverzeichnis 1 Brewsterwinkel 2 1.1 Brewster-Fenster............................. 3 1.2 Brechungsindex
Aufgaben zur Wellenoptik
Aufgaben zur Wellenoptik C Mehrfachspalte Aufgabe C 1: Zeigeraddition bei Doppelspalt Die Abbildung zeigt einen Doppelspalt, an dessen Spalten zwei gleichphasig schwingende Wellen starten. Die zu den Schwingungen
Physikalisches Praktikum 4. Semester
Torsten Leddig 04.Mai 2005 Mathias Arbeiter Betreuer: Dr. Enenkel Physikalisches Praktikum 4. Semester - Beugung an Spalten - 1 Ziel: Kennen lernen von Beugungsphänomenen. Aufgaben: 1. Bestimmen Sie die
1.4 Elektromagnetische Wellen an Grenzflächen
1.4 Elektromagnetische Wellen an Grenzflächen A Stetigkeitsbedingungen Zwei homogen isotrope optische Medien, die D εe, B µh und j σe mit skalaren Konstanten ε, µ, σ erfüllen, mögen sich an einer Grenzfläche
Protokoll in Physik. Datum:
Protokoll in Physik Datum: 04.11.2010 Protokollantin: Alrun-M. Seuwen Fachlehrer: Herr Heidinger Inhalt: h) Die Bragg-Reflexion 1) Die Wellenlänge des Röntgenlichts 2) Das Bragg-Kristall 3) Inteferenz
Klausur zu Grundlagen IIIa SH 2004
Klausur zu Grundlagen IIIa SH 2004 Prof. Dr. Martin Pietralla Prof. Dr. Othmar Marti 26. 7. 2004 Name Vorname Matrikelnummer Kennwort (bitte leserlich schreiben) Aufgabe Punktzahl 1 2 3 4 5 6 7 8 9 10
Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten
Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten 5. März 2014 I Lernziele Huygen sches Prinzip und optische Interferenz Photoelektronik als Messmethode II Physikalische Grundlagen Grundlage
7. Klausur am
Name: Punkte: Note: Ø: Profilkurs Physik Abzüge für Darstellung: Rundung: 7. Klausur am 8.. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h = 6,66 0-34
Versuchsvorbereitung P2-13: Interferenz
Versuchsvorbereitung P2-13: Interferenz Michael Walz, Kathrin Ender Gruppe 10 26. Mai 2008 Inhaltsverzeichnis 1 Newton'sche Ringe 2 1.1 Bestimmung des Krümmungsradius R...................... 2 1.2 Brechungsindex
Gitter. Schriftliche VORbereitung:
D06a In diesem Versuch untersuchen Sie die physikalischen Eigenschaften eines optischen s. Zu diesen za hlen insbesondere die konstante und das Auflo sungsvermo gen. Schriftliche VORbereitung: Wie entsteht
Versuch P2-18: Laser und Wellenoptik Teil A
Versuch P2-18: Laser und Wellenoptik Teil A Sommersemester 2005 Gruppe Mi-25: Bastian Feigl Oliver Burghard Inhalt Vorbereitung 1 Physikalische Grundlagen... 2 1.1 Funktionsweise eines Lasers... 2 2 Versuchsbeschreibungen...
Wo sind die Grenzen der geometrischen Optik??
In der Strahlen- oder geometrischen Optik wird die Lichtausbreitung in guter Näherung durch Lichtstrahlen beschrieben. Wo sind die Grenzen der geometrischen Optik?? Lichtbündel Lichtstrahl Lichtstrahl=
UNIVERSITÄT BIELEFELD. Optik. GV Interferenz und Beugung. Durchgeführt am
UNIVERSITÄT BIELEFELD Optik GV Interferenz und Beugung Durchgeführt am 10.05.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer Inhaltsverzeichnis 1 Ziel
Protokoll zum Versuch: Interferenz und Beugung
Protokoll zum Versuch: Interferenz und Beugung Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 30.11.2006 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 2.1
Physik-Praktikum: BUB
Physik-Praktikum: BUB Einleitung Während man Lichtbrechung noch mit einer Modellvorstellung von Licht als Teilchen oder als Strahl mit materialabhängiger Ausbreitungsgeschwindigkeit erklären kann, ist
konstruktive Interferenz: Phasendifferenz (der Einzelwellen) ist 0 oder ein ganzzahliges vielfaches von 2π.
Theorie Licht zeigt sich in vielen Experimenten als elektromagnetische Welle. Die Vektoren von elektrischer und magnetischer Feldstärke stehen senkrecht aufeinander und auf der Ausbreitungsrichtung. Die
Gruppe: Arbnor, Clemens, Dustin & Henrik
PHYSIK Musterlösung [Wellen] Gruppe: Arbnor, Clemens, Dustin & Henrik 02.03.2015 INHALTSVERZEICHNIS 1. Abituraufgabe: Gitter... 2 Aufgabe 1.1... 2 Aufgabe 1.2... 3 Aufgabe 2.1... 4 Aufgabe 2.2... 6 Aufgabe
Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung!
Profilkurs Physik ÜA 08 Test D F Ks. 2011 1 Test D Gitter a) Vor eine Natriumdampflampe (Wellenlänge 590 nm) wird ein optisches Gitter gehalten. Erkläre kurz, warum man auf einem 3,5 m vom Gitter entfernten
4 V. c) 7 Messgrößen sind E (bzw. U und d), B und r. ebr m= v
Physik Aufgabe Ph Aufgabe BE Hinweise a) 6 Siehe Lehrbuch, Geschwindigkeitsfilter Die Magnetfeldrichtung ist senkrecht in die Zeichenebene hinein orientiert; die Polung der Platten ist oben positiv und
Übungen zu Physik 1 für Maschinenwesen
Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung
Abiturprüfung Physik, Grundkurs
Seite 1 von 6 Abiturprüfung 2010 Physik, Grundkurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer Bedeutung.
Übungen zum Kompaktkurs der Experimentalphysik
Übungen zum Kompaktkurs der Experimentalphysik Übungsblatt 3: Elektrizitätslehre, Akustik und Optik 1. Aufgabe: Elektrisches Feld Ein Elektron mit Masse m e = 9, 1 10 31 kg und Ladung e = 1, 6 10 19 C
Grundlagen der Physik 3 Lösung zu Übungsblatt 2
Grundlagen der Physik 3 Lösung zu Übungsblatt 2 Daniel Weiss 17. Oktober 2010 Inhaltsverzeichnis Aufgabe 1 - Zustandsfunktion eines Van-der-Waals-Gases 1 a) Zustandsfunktion.................................
Wellen und Dipolstrahlung
Wellen und Dipolstrahlung Florian Hrubesch 25. März 2010 Inhaltsverzeichnis 1 Photoeffekt 1 2 Comptoneffekt 3 3 Bragg Streuung 4 4 Strahlungsgesetze 5 1 Photoeffekt Der Photoeffekt wurde erstmals 1839
Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt
5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen
Serie 170, Schwingungen und Wellen
Serie 170, Schwingungen und Wellen Brückenkurs Physik [email protected] www.adams-science.org Brückenkurs Physik Datum: 10. September 2018 1. Wellenlänge L5XMY5 (a) Berechnen Sie die Wellenlänge bei
Abiturprüfung Physik, Leistungskurs
Seite 1 von 8 Abiturprüfung 2010 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer
Praktikumsprotokoll Laser A
Praktikumsprotokoll Laser A André Schendel, Silas Kraus Gruppe DO-20 22. Mai 2012 1 Brewsterwinkel 1.1 Demonstration Wie erwartet war der Lichtpunkt an der Wand nur bei einem sehr schmalen Winkelbereich
UNIVERSITÄT BIELEFELD
UNIVERSITÄT BIELEFELD 6. Atom- und Molekülphysik 6.7 - Photoeffekt Durchgeführt am 29.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Sarah Dirk Marius Schirmer [email protected]
Abbildungsgleichung der Konvexlinse. B/G = b/g
Abbildungsgleichung der Konvexlinse Die Entfernung des Gegenstandes vom Linsenmittelpunkt auf der vorderen Seite der Linse heißt 'Gegenstandsweite' g, seine Größe 'Gegenstandsgröße' G; die Entfernung des
1. Aufgabe a) Beschreibe den Schülerversuchsaufbau zur Dispersion von Licht. Notiere insbesondere die Namen und Aufgaben der einzelnen Objekte.
1. Aufgabe a) Beschreibe den Schülerversuchsaufbau zur Dispersion von Licht. Notiere insbesondere die Namen und Aufgaben der einzelnen Objekte. Linie Wellenlänge /nm eigene Beobachtung Flint Kron Quarz
Wellenoptik/Laser. Praktikumsversuch Meßtechnik INHALT
Praktikumsversuch Meßtechnik Wellenoptik/Laser INHALT 1.0 Einführung 2.0 Versuchsaufbau/Beschreibung 3.0 Aufgaben 4.0 Zusammenfassung 5.0 Fehlerdiskussion 6.0 Quellennachweise 1.0 Einführung Die Beugung
Übungen zur Physik der Materie 1 Musterlösung Blatt 3 - Quantenmechanik
Übungen zur Physik der Materie 1 Musterlösung Blatt 3 - Quantenmechanik Sommersemester 2018 Vorlesung: Boris Bergues ausgegeben am 26.04.2018 Übung: Nils Haag ([email protected]) besprochen am 02.05.2018
In der Abbildung ist ein vereinfachtes Energieniveauschema eines Lasers dargestellt.
Klausur Physik III, 7.3.2016 Aufg. 1/5 Aufgabe 1) In der Abbildung ist ein vereinfachtes Energieniveauschema eines Lasers dargestellt. 1. Nennen Sie die wesentlichen Prozesse, die bei der Erzeugung von
Phasendifferenz, Dünnschichtinterferenz, Fabry-Perot-Interferometer
Aufgaben 9 Interferenz Phasendifferenz, Dünnschichtinterferenz, Fabry-Perot-Interferometer Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können.
Inhalte. E3-V Jan 19
Inhalte Beugung am 3D Gitter / Kristall Laue-Experiment Bragg-Streuung Kohärenz Youngscher Doppelspaltversuch Sterninterferometrie Arten von Interferometern Interferenz an Schichtsystemen Interferenz an
SMART. Sammlung mathematischer Aufgaben als Hypertext mit TEX. Optik (Physik)
SMART Sammlung mathematischer Aufgaben als Hypertext mit TEX Optik (Physik) herausgegeben vom Zentrum zur Förderung des mathematisch-naturwissenschaftlichen Unterrichts der Universität Bayreuth 1. Mai
Prüfung aus Physik III (PHB3) Freitag 18. Juli 2008
Fachhochschule München FK06 Sommersemester 2008 Prüfer: Prof. Dr. Maier Zweitprüfer: Prof. Dr. Herberg Prüfung aus Physik III (PHB3) Freitag 18. Juli 2008 Zugelassene Hilfsmittel: Formelsammlung (wird
Physikalisches Praktikum
Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.6: Beugung am Gitter Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1 Bestimmung des Gitters mit der kleinsten Gitterkonstanten
Ferienkurs Experimentalphysik III - Optik
Ferienkurs Experimentalphysik III - Optik Max v. Vopelius, Matthias Brasse 25.02.09 Inhaltsverzeichnis 1 Welleneigenschaften von Licht 1 2 Lichtbeugung 1 2.1 Beugung am Einfachspalt...............................
