3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

Größe: px
Ab Seite anzeigen:

Download "3.4 Gradient, Divergenz, Rotation in anderen Koordinaten"

Transkript

1 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div grad f) = f Laplaceoperator) 3.5e) v) = div rot v) = quellenfrei) 3.5f) f) = rot grad f) = wirbelfrei) 3.5g) f v = f v + f v v w) = w ) v w v) + v w) v ) w v) = rot rot v) = grad div v) v 3.5h) 3.5i) 3.5j) Zur Übung beweisen wir die erste Zeile: fg) = x fg), y fg), z fg)) = g x f + f x g, g y f + f y g, g z f + f z g) = g x f, g y f, g z f) + f x g, f y g, f z g) = g x f, y f, z f) + f x g, y g, z g) = g f + f g 3.4 Gradient, Divergenz, Rotation in anderen Koordinaten Die soeben kennengelernten Differentialoperatoren beschreiben die räumliche Variation von Skalar- und Vektorfeldern. Wie schon im Fall von zeitabhängigen Vektoren führt die Ortsabhängigkeit der Basisvektoren in krummlinigen Koordinatensystemen zu etwas komplizierteren Ausdrücken im Vergleich zu kartesischen Koordinaten. 52

2 Kapitel 3. Vektoranalysis: Differentialrechnung 3.4. Polarkoordinaten Am einfachsten lassen sich die Zusammenhänge wieder in Polarkoordinaten verstehen. Um den Nablaoperator in Polarkoordinaten zu bestimmen, betrachten wir die Änderung des Skalarfeldes f r) zwischen den zwei Punkten r = r, ) und r +d r = r +dr, +d), df = f f dr + d 3.5) r Der Gradient soll unabhängig von der Wahl der Koordinaten folgende Gleichung erfüllen: df = d r f 3.52) wobei der Vektor d r in Polarkoordinaten folgende Darstellung hat: d r = dr ê r + rd ê 3.53) Der Gradient von f ist ein Vektor, und deshalb ebenfalls mit Hilfe von ê r und ê darstellbar: f = αê r + βê 3.54) Mit diesem Ansatz erhalten wir df = d r f Der Vergleich mit Gleichung 3.5) ergibt = dr ê r + rd ê ) αê r + βê ) = αdr + βrd 3.55) α = f r, β = r f 3.56) 53

3 und damit für den Gradienten von f in Polarkoordinaten f f = ê r r + ê f r Der Nablaoperator ist also in Polarkoordinaten gegeben durch = ê r r + ê r 3.57) 3.58) Mit Hilfe des Nablaoperators können wir auch die Divergenz in Polarkoordinaten ableiten, müssen dabei aber die Abhängigkeit der Basisvektoren von r und beachten: ê r r = rcos ê x + sin ê y ) = ê r = r sin ê x + cos ê y )= 3.59) ê r = cos ê x + sin ê y ) = sin ê x + cos ê y = ê ê = sin ê x + cos ê y )= cos ê x sin ê y = ê r 3.6) Die Divergenz des Vektorfeldes v ist damit ) v = ê r r + ê v r ê r + v ê ) r [ = ê r r v rê r ) + ] r v ê ) + [ r ê v rê r ) + ] v ê ) [ ] v r = ê r + v + r ê ê r r êr + v r r [ v r ê r êr + v r ê r ê + v r ê = v r r êr ê r + v r êr ê + r = v r r + r v r + v r + v ê ê + v ê r v r ê ê r ] + r v r ê ê + v r ê ê Die Divergenz wird üblicherweise noch folgendermaßen umgeschrieben: v = r r rv r) + v r r v ê ê r 3.6) 3.62) 54

4 Kapitel 3. Vektoranalysis: Differentialrechnung Den Laplaceoperator erhalten wir, in dem wir in den Ausdruck für die Divergenz den speziellen Vektor f f v = f = ê r +ê 3.63) r r v r v einsetzen: f = f = r r r f r = r v r + f r r v Wir berechnen die Divergenz des radialen Vektorfeldes v = rê r : v = r In kartesischen Koordinaten gilt v = xê x + yê y, und f r + 2 f r f r ) r rr) + r = r r r2 = 2 v = x x + y y = 2 Die Divergenz ist also unabhängig vom Koordinatensystem. Hätten wir die Divergenz in Polarkoordinaten als v = r v r + v definiert, wäre das nicht der Fall Zylinderkoordinaten Die Herleitung der Differentialoperatoren kann auf demselben Weg wie für Polarkoordinaten erfolgen. Für die Ableitungen der Basisvektoren ergeben sich folgende Beiträge: Alle anderen Ableitungen sind Null. ê = ê, ê = ê 3.65) Der Gradient eines Skalarfeldes f in Zylinderkoordinaten ist gegeben durch f f = ê + ê f + ê f z z und für den Nablaoperator gilt entsprechend = ê + ê + ê z z 3.66) 3.67) 55

5 Die Divergenz eines Vektorfeldes ist gegeben durch v = v ) + v + v z z 3.68) Im Unterschied zu den Polarkoordinaten können wir in drei Dimensionen auch die Rotation definieren, welche in Zylinderkoordinaten durch v = ) vz ê v vz ê z v ) + v ) v ) z êz = ê ê ê z z 3.69) v v v z gegeben ist die Determinante muss nach der ersten Zeile entwickelt werden). Schließlich haben wir noch den Laplaceoperator in Zylinderkoordinaten: f = f ) + 2 f f z 2 3.7) Das Magnetfeld eines vom Strom I durchflossenen Leiters in der z Richtung ist gegeben durch B = µ ) I y x 2π x 2 + y 2 êx + x 2 + y 2 êy Um die Divergenz und die Rotation von B zu berechnen, transformieren wir zuerst in Zylinderkoordinaten B = µ [ I sin 2π 2 cos ê sin ê ) + cos ] 2 sin ê + cos ê ) = µ I 2π = µ I 2π ê sin cos + sin cos ) +ê sin 2 + cos 2 ) = = ê Das Feld hat die Komponenten B =, B = µ I/2π und B z =. Daraus erhalten wir B = µ I 2π = B = ê ê ê z z µi 2π = Das Ergebnis B = ist überraschend, weil es sich bei B offensichtlich um ein Feld mit einer Drehkomponente handelt. Wir werden sehen, dass das Resultat nur für > gilt, während der felderzeugende Strom bei = fließt. 56

6 Kapitel 3. Vektoranalysis: Differentialrechnung Kugelkoordinaten Der Gradient eines Skalarfeldes f ist gegeben durch f f = ê r r + ê f θ r θ + ê f r sin θ 3.7) Der Nablaoperator hat entsprechend die Form = ê r r + ê θ r θ + ê r sin θ 3.72) Die Divergenz ergibt sich als v = r 2 r r2 v r ) + r sin θ θ sin θv θ) + v r sin θ Die Rotation kann in der Form Entwicklung nach der ersten Zeile) v = r 2 sin θ ê r rê θ r sin θê r θ v r rv θ r sin θv 3.73) 3.74) geschrieben werden, und der Laplaceoperator ist gegeben als f = r 2 r 2 f ) + r r r 2 sin θ sin θ f ) + θ θ 2 f r 2 sin 2 θ ) Wir berechnen die Rotation des Feldes F = c r 3 r = c r 3 rê r = c r 2 êr In Kugelkoordinaten erhalten wir F = r 2 sin θ ê r rê θ r sin θê r θ c r 2 Das Feld hat in diesen Koordinaten nur eine Komponente F r. Da die Ableitungen von r nach θ und verschwinden ist die Rotation Null. 57

7 3.4.4 Orthogonale, krummlinige Koordinaten Die Faktoren in den Differentialoperatoren im Vergleich zu kartesischen Koordinaten haben mit der Änderung des Ortsvektors bei Variation einer Koordinate zu tun. Betrachten wir orthogonale Koordinaten ux, y, z), vx, y, z), wx, y, z), dann haben wir zunächst was mit den Koeffizienten r u = h u, d r = r r r du + dv + dw 3.76) u v w r v = h v, und ê α = r/α)/h α Kapitel 2) zu folgender Darstellung führt: r w = h w, 3.77) d r = h u duê u + h v dvê v + h w dwê w. 3.78) Während in kartesischen Koordinaten h x = h y = h z = gilt, ist das im Allgemeinen nicht der Fall. Entsprechend ergeben sich die Differntialoperatoren wie folgt: f = f ê α h α α α = f ê u h u u + f ê v h v v + f ê w h w w A ) = A α h β h u h v h w α α β α A h u ê u h v ê v h w ê w = h u h v h w u v w h u A u h v A v h w A w 3.79) 3.8) 3.8) Aus den entsprechenden Definitionen in Kapitel 2 folgt für Zylinderkoordinaten h =, h = r, h z =, und für Kugelkoordinaten h r =, h θ = r, h = r sin θ. 58

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Krummlinige Koordinaten

Krummlinige Koordinaten Krummlinige Koordinaten Einige Koordinatensysteme im R 3 haben wir bereits kennengelernt : x, x 2, x 3... kartesische Koordinaten r, φ, x 3... Zylinderkoordinaten r, φ, ϑ... Kugelkoordinaten Sind andere

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

2.3 Gekrümmte Oberflächen

2.3 Gekrümmte Oberflächen 2.3 Gekrümmte Oberflächen Jede Fläche im R 3 besitzt eine zweidimensionale Parameterdarstellung, so dass die Punkte der Fläche durch r(u, u 2 ) = x(u, u 2 )ê x + y(u, u 2 )ê y + z(u, u 2 )ê z beschrieben

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Kapitel 3. Koordinatensysteme

Kapitel 3. Koordinatensysteme Kapitel 3 Koordinatensysteme Bisher haben wir uns bei der Beschreibung von Vektoren auf das kartesische Koordinatensystem konzentriert. Für viele physikalische Anwendungen sind aber kartesische Koordinaten

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Mathematische Grundlagen Mit den folgenden mathematischen Grundlagen sollten

Mehr

Solutions I Publication:

Solutions I Publication: WS 215/16 Solutions I Publication: 28.1.15 1 Vektor I 4 2 Ein Objekt A befindet sich bei a = 5. Das zweite Objekt B befindet sich bei b = 4. 2 3 (a) Die Entfernung von Objekt A zum Ursprung ist die Länge

Mehr

2.3 Arbeit und Energie

2.3 Arbeit und Energie 38 KAPITEL. DYNAMIK EINES MASSENPUNKTES.3 Arbeit und Energie Wenn sich ein Massenpunkt in einem Kraftfeld bewegt so wird er entweder beschleunigt oder abgebremst. Man sagt auch an ihm wird vom Kraftfeld

Mehr

Helmuts Kochrezept Nummer 5:

Helmuts Kochrezept Nummer 5: Helmuts Kochrezept Nummer : Lokale Koordinatentransformation von Vektorfedern Version 2, 19.03.2018) Dieses Kochrezept erklärt Dir, wie du ein Vektorfeld von einem orthonormalen Koordinatensystem z.b.

Mehr

JoachimlRisius. Vektorrechnung. Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G

JoachimlRisius. Vektorrechnung. Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G JoachimlRisius Vektorrechnung Koordinaten, Vektoren, Matrizen, Tensoren und Grundlagen der Vektoranalysis. VOGEL-VERU^G Inhaltsverzeichnis 1. Darstellung von Punkten durch Koordinatensysteme 11 1.1. Die

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

Magnetostatik. Kapitel Problemstellung. 3.2 Langer gerader Draht

Magnetostatik. Kapitel Problemstellung. 3.2 Langer gerader Draht Kapitel 3 Magnetostatik 3.1 Problemstellung In der Magnetostatik betrachten wir das Magnetfeld ~ B = ~ r ~ A,dasvoneiner gegebenen zeitunabhängigen Stromverteilung ~j (~r ) produziert wird. Die Feldlinien

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18

D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18 D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

ein geeignetes Koordinatensystem zu verwenden.

ein geeignetes Koordinatensystem zu verwenden. 1.13 Koordinatensysteme (Anwendungen) Man ist immer bemüht, für die mathematische Beschreibung einer wissenschaftlichen Aufgabe ( Chemie, Biologie,Physik ) ein geeignetes Koordinatensystem zu verwenden.

Mehr

Teil 8. Vektoranalysis

Teil 8. Vektoranalysis Teil 8 Vektoranalysis 5 6 8. kalar- und Vektorfelder kalarfeld alternative chreibweisen: U = U(x, y, z) = U( r) R 3 P U(P ) R Visualisierung durch Niveaumengen oder Einschränkungen auf achsenparallele

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung WS 17/18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung WS 17/18: Woche vom Übungsaufgaben 8. Übung WS 17/18: Woche vom 27. 11. - 1. 12. 2017 Vektoranalysis: Differentialausdrücke in anderen Koordinaten 17.39, 17.43, 17.45 Skalare und Vektorfelder, grad, div, rot 19.1, 19.2 (a-d),

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Koordinatensysteme, klassische Differentialoperatoren Vorlesung: Analsis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Koordinatenssteme, klassische Differentialoperatoren Polarkoordinaten = cos() = sin() = 2 + 2 =(,) tan() = für 0. Winkel

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS 7/8 W. Stannat, A. Gündel-vom ofe..8 Februar Klausur Analysis II für Ingenieurwissenschaften Lösungsskizze Analysis II für Ingenieurwissenschaften

Mehr

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Mathematischer Einführungskurs für die Physik

Mathematischer Einführungskurs für die Physik Siegfried Großmann Mathematischer Einführungskurs für die Physik 9., überarbeitete und erweiterte Auflage Mit 123 Figuren, über 110 Beispielen und 233 Selbsttests mit Lösungen STUDIUM VIEWEG+ TEUBNER Inhalt

Mehr

Ableitungen von skalaren Feldern Der Gradient

Ableitungen von skalaren Feldern Der Gradient Ableitungen von skalaren Feldern Der Gradient In der letzten Vorlesung haben wir das zu einem konservativen Kraftfeld zugehörige Potential V ( r) = F ( s) d s + V ( r0 ) kennengelernt und als potentielle

Mehr

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler

1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Zusammenfassung Kapitel IV: Funktionen mehrerer Veränderlicher und vektorwertige Funktionen 1 Definition und Konstruktion vektorwertiger Funktionen und Funktionen mehrerer Variabler Definition vektorwertige

Mehr

Divergenz, Rotation und Laplace-Operator

Divergenz, Rotation und Laplace-Operator 6 Divergenz, Rotation und Laplace-Operator... Stokes besaß einen sehr wichtigen prägenden Einfluss auf die folgenden Generationen von Cambridge-Studenten, unter ihnen auch Maxwell. Zusammen mit Green,

Mehr

12 Übungen zu Gauß-Algorithmus

12 Übungen zu Gauß-Algorithmus Aufgaben zum Vorkurs B S. 2 Übungen zu Gauß-Algorithmus 2x x 2 = 7x +, 5x 2 = 7 Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: 2x x 2 = x +2x 2 = 2 2x x 2 = 7x +, 5x 2 =, 5 x 2x 2 = x +x 2 = 5 2x +x 2 = 4

Mehr

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya Zylinderkoordinaten E E E3 Berechnung in beliebigen krummlinigen Koordinaten Die Koordinaten sind durch die Beziehungen definiert: x x u, v, w, y y u, v, w, z z u, v, w Für sie sollen stetige partielle

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 8. 6. 29 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 8. 6. 29 Exkursion

Mehr

V5.1 Definition eines Koordinatensystems Ein Koordinatensystem ist eine "glatte" Abbildung von Vektoren auf Koordinaten

V5.1 Definition eines Koordinatensystems Ein Koordinatensystem ist eine glatte Abbildung von Vektoren auf Koordinaten V5 Krummlinige Koordinatensysteme Übersicht / Vorschau: Motivation: Symmetrien des Systems ausnutzen, um Beschreibung zu vereinfachen! Beispiel Stromdurchflossener Leiter: Stärke des Magnetfelds hängt

Mehr

2.4 Gradient Euklidischer Isomorphismus: Vektorfelder 1-Formen

2.4 Gradient Euklidischer Isomorphismus: Vektorfelder 1-Formen 2.4 Gradient Für eine differenzierbare Funktion f : X R kennen wir bereits das Differenzial df. Ist der Differenzvektorraum V des affinen Raums X mit der geometrischen Struktur eines Euklidischen Skalarprodukts

Mehr

Rechentricks zur Vektoranalysis

Rechentricks zur Vektoranalysis Rechentricks zur Vektoranalysis VU Elektrodynamik 7. April 2010 Zusammenfassung Das vorliegende Dokument stellt eine Zusammenfassung von hilfreichen Rechentricks zur VU Elektrodynamik dar. Es besteht weder

Mehr

Mathematische Formeln

Mathematische Formeln Mathematische Formeln Vektorfeld E(r ), skalares Feld f(r ) Kartesische Koordinaten x, y, Ortsvektor r =(x, y, ) =xe x + ye y + e = re r Linienelement: ds = dx e x + dy e y + d e Volumenelement dv = dx

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b Vektorprodukt Der Vektor c = a b ist zu a und b orthogonal, gemäß der Rechten-Hand-Regel orientiert und hat die Länge c = a b sin( ( a, b)), die dem Flächeninhalt des von den Vektoren a und b aufgespannten

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 2: Der Euklidische Raum Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 30. Oktober 2007) Vektoren in R n Definition

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min. cos y + x 2 z e z + xy. x sin x + y 2

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min. cos y + x 2 z e z + xy. x sin x + y 2 Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung.3.27, 2min Aufgabe ( Punkte) Sei S := {(x, y, z) R 3 : z = x 2 y 2 und x 2 + y 2 }. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b)

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

Rechenmethoden der Physik

Rechenmethoden der Physik May-Britt Kallenrode Rechenmethoden der Physik Mathematischer Begleiter zur Experimentalphysik Mit 47 Abbildungen, 297 Aufgaben und Lösungen Springer Teil I Erste Schritte Rechnen in der Mechanik Rechnen

Mehr

Repetitorium C: Nabla, 2-, 3-dim. Integrale, Satz v. Gauß

Repetitorium C: Nabla, 2-, 3-dim. Integrale, Satz v. Gauß Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 6/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugler http://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_6_7/r_ rechenmethoden_6_7/

Mehr

Blatt 12: Satz von Gauss, Satz von Stokes

Blatt 12: Satz von Gauss, Satz von Stokes Fakltät für Physik Jan on Delft, Katharina Stadler, Frake Scharz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepages.physik.ni-menchen.de/~ondelft/lehre/3t0/ Blatt 2: Satz on Gass, Satz on Stokes

Mehr

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März 1 Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- Lösung 1. ten Ψ(θ, φ) sin θ cos φ sin θ sin φ cos θ Dann gilt 1 Ψ(θ, φ) cos θ

Mehr

Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I. Uwe Thiele

Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I. Uwe Thiele Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I Uwe Thiele Institut für Theoretische Physik Westfälische Wilhelms-Universität Münster Version vom 5. April 2015 Inhaltsverzeichnis 1 Grundlagen

Mehr

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen Theoretischen Physik II SS 007 Klausur II - Aufgaben und Lösungen Aufgabe Hohlleiter Gegeben sei ein in z-richtung unendlich langer, gerader Hohlleiter (Innenradius R/3, Außenradius R), der einen Stromfaden

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Für räumliche Vektorfelder F, G und räumliche Skalarfelder U, V gelten folgende Rechenregeln. Rechenregeln für Differentialoperatoren 1-1

Für räumliche Vektorfelder F, G und räumliche Skalarfelder U, V gelten folgende Rechenregeln. Rechenregeln für Differentialoperatoren 1-1 Rechenregeln für Differentialoperatoren Für räumliche Vektorfelder F, G und räumliche Skalarfelder U, V gelten folgende Rechenregeln. Rechenregeln für Differentialoperatoren 1-1 Rechenregeln für Differentialoperatoren

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Blatt 06.3: Matrizen

Blatt 06.3: Matrizen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 204/5 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Katharina Stadler http://homepages.physik.uni-muenchen.de/~vondelft/lehre/4t0/ Blatt 06.3:

Mehr

3. Die Divergenz und die Quellen des elektrischen Feldes

3. Die Divergenz und die Quellen des elektrischen Feldes 3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,

Mehr

Abbildung 14: Ein Vektorfeld im R 2

Abbildung 14: Ein Vektorfeld im R 2 Vektoranalysis 54 Vektoranalysis Wir wollen nun Vektorfelder betrachten. Es sei U R n. Ein Vektorfeld im R n ist eine Abbildung v : U R n, die jedem Punkt x ihres sbereichs U einen Vektor v(x) zuordnet.

Mehr

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren?

Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? V4 Vektorfelder Vektorfelder haben oft Struktur: quellfrei, wirbelfrei Quellfeld Wirbelfeld Ziel (langfristig): wie lassen sich diese Eigenschaften mathematisch charakterisieren? Zunächst brauchen wir

Mehr

Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte (2D) verwenden.

Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte (2D) verwenden. Vektoranalysis Begriffe Im Folgenden werde ich als anschauliche Beispiele eine strömende Flüssigkeit im dreidimensionalen Raum sowie eine Landschaftskarte 2D) verwenden. Ein Skalarfeld f = fx, y, z) ist

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 1. Übung: Woche vom (komplexe Zahlen):

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 1. Übung: Woche vom (komplexe Zahlen): Übungsaufgaben 1. Übung: Woche vom 17.-21.10.16 (komplexe Zahlen): Heft Ü1: 3.9 (a,b); 3.10, 3.12 (a-c); 3.13 (a-c); 3.2 (a,b,d); 3.3 (c,d,f) Wiederholung Komplexe Zahlen Definition (Imaginäre Einheit,

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

12. Übungsblatt zur Mathematik II für MB

12. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 1 5.7.21 12. Übungsblatt zur Mathematik II für MB Aufgabe 39 Divergenz Berechnen Sie die Divergenz folgender Vektorfelder: xyz + 2xy F 1

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T0: Rechenmethoden für Physiker, WiSe 2012/13. Probeklausur. Mittwoch,

Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T0: Rechenmethoden für Physiker, WiSe 2012/13. Probeklausur. Mittwoch, Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T0: Rechenmethoden für Physiker, WiSe 2012/13 http://homepages.physik.uni-muenchen.de/~vondelft/lehre/12t0/ Probeklausur Mittwoch, 16.01.2013

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Die Laplace-Gleichung

Die Laplace-Gleichung Die Laplace-Gleichung Dr. Piotr Marecki April 19, 2008 1 Einführung Die Randwertprobleme für die Laplace Gleichung, 2 V (x) = 0, (1) spielen in der Theoretischen Physik eine wichtige Rolle, u.a. : In der

Mehr

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9.

Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare Felder Kurvenintegrale. Aufgabe 9.2 Aufgabe 9. 9. Mehrdimensionale Analysis 1/42 9. Mehrdimensionale Analysis Differentialrechnung für skalare Felder 2/42 Schwerpunkte des Kapitels Differentialrechnung für skalare Felder Integralrechnung für skalare

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Übungsblatt Wiederholung: Vektoralgebra, Nabla-Operator, Integralsätze.

Übungsblatt Wiederholung: Vektoralgebra, Nabla-Operator, Integralsätze. Übungsblatt 01 http://www.fluid.tuwien.ac.at/302.043 Wiederholung: Vektoralgebra, Nabla-Operator, Integralsätze. Im Folgenden stehen normal gedruckte Buchstaben ρ (x) für skalare Funktion die den R 3 nach

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14

Übungen zur Modernen Theoretischen Physik I SS 14 Karlsruher Institut für Technologie Übungen zur Modernen Theoretischen Physik I SS 4 Institut für Theoretische Festkörperphysik Prof. Dr. Gerd Schön Blatt 8 Andreas Heimes, Dr. Andreas Poenicke Besprechung

Mehr

Anhang A. Etwas Mathematik. A.1 Krummlinige Koordinaten. Ebene Polarkoordinaten

Anhang A. Etwas Mathematik. A.1 Krummlinige Koordinaten. Ebene Polarkoordinaten Anhang A Etwas Mathematik A.1 Krummlinige Koordinaten A.1.1 Ebene Polarkoordinaten Anstelle der kartesischen Koordinaten x 1 und x 2 führt man unter Verwendung der Transformation x 1 = ρ cosϕ, ρ = x 2

Mehr

Schwerkraft auf Erdoberfläche: r â r F à const im Bereich r da dort r à const gilt

Schwerkraft auf Erdoberfläche: r â r F à const im Bereich r da dort r à const gilt 2.4 Konservative Kräfte und Potential lap2/mewae/scr/kap2_4s5 30-0-02 Einige Begriffe: Begriff des Kraftfeldes: Def.: Kraftfeld: von Kraft-Wirkung erfüllter Raum. Darstellung: F r z.b. Gravitation: 2.

Mehr

Vektoralgebra und -analysis

Vektoralgebra und -analysis Kapitel 2 Vektoralgebra und -analysis Peter-Wolfgang Gräber Systemanalyse in der Wasserwirtschaft Ausgehend von einfachen, bekannten Darstellungen der Vektorrechnung werden die Grundregeln der Vektoralgebra

Mehr

Relativistische Beziehungen Hochfrequenzgrundlagen

Relativistische Beziehungen Hochfrequenzgrundlagen Hochfrequenzgrundlagen Prof. Dr. H. Podlech 1 Klassische Mechanik Im Rahmen der klassischen Mechanik gelten folgende Beziehungen Masse: m=konstant Impuls: Kinetische Energie: Geschwindigkeit: Prof. Dr.

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

Mathematische Grundlagen

Mathematische Grundlagen G-CSC Goethe-Center for Scientific Computing der Universität Frankfurt 1. Übung zur Vorlesung Modellierung und Simulation 3 (WS 2012/13) Prof. Dr. G. Wittum Susanne Höllbacher, Martin Stepniewski, Christian

Mehr

Inhaltsverzeichnis. I Vektoranalysis g

Inhaltsverzeichnis. I Vektoranalysis g I Vektoranalysis g 1 Vektorfunktionen und Raumkurven JJ 1.1 Vektorfunktionen n 1.2 Ableitung einer Vektorfunktion 12 1.3 Bogenlänge und Tangenteneinheitsvektor 16 1.4 Hauptnormale und Krümmung 19 1.5 Binormale

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 19 8. Juli 2010 Kapitel 14. Gewöhnliche Differentialgleichungen zweiter Ordnung 14.1 Systeme gewöhnlicher linearer Differentialgleichungen erster

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 1 Bearbeitung: 28.10.2011

Mehr

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008)

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) 1 Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) Kapitel 11: Vektoranalysis Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 10. Juni 2008) Felder Definition 11.1 Ein Skalarfeld

Mehr

Teil 2. Vektorrechnung

Teil 2. Vektorrechnung Teil 2 Vektorrechnung 17 18 2.1 Koordinaten Kartesisches Koordinatensystem in der Ebene und im Raum senkrecht schneidende Zahlengeraden (Achsen), orientiert gemäß der Rechten-Hand-Regel Ü ¹ Å ØØ Ð Ò Ö

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

EINFÜHRUNG IN DIE TENSORRECHNUNG

EINFÜHRUNG IN DIE TENSORRECHNUNG EINFÜHRUNG IN DIE TENSORRECHNUNG Teil SIEGFRIED PETRY Nefassng vom.jni 016 I n h a l t 1 Mehr über Tensoren. Stfe Darstellng eines Tensors in einer Basis 4 Beispiele nd Übngen 5 4 Lösngen 1 1 1 Tensoren.

Mehr

Repetitorium A: Matrizen, Reihenentwicklungen

Repetitorium A: Matrizen, Reihenentwicklungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 5/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3 Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen

Mehr

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM

Darstellungstheorie. Vortag von Heiko Fischer - Proseminar QM Darstellungstheorie Vortag von Heiko Fischer - Proseminar QM Wir haben uns in den vergangenen Vorträgen intensiv mit den Eigenschaften abstrakter Gruppen beschäftigt. Im physikalischen Kontext sind Gruppen

Mehr