Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min. cos y + x 2 z e z + xy. x sin x + y 2

Größe: px
Ab Seite anzeigen:

Download "Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min. cos y + x 2 z e z + xy. x sin x + y 2"

Transkript

1 Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung.3.27, 2min Aufgabe ( Punkte) Sei S := {(x, y, z) R 3 : z = x 2 y 2 und x 2 + y 2 }. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die Zirkulation des Vektorfeldes f : R 3 R 3, x sin x + y 2 y cos y + x 2 z e z + xy längs S. (a) Eine Parametrisierung von S ist gegeben durch r cos θ Φ: [, ] [, 2π] R 3, (r, θ) r sin θ. r 2 (cos 2 θ sin 2 θ) Wir berechnen cos θ r sin θ Φ r = sin θ und Φ θ = r cos θ. 2r(cos 2 θ sin 2 θ) 4r 2 sin θ cos θ Damit erhalten wir für die Normale sin θ ( 4r 2 sin θ cos θ) 2r(cos 2 θ sin 2 θ) r cos θ 2r 2 cos θ Φ r Φ θ = 2r(cos θ sin 2 θ) ( r sin θ) cos θ ( 4r 2 sin θ cos θ) = 2r 2 sin θ. cos θ r cos θ sin θ ( r sin θ) r Also ist Φ r Φ θ = 4r 4 cos 2 θ + 4r 4 sin 2 θ + r 2 = r 4r 2 +. Damit folgt S = 2π = 2π mit der Substitution u := r 2. Φ r Φ θ dθ dr = 2π [ 2 (4u + ) π 2 du = 6 (4u + ) 3 2 r(4r 2 + ) 2 dθ dr ] = 6 (5 5 )π Seite von 8

2 Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung.3.27, 2min (b) Wir berechnen x rot f = y 2x 2y r cos θ und somit (rot f)(φ(r, θ)) = r sin θ. 2r(cos θ sin θ) Mit dem Satz von Stokes folgt somit Z(f, S) = = = 2π 2π 2π = 2π (rot f)(φ(r, θ)) (Φ r (r, θ) Φ θ (r, θ)) dθ dr r cos θ 2r 2 cos θ r sin θ 2r 2 sin θ dθ dr 2r(cos θ sin θ) r ( 2r 3 + 2r 2 (cos θ sin θ)) dθ dr ( 2r 3 ) dr = [ πr 4] = π. Bemerkung: Wenn man die entgegengesetzte Normale wählt, so erhält man π. Seite 2 von 8

3 Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung.3.27, 2min Aufgabe 2 ( Punkte) Gegeben ist die Differentialgleichung y (3) 3y (2) + 7y 5y = 2e x cos(x) 6e x. Bestimmen Sie alle reellen Lösungen der Differentialgleichung. SCHRITT : In einem ersten Schritt löst man die homogene Gleichung y (3) 3y (2) + 7y 5y =. Das charakteristische Polynom P (X) dieser Differentialgleichung ist P (X) = X 3 3X 2 +7X 5. Eine offensichtliche Nullstelle von P ist. P (X) = X 3 3X 2 + 7X 5 = (X )(X 2 2X + 5) = (X )(X + 2i)(X 2i) und hat die übrigen Nullstellen 2i und + 2i. Die allgemeine homogene Lösung f h ist dann: f h (x) = ae x + be x cos(2x) + ce x sin(2x) mit a, b, c R. SCHRITT 2: In einem zweiten Schritt bestimmt man nun irgendeine beliebige (partikuläre) Lösung der gegebenen inhomogenen Differentialgleichung beispielsweise durch einen Ansatz nach Art der rechten Seite. Partikuläre Lösung durch Ansatz nach Art der rechten Seite Aufgrund des Superpositionsprinzips bekommt man eine partikuläre Lösung f p von y (3) 3y (2) + 7y 5y = 2e x cos(x) 6e x, indem man eine partikuläre Lösung f p und eine partikuläre Lösung f p2 f p = f p + f p2. Zunächst zu y (3) 3y (2) + 7y 5y = 2e x cos(x): von y (3) 3y (2) + 7y 5y = 2e x cos(x) von y (3) 3y (2) +7y 5y = 6e x bestimmt und diese beiden addiert: Weil ± i keine Nullstelle von P ist (keine Resonanz), machen wir den Ansatz Dreimaliges Ableiten ergibt f p (x) = x e x (α cos(x) + β sin(x)) = e x (α cos(x) + β sin(x)). f p (x) = e x ((α + β) cos(x) + (β α) sin(x)), f p (2) (x) = e x (2β cos(x) 2α sin(x)), f p (3) (x) = e x (2(β α) cos(x) 2(β + α) sin(x)). Setzt man dies in die Differentialgleichung ein, so erhält man e x (3β cos(x) 3α sin(x)) = 2e x cos(x) Seite 3 von 8

4 Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung.3.27, 2min und damit α = und β = 2 3. Also f p (x) = 2 3 ex sin(x). Jetzt zu y (3) 3y (2) + 7y 5y = 6e x : Weil eine einfache Nullstelle von P ist (Resonanz), machen wir den Ansatz Dreimaliges Ableiten ergibt f p2 (x) = αx e x = αxe x. f p 2 (x) = α(x + )e x, f p (2) 2 (x) = α(x + 2)e x f (3) p 2 (x) = α(x + 3)e x. Setzt man dies in die Differentialgleichung ein, so erhält man und damit α = 4. Also f p2 (x) = 4xe x. α((x + 3) 3(x + 2) + 7(x + ) 5x)e x = 6e x Insgesamt erhalten wir f p (x) = f p (x) + f p2 (x) = 2 3 ex sin(x) 4xe x. 4αe x = 6e x SCHRITT 3: In einem dritten und letzten Schritt muss man schließlich noch die oben bestimmte allgemeine homogene Lösung und die oben bestimmte partikuläre Lösung addieren: f(x) = f h (x) + f p (x) = ae x + be x cos(2x) + ce x sin(2x) ex sin(x) 4xe x mit a, b, c R, um die gesuchte allgemeine Lösung der inhomogenen Differentialgleichung zu bekommen. Seite 4 von 8

5 Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung.3.27, 2min Aufgabe 3 ( Punkte) Gegeben sind A := 2 und h(x) := e x e x e 2x. (a) (7 Punkte) Bestimmen Sie für i {, 2, 3} jeweils die Lösung des Anfangswertproblems y = Ay, y() = v i, wobei v := (,, ), v 2 := (,, ), v 3 := (,, ). (b) (3 Punkte) Bestimmen Sie alle Lösungen des inhomogenen Differentialgleichungssystems y = Ay + h(x). (a) Die Lösung des Anfangswertproblems: y = Ay, y() = v. Av = (,, ). Es gilt Av = v. Die Lösung zum Anfangswert v ergibt sich also durch f (x) = e x v = (e x,, ) Die Lösung des Anfangswertproblems: y = Ay, y() = v 2. Es gilt Av 2 = (,, ) und A 2 v 2 = (2,, ). Wir wenden den Gauß-Algorithmus auf die Matrix v 2 Av 2 2 A 2 v 2 Im ersten Schritt erhalten wir Z 3 2Z 2 : v 2 Av 2 A 2 v 2 2Av 2 und im zweiten Z 3 + Z : v 2 Av 2 A 2 v 2 2Av 2 + v 2 Seite 5 von 8

6 Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung.3.27, 2min Nun kann man in der rechten unteren Ecke der Matrix das gesuchte Polynom ablesen. Es gilt ja A 2 v 2 2Av 2 + v 2 =, also konnen wir q(x) = X 2 2X + wählen. Daraus erhält man z.b. mit der Mitternachtsformel oder durch scharfes hinsehen die Nullstellen X,2 =. Ein Fundamentalsystem für die Differentialgleichung q(d)y = wird nach von den Funktionen g (x) = e x und g 2 (x) = xe x gebildet. Für die Ableitungen gilt g (x) = e x und g 2(x) = xe x +e x Damit ergibt sich für die Wronskimatrix ( ) e x xe x M(x) = e x xe x + e x und wir erhalten im Punkt x = und für die Invers-Transponierte ( ) M() = ( ) (M() T ) = Also ist die Lösung des Anfangswertproblems gegeben durch ( ) ) ( ) ( ) (v 2 Av 2 (M() T ) g (x) = g 2 (x) e x xe x Die Lösung zum Anfangswert v 2 ergibt sich also durch f 2 (x) = (xe x, e x, ) Die Lösung des Anfangswertproblems: y = Ay, y() = v 3. Av 3 = (,, 2). Es gilt Av 3 = 2v 3. Die Lösung zum Anfangswert v 3 ergibt sich also durch f 3 (x) = e 2x v 3 = (,, e 2x ) (b) f (x), f 2 (x), f 3 (x) ist ein Fundamentalsystem mit Wronski-Matrix e x xe x W (x) = e x e 2x Seite 6 von 8

7 Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung.3.27, 2min Es gibt W () = I 3 Das inverse der Wronski-Matrix ist dann, mit Hilfe von Satz 6.5.5, nur W (x) = W ( x). Mit der Methode der Variation der Konstanten nach Satz 6.6. ergibt sich c (x) e x xe x e x x c 2(x) = W ( x)h(x) = e x e x = c 3(x) e 2x e 2x und damit durch Integrieren c (x) x x 2 /2 c 2 (x) = x. c 3 (x) x Damit ist die allgemeine Lösung des inhomogenen Systems von der Form f(x) = c f (x) + c 2 f 2 (x) + c 3 f 3 (x) + c (x)f (x) + c 2 (x)f 2 (x) + c 3 (x)f 3 (x) = c (e x,, ) + c 2 (xe x, e x, ) + c 3 (,, e 2x ) + e x (x + x 2 /2, x, xe x ) mit c, c 2, c 3 R. Seite 7 von 8

8 Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung.3.27, 2min Aufgabe 4 (9 Punkte) Gegeben ist die 2-periodische Funktion f mit f(x) = sin(πx), für x, f(x + 2) = f(x). (a) (8 Punkte) Berechnen Sie die reelle Fourier-Reihe von f. (b) ( Punkt) Bestimmen Sie für alle x R den Grenzwert der Fourier-Reihe. (a) Die Funktion f ist gerade, folglich ist die Fourierreihe von f eine reine Kosinusreihe, d.h. es ist Es gilt a n =2 sin(πx) cos(πnx) dx ( =2 π cos(πx) cos(πnx) n ( ( + ( ) n =2 n π π n N : b n =. ) cos(πx) sin(πnx) dx sin(πx) sin(πnx) n sin(πx) cos(πnx) dx }{{}}{{} = = 2 an )). Daher erhalten wir ( n 2 )a n = 2 π ( + ( )n ). Diese Gleichung bestimmt alle Fourierkoeffizienten bis auf a zu a n = 2 π + ( )n n 2, denn die Gleichung a = liefert nicht a = (das heißt, diese Folgerung ist an dieser Stelle noch unzulässig). Diesen Koeffizienten muss man seperat berechnen: a = 2 sin(πx) cos(πx) dx = Damit erhalten wir die Fourierreihe f(x) 2 π + 2 π n=2 sin(2πx) dx = 2π cos(2πx) + ( ) n n 2 cos(πnx). (b) Die Fourierreihe der Funktion f konvergiert punktweise überall gegen den Funktionswert von f. =. Seite 8 von 8

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1.

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1. Apl. Prof. Dr. N. Knarr Musterlösung.9.6, min Aufgabe ( Punkte) Lösen Sie das folgende Anfangswertproblem: y = e y cos(x), y() =. Sei y : I R die maximale Lösung des gegebenen Anfangswertproblems (diese

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe (9 Punkte) Es sei die Fläche S R 3 gegeben durch S : { } (x, y, z) R 3 : 4z x + y 4, z. (a) ( Punkte) Geben Sie eine Parametrisierung für S an. (b) (4 Punkte) Berechnen Sie den Flächeninhalt von

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 5. September 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Im R 3 wird eine Fläche T durch die Abbildung

Mehr

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3 Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 6 Februar 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Die Fläche T im R 3 sei gegeben als T : {x,y,z

Mehr

Lösungsvorschläge zur Klausur für bau, ernen, fmt, geod, mach, medtech, tema, umw, verf, verk )

Lösungsvorschläge zur Klausur für bau, ernen, fmt, geod, mach, medtech, tema, umw, verf, verk ) Lösungsvorschläge zur Klausur für bau, ernen, fmt, geod, mach, medtech, tema, umw, verf, verk Aufgabe : ( Punkte Gegeben ist der Körper K {(x,y,z R 3 x 2 + y 2 + z 2 ; x,y,z } (a Geben Sie K in Kugelkoordinaten

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 8. Februar Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : (6 Punkte Die archimedische Spirale wird durch A

Mehr

Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik

Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik Prüfung in Höhere Mathematik 3 9. März 21 Lösungsvorschläge zur Klausur für bau, fmt, IuI, mach, tema, umw, verf und zugehörige Technikpädagogik Aufgabe 1: (7 Punkte Gegeben ist die Menge G : {(x,y R 2

Mehr

Lösungsvorschläge zur Klausur für mach, umw, fmt, bau, immo, tema, und zugehörige Technikpädagogik

Lösungsvorschläge zur Klausur für mach, umw, fmt, bau, immo, tema, und zugehörige Technikpädagogik Prüfung in Höhere Mathematik III. September 8 Lösungsvorschläge zur Klausur für mach, umw, fmt, bau, immo, tema, und zugehörige Technikpädagogik Aufgabe : 8 Punkte Gegeben ist A : v : Bestimmen Sie die

Mehr

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x.

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x. D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi Musterlösung 10 1. a) Das charakteristische Polynom ist λ 2 + λ 2 = (λ + 2)(λ 1) mit den beiden verschiedenen Nullstellen λ = 2 λ = 1. Die allgemeine Lösung

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf Aufgabe : (6 Punkte Rotiert man die Menge { (y,z R 2 y 2π,z cosy } um die z-achse, so ensteht die Fläche F R 3. Bestimmen Sie

Mehr

1 2, 2,v [1, 2]. R 2 : u

1 2, 2,v [1, 2]. R 2 : u Prof. Dr. H. Harbrecht Höhere Mathematik 3 07.09.00 Aufgabe (0 Punkte Gegeben sei die parametrisierte Fläche A mit A { ( Φ(u,v uv, v R : u u a Berechnen Sie die Funktionaldeterminante von Φ. b Bestimmen

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik III Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II. (8 Punkte) a) Mit Kürzen des Bruchs folgt ( ) x + sin(x) sin(x) cos(x) lim x sin(x) ( ) x = lim x sin(x) + cos(x)

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

Lineare Differentialgleichungen höherer Ordnung

Lineare Differentialgleichungen höherer Ordnung Lineare Differentialgleichungen höherer Ordnung I. Grundlegendes Eine homogene lineare Differentialgleichung n-ter Ordnung besitzt die Form y (n) + a n 1 (x)y (n 1) +... + a 1 (x)y + a 0 (x)y = 0 Eine

Mehr

Lineare Differentialgleichungen n-ter Ordnung

Lineare Differentialgleichungen n-ter Ordnung KAPITEL 5 Lineare Differentialgleichungen n-ter Ordnung 1 Veränderliche Koeffizienten Analog zu den linearen Dierentialgleichungen 2 Ordnung gilt: 75 76 5 LINEARE DIFFERENTIALGLEICHUNGEN n-ter ORDNUNG

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

Bachelor Modulprüfung. Höhere Mathematik III für die Fachrichtung Physik. Lösungsvorschläge

Bachelor Modulprüfung. Höhere Mathematik III für die Fachrichtung Physik. Lösungsvorschläge KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT) Institut für Analysis Priv.-Doz. Dr. Peer Kunstmann Markus Antoni WS 22/23 Bachelor Modulprüfung Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael

Gewöhnliche inhomogene Differentialgleichungen der 1. und 2. Ordnung. Christopher Schael Gewöhnliche inhomogene Differentialgleichungen der 1. und. Ordnung 1.1.) Anleitung DGL der 1. Ordnung 1.) DGL der 1. Ordnung In diesem Abschnitt werde ich eine Anleitung zur Lösung von inhomogenen und

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 4. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching June 6, 207 Erinnerung Die Reihe a k konvergiert falls, lim S n = lim n n n a k =: a k existiert. Satz (Majoranten/Minorantenkriterium)

Mehr

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:...

Prüfer: Dr. M. Lenz, Prof. Dr. M. Rumpf. Klausurdauer: 180 Minuten. Bitte Namen, Vornamen und Matrikel-Nr. einsetzen. Name:... Vorname:... Klausur zum Modul Ingenieurmathematik II (B22) 20. März 2014 für den Bachelorstudiengang Geodäsie und Geoinformation In der Klausur können 10 Punkte pro Aufgabe, also insgesamt 100 Punkte erreicht werden.

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Klausur Mathematik III für Bauingenieure

Klausur Mathematik III für Bauingenieure TU Dresden 9. Juli 5 Institut für Analysis Doz. Dr. N. Koksch Klausur Mathematik III für Bauingenieure Name: Vorname: Jahrgang: Matrikel-Nr.: Studiengang: Übungsgruppe: Aufgabe 4 5 6 Ges. Punkte max. 6

Mehr

Tutorium Mathematik II M WM

Tutorium Mathematik II M WM Tutorium Mathematik II M WM 9.6.7 Lösungen Lösen Sie folgende Systeme von Differentialgleichungen der Form x = A x + b mit. A = 6 und b = et. e t Hinweis: Die Eigenwerte und -vektoren der Matrix A lauten:

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 19. April 2013 *Aufgabe 1. Bestimmen Sie eine Lösung von mit Hilfe eines speziellen Ansatzes. y (4) + 4 + 6 + 4y + y = (x 2 + x)e x Lösung: Zunächst geben wir noch einmal

Mehr

Klausur zur Höheren Mathematik III für die Fachrichtungen: kyb, mecha, phys

Klausur zur Höheren Mathematik III für die Fachrichtungen: kyb, mecha, phys Prof. Pöschel Höhere Mathematik III 3.9.5 Klausur zur Höheren Mathematik III für die Fachrichtungen: kyb, mecha, phys Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 8 Minuten Erlaubte Hilfsmittel:

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

Klausur zur Höheren Mathematik III für die Fachrichtungen: kyb, mecha, phys

Klausur zur Höheren Mathematik III für die Fachrichtungen: kyb, mecha, phys Klausur zur Höheren Mathematik III für die Fachrichtungen: kyb, mecha, phys Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: 0 DIN A4 Seiten eigenhändig handbeschrieben.

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann 6.9.6 Bergische Universität Wuppertal Aufgabe ( Punkte Modul: Mathematik I und II, Bachelor Maschinenbau a Zeigen Sie durch Induktion nach n die Summenformel

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung ( y

Mehr

Modulprüfung HM III (kyb, mech, phys)

Modulprüfung HM III (kyb, mech, phys) Seite von 5 Modulprüfung HM III (kyb, mech, phys) Hinweise: Lösen Sie bitte jede Aufgabe auf einem separaten Blatt. Alle nicht in der Vorlesung behandelten Sachverhalte sind zu beweisen, Lösungsschritte

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

7. Übungsblatt Aufgaben mit Lösungen

7. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sei die Differentialgleichung 7. Übungsblatt Aufgaben mit Lösungen y x) 2 x y x) + 5 x 2 y x) 5 x yx) = 0 für x > 0. Prüfen Sie, ob die folgenden Funktionen Lösungen dieser Differentialgleichung

Mehr

Mathematik für Sicherheitsingenieure II (MScS, MScQ)

Mathematik für Sicherheitsingenieure II (MScS, MScQ) Priv.-Doz. Dr. J. Ruppenthal Wuppertal,.3.7 Mathematik für Sicherheitsingenieure II MScS, MScQ) Modulteil: Mathematik II Aufgabe. 8+6+6 Punkte) a) Bringen Sie folgende komplexe Zahlen in die Form x + iy

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen Karlsruher Institut für Technologie (KIT) Institut für Analysis Priv.-Doz. Dr. Gerd Herzog Dipl.-Math. Carlos Hauser SoSe 7 7.7.7 Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen.

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Lineare DGL. Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3

Lineare DGL. Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3 Lineare DGL Bei linearen Problemen liegt eine typische Lösungsstruktur vor. Betrachten wir hierzu die Gleichung 2x+y = 3 Die zugehörige homogene Gleichung ist dann 2x+y = 0 Alle Lösungen (allgemeine Lösung)

Mehr

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel Aufgabe Gegeben sei das Gebiet G : { (x, y, z) R 3 x 2 + y 2 + z 2 < } und die Funktion Berechnen Sie das Integral v(x, y, z) ( z)x 2 + ( + z)y 2 + z. G n ds, wobei n der nach außen zeigende Normalenvektor

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 014 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total

Mehr

Mathematik für Sicherheitsingenieure II (MScS, MScQ)

Mathematik für Sicherheitsingenieure II (MScS, MScQ) Priv.-Doz. Dr. J. Ruppenthal Wuppertal,..28 Mathematik für Sicherheitsingenieure II (MScS, MScQ) Modulteil: Mathematik II Aufgabe. (6+7+7 Punkte) a) Bringen Sie folgende komplexe Zahlen in die Form x +

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Klausur: Differentialgleichungen Version mit Lösungen

Klausur: Differentialgleichungen Version mit Lösungen Universität Kassel Fachbereich 10/16 Dr. Sebastian Petersen 16.03.2016 Klausur: Differentialgleichungen Version mit Lösungen Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1

SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1 Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1 13. Fourier-Reihen Prof. Dr. Gunar Matthies Wintersemester 216/17

Mehr

B. Lösungsskizzen zu den Übungsaufgaben

B. Lösungsskizzen zu den Übungsaufgaben B. Lösungsskizzen zu den Übungsaufgaben B.. Lösungen zum Kapitel B... Tutoraufgaben Lösungsskizze Wir gehen zuerst nach dem Lösungsverfahren vor. Schritt : Bestimmung der Lösung des homogenen DGL-Systems

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2 D-MAVT/D-MATL Analysis II FS 07 Dr. Andreas Steiger Lösung - Serie 6. Es ist das folgende autonome System ẋ = x + x + 3 ẋ = x + x von linearen Differenzialgleichungen. Ordung gegeben. Welche der folgenden

Mehr

Musterlösungen Online Zwischentest - Serie 10

Musterlösungen Online Zwischentest - Serie 10 D-MAVT, D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Online Zwischentest - Serie 10 Frage 1 [Prüfungsaufgabe Frühling 2011)] Sei das Vektorfeld in R 3, ( x v(x,y,z) = 2, x+y ),0 2 und der

Mehr

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt, WS 202/203 Höhere Mathematik III für die Fachrichtung Physik Aufgabe 6 Bei allen Aufgabenteilen handelt es sich um (homogene bzw. inhomogene) lineare Differentialgleichungen

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Höhere Mathematik III. Variante A

Höhere Mathematik III. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik III SoSe 215 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Differentialgleichungssysteme Marco Boßle Jörg Hörner Mathematik Online Frühjahr 20 PV-Kurs HM 3 DGlSysteme - Zusammenfassung Allgemeine Differentialgleichungssysteme.Ordnung

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Musterlösungen Serie 9

Musterlösungen Serie 9 D-MAVT D-MATL Analysis II FS 2013 Prof. Dr. P. Biran Musterlösungen Serie 9 1. Frage 1 Gegeben ist eine lineare und homogene Differenzialgleichung, welche y : x sin x als Lösung besitzt. Welche der folgenden

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4. Umkehrbarkeit I Man betrachte die durch g(s, t = (e s cos(t, e s sin(t gegebene Funktion g : R R. Zeigen Sie, dass

Mehr

2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten. Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff.

2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten. Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff. 2.7 Suche nach partikulären Lösungen bei inhomogenen linearen Dgln mit konstanten Koeffizienten Geg.: imhomogene lin. Dgl. n-ter O. mit konst. Koeff. a k y (k) (x) = b(x) k=0 (L) mit a 0, a 1,..., a n

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Herbst 9.9.9 Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge Aufgabe

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Kleine Formelsammlung zu Mathematik für Ingenieure IIA

Kleine Formelsammlung zu Mathematik für Ingenieure IIA Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................

Mehr

BASISPRÜFUNG MATHEMATIK I UND II

BASISPRÜFUNG MATHEMATIK I UND II ETH Zürich Sommer 015 Dr. Ana Cannas BASISPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften 1. Sei a) Ist das System lösbar? b) Lösen Sie das System

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 4 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum. Übungsblatt Aufgabe 37

Mehr

= 11 ± 5, also k 1 = 3 und k 2 = 8.

= 11 ± 5, also k 1 = 3 und k 2 = 8. Stroppel Musterlösung.8.5, 8min Aufgabe (6 Punkte) Gegeben sei die Funktion f: R R: x x e x. (a) Zeigen Sie durch vollständige Induktion, dass für alle x R und alle k N gilt: f (k) (x) = ( ) k (x kx+(k

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik SS

Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik SS Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik IV Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x).

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x). Stroppel/Sändig Musterlösung 8. 3., min Aufgabe 5 Punkte Beweisen Sie für alle x R {zπ z Z} die Formel für n N mit Hilfe der vollständigen Induktion. cosxcosxcosx cos n x = sinn+ x n+ sinx Dabei dürfen

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

Hochschule Augsburg Elektrotechnik/Mechatronik Semester: Mathematik 2 SS 2015 Seite 1/10

Hochschule Augsburg Elektrotechnik/Mechatronik Semester: Mathematik 2 SS 2015 Seite 1/10 Mathematik SS 015 Seite 1/10 Prüfungsfach: Mathematik Zeit: 90 Min. Prüfungstermin: 6.7.015 Prüfer: Prof. Dr. Hollmann, Prof. Dr. Zacherl Hilfsmittel: Formelsammlung (DIN-A4-Blatt) Kontrollieren Sie zunächst,

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

Höhere Mathematik II für Ingenieurinnen und Ingenieure Beispiele zur 10. Übung

Höhere Mathematik II für Ingenieurinnen und Ingenieure Beispiele zur 10. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, 7. Juni 2017 Höhere Mathematik II für Ingenieurinnen und Ingenieure Beispiele zur 10. Übung Wenn

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/6..6 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum. Übungsblatt Aufgabe

Mehr