Übungsblatt Wiederholung: Vektoralgebra, Nabla-Operator, Integralsätze.

Größe: px
Ab Seite anzeigen:

Download "Übungsblatt Wiederholung: Vektoralgebra, Nabla-Operator, Integralsätze."

Transkript

1 Übungsblatt 01 Wiederholung: Vektoralgebra, Nabla-Operator, Integralsätze. Im Folgenden stehen normal gedruckte Buchstaben ρ (x) für skalare Funktion die den R 3 nach R abbilden (z.b. ρ (x) lokale Dichte eines Fluids), fett gedruckte Kleinbuchstaben u(x) für vektorielle Funktionen die den R 3 in den R 3 abbilden (z. B. u (x) das Geschwindigkeitsfeld einer Strömung) und fett gedruckte Großbuchstaben Σ(x), für Funktionen die den R 3 in den R 3 3 abbilden (z. B. Σ (x) den lokalen Spannungstensor). Im Folgenden ziehen wir nur karthesische Koordinatensysteme x (x, y, z) T x e x + y e y + z e z in Betracht (e x ist der Einheitsvektor in Richtung x). Einsteinsche Summenkonvention, Indizierte Größen Beispiele für indizierte Größen: δ ij, ɛ ijk, a i, a i b j, u i. (1) Tritt ein Index in einer indizierten Größe doppelt auf so wird über diesen summiert (Einsteinsche Summenkonvention): a i a i def a i a i ; i1 u j def j1 u j ; ɛ ijk ɛ lmk def ɛ ijk ɛ lmk. (2) k1 Die Summation über doppelte Indizes wird bei der Auswertung des Ausdrucks immer vor etwaigen Multiplikationen durchgeführt, so z.b. a i b j c i b j ( i a ic i ). Der große Vorteil der Einsteinschen Schreibweise ist die formale Kommutativität. So bedeutet a i b j c j d k dasselbe wie b j c j a i d k, wie b j a i c j d k, usw.... Ausnahme hiervon ist natürlich die Differenzation. Es werden nur Größen rechts vom Differentialoperator differenziert. Also a i j b k b k j a i, aber a i b j k c l b j a i k c l. Das Kronecker-Delta δ ij δ ji ist definiert als { 1 falls i j δ ij 0 falls i j. (3) 1

2 Das Levi-Civita-Symbol (Permutationssymbol) ist definiert als +1 falls (i, j, k) eine gerade Permutation von (1, 2, 3) ist ɛ ijk 1 falls (i, j, k) eine ungerade Permuation von (1, 2, 3) ist. (4) 0 falls (i j) oder (i k) oder (j k) Einige Rechenregeln für das Permutationssymbol und das Kronecker-Delta: δ ij δ ji ; δ ii δ ii 3 ; δ ik δ kj δ ij (5) i1 δ ij a j a i ; δ ij a i b j a i b i a b (6) ɛ ijk ɛ jki ɛ kij ɛ ikj ɛ kji ɛ jik (7) δ li δ lj δ lk ɛ ijk ɛ lmn δ mi δ mj δ mk (8) δ ni δ nj δ nk a 1 a 2 a 3 ɛ ijk a i b j c k b 1 b 2 b 3 (9) c 1 c 2 c 3 Vektorprodukte Dyadisches Produkt: a 1 b 1 a 1 b 2 a 1 b 3 ab a i b j a 2 b 1 a 2 b 2 a 2 b 3 C ij C (10) a 3 b 1 a 3 b 2 a 3 b 3 Skalarprodukt: a b a i b i a i b i δ ij a i a j (11) i1 Vektorprodukt: e 1 e 2 e 3 c a b a 1 a 2 a 3 b 1 b 2 b 3 c i (a b) i i,j,k1 ɛ ijk e i a j b k ɛ ijk e i a j b k (12) ɛ ijk a j b k ɛ ijk a j b k (13) j,k1 2

3 Nablaoperator Durch den Nablaoperator def e x z x + e y y + e z z e i e i i i, (14) der als formaler Spaltenvektor aufgefasst werden kann, lassen sich häufig gebrauchte mathematische Operation kompakt darstellen, zum Beispiele die Rotation einer vektoriellen Funktion u (x) rot u u der Gradient einer skalaren Funktion ρ (x) (u, v, w) T ɛ ijke i j u k, (15) z ρ grad ρ ρ x, y, ) T e x z x + e y y + e z z e i, (16) die Divergenz einer vektoriellen Funktion u (x) div u u sowie die Divergenz eines Tensors A (x) u u z x + v y + w z u i, (17) div A A ( T A ) T i A ij ; Matrizenmul.. (18) Die Operation A wird manchmal als Skalare Multiplikation von links bezeichnet, da man Sie formal als 3-malige skalare Multiplation der Spaltenvektoren von A mit auffassen kann ( A (A i1, A i2, A i3 ) ( A i1, A i2, A i3 ) T ). Oft wird auch der Ausdruck u u i u j ( j u i ) T J ij (19) z verwendet, welcher einfach die Transponierte, der Jacobimatrix, der vektoriellen Funktion u ist. Linearkombinationen von beliebigen Funktionen f a, f b (vektoriell oder skalar) werden formal ausmultipliziert (α, β const): (αf a + βf b ) α f a + β f b (20) 3

4 Für Produkte (beliebige, z.b. skalare Multiplikation, Skalarprodukt, Vektorprodukt, Matrizenmultiplikation) gilt die Kettenregel (f a f b ) ( f a f b ) + ( fa f b ). (21) Funktionen, die zu differenzieren sind, werden überstrichen (f a, f b ). Danach formt man (hoffentlich richtig) solange um, bis die überstrichenen Funktionen rechts vom Operator stehen und alle nicht überstrichenen links vom Operator. Die Überstriche können dann wieder entfernt werden. Oft ist es leichter bei Umformungen den Umweg über die Einsteinsche Indexschreibweise zu gehen. (ρuu) ( ρu) u ( ρu) u + ( ρu) u u ( ρu) + (ρu ) u (ρuu) i ρu i u j u j i ρu i + ρu i i u j u ( ρu) + (ρu ) u (22) Gaußscher Integralsatz Sei V ein kompaktes Volumen, V sei die abgeschlossene Hülle von V, V sei abschnittsweise Glatt, n sei der nach aussen zeigende Einheitsvektor senkrecht auf V und u sei eine auf ganz V stetig differenzierbare, vektorielle Funktion, dann gilt der gaußsche Integralsatz V iu i dv V u in i da V u ida i V udv V u nda V u da. (23) Vertauschung von Integration und Grenzübergang Sei f(x, t) eine Funktion von der Zeit t und des Ortes x und F (x, t) die Stammfunktion von f bezüglich x. Will man die zeitliche Ableitung des Integrals b(t) f(x, t)dx a(t) bilden kann man das Theorem von Leibniz anwenden d b(t) f(x, t)dx d (F (b(t), t) F (a(t), t)) dt a(t) dt F (b,t) F (b,t) db F (a,t) F (a,t) da + x dt x dt (24) d b(t) f(x, t)dx b dt a(t) a f db da dx + f(b, t) f(a, t), dt dt analog gilt in 3-D (u V ist die Geschwindigkeit der Hülle des Volumens V ) d f(x, t) f(x, t)dv dv + f(x, t) u V da (25) dt V (t) V (t) V (t) 4

5 1. Aufgabe: Gegeben seien die Vektorfunktionen u (x) und die skalare Funktion ρ (x). 1. Zeigen Sie unter Verwendung von Gleichung (8) die Gültigkeit folgender Gleichung ɛ ijk ɛ lmk ɛ ijk ɛ lmk δ il δ jm δ im δ jl. (26) k1 2. Zeigen Sie, daß folgende Ausdrücke gelten (a) ( u) 0, (b) ( ρ) Zeigen Sie, dass u oder anderst geschrieben u j ( ) u + (ρuu) ρ + u u, (27) + ρu i u j ρ ( ) uj + u i u j, (28) gilt unter der Vorrausstetzung + ρu 0, (29) bzw. + ρu i 0. (30) Hinweis: Multiplizieren Sie (24) mit u, bzw. (25) mit u j. 2. Aufgabe: Gegeben sei das Vektorfeld u (zx, zy, z 2 ) T und das zylinderförmige Volumen V {(x, y, z) R x R und R 2 x 2 y R 2 x 2 und 0 z z 0 } 1. Skizzieren Sie das Vektorfeld u (zx, zy, z 2 ) T. 2. Berechnen Sie das Volumenintegral ( u) dv, für das Volumen V direkt und mit Hilfe des Gaußschen Satzes V ( u) dv u n df u df. (31) V F Hierin ist F V die Hülle des Volumen V und n der aus dem Volumen herauszeigende Einheitsvektor. (Hinweis: In Zylinderkoordinaten (r cos φ, r sin φ, z) T wird vieles leichter). F 5

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Mathematische Grundlagen Mit den folgenden mathematischen Grundlagen sollten

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften

Seminar 1. Epsilontik. 1.1 Der ε-pseudotensor und einige seiner Eigenschaften Seminar 1 1 Vektoralgebra, -Operator, Epsilontik 1.1 Der ε-pseudotensor und einige seiner Eigenschaften In in allen Bereichen der theoretischen Physik sehr gebräuchliches Hilfsmittel ist der ε-pseudotensor.

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Kapitel 2. Mathematische Grundlagen. Koordinatensystem

Kapitel 2. Mathematische Grundlagen. Koordinatensystem Kapitel 2 Mathematische Grundlagen 2.1 Koordinatensystem Zumeist werden in diesem Buch rechtwinkelige kartesische Koordinatensysteme verwendet. Sie sind durch drei zueinander orthogonale Koordinatenachsen

Mehr

Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I. Uwe Thiele

Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I. Uwe Thiele Ausgewählte Mathematische Hilfsmittel Formelsammlung zu Physik I Uwe Thiele Institut für Theoretische Physik Westfälische Wilhelms-Universität Münster Version vom 5. April 2015 Inhaltsverzeichnis 1 Grundlagen

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Allgemeine Mechanik Musterlo sung 10.

Allgemeine Mechanik Musterlo sung 10. Allgemeine Mechanik Musterlo sung 0. U bung. HS 03 Prof. R. Renner Kanonische Transformation Gegeben sei die Hamiltonfunktion des harmonischen Oszillators H(q, p) p + q. m. Berechne die Bewegungsgleichung

Mehr

Tensoren. Oliver Jin, Florian Stöttinger, Christoph Tietz. January 24, 2012

Tensoren. Oliver Jin, Florian Stöttinger, Christoph Tietz. January 24, 2012 Tensoren Oliver Jin, Florian Stöttinger, Christoph Tietz January 24, 2012 Inhaltsverzeichnis Einleitung Einstein sche Summenkonvention Ko- und Kontravariant Stufen Transformationsverhalten Symmetrie Tensoralgebra

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

5.6 Potential eines Gradientenfelds.

5.6 Potential eines Gradientenfelds. die Zirkulation des Feldes v längs aufintegriert. 5.6 Potential eines Gradientenfelds. Die Ableitung einer skalaren Funktion ist der Gradient, ein Vektor bzw. vektorwertige Funktion (Vektorfeld). Wir untersuchen

Mehr

Rechentricks zur Vektoranalysis

Rechentricks zur Vektoranalysis Rechentricks zur Vektoranalysis VU Elektrodynamik 7. April 2010 Zusammenfassung Das vorliegende Dokument stellt eine Zusammenfassung von hilfreichen Rechentricks zur VU Elektrodynamik dar. Es besteht weder

Mehr

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung

Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Klausur Sommersemester 2011 Tensorrechnung für Ingenieure Musterlösung Prof Dr-Ing Ch Tsakmakis Dipl-Ing J Frischmann FB 13, FG Kontinuumsmechanik Aufgabe 1 (Klausuraufgabe) Seien drei Vektoren u, v, w

Mehr

Lösung 01 Klassische Theoretische Physik I WS 15/16

Lösung 01 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

3 Rechnen mit Indizes

3 Rechnen mit Indizes 3 Rechnen mit Indizes Übersicht 3.1 Einstein sche Summenkonvention..... 91 3.2 Skalarprodukt und das Kronecker-Symbol..... 93 3.3 Der Levi-Civita-Tensor... 97 3.4 Produkte mit Kronecker und Levi-Civita...

Mehr

Mathematische Grundlagen der Tensoralgebra und Tensoranalysis

Mathematische Grundlagen der Tensoralgebra und Tensoranalysis Kapitel 2 Mathematische Grundlagen der Tensoralgebra und Tensoranalysis Zusammenfassung Die in der Kontinuumsmechanik betrachteten Größen sind Skalare, Vektoren und Tensoren, oder allgemeiner Tensoren

Mehr

Vektoren. A.1 Symbolische und grafische Darstellung von Vektoren

Vektoren. A.1 Symbolische und grafische Darstellung von Vektoren A Vektoren A. Symbolische und grafische Darstellung von Vektoren Vektoren unterscheiden sich von einfachen reellen Zahlen, die in dieser Systematisierung als Skalare bezeichnet werden. Vektoren besitzen

Mehr

A Einführung in die kartesische Tensorrechnung

A Einführung in die kartesische Tensorrechnung A Einführung in die kartesische Tensorrechnung Für das Verständnis dieses Lehrbuches wird eine gewisse Kenntnis der Tensorrechnung vorausgesetzt. Wir beschränken uns dabei auf kartesische Tensoren, denn

Mehr

2.1 Ableitung eines Vektors nach einem Skalar

2.1 Ableitung eines Vektors nach einem Skalar Kapitel 2 Differentiation von Feldern 2.1 Ableitung eines Vektors nach einem Skalar Wir betrachten einen Vektor im Raum, der sich zeitlich verändert, d.h. a(t). Für einen Zeitpunkt t + t gilt dann a =

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

Nomenklatur. Frank Essenberger FU Berlin. 20. September

Nomenklatur. Frank Essenberger FU Berlin. 20. September Nomenklatur Frank Essenberger FU Berlin 20. September 2006 Inhaltsverzeichnis Vektorrechnung. Vektoren x.............................. 2.2 Matrixprodukt x M........................ 2.3 Inneres Produkt

Mehr

Lösung 10 Klassische Theoretische Physik I WS 15/16

Lösung 10 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu ösung Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel endler Besprechung

Mehr

2.4 Eigenschaften des Gradienten

2.4 Eigenschaften des Gradienten 2.4 Eigenschaften des Gradienten Niveauflächen: Die Niveauflächen (D = 2 Höhenlinien) einer Funktion f sind die durch die Gleichung f(x, y, z) = c = const bestimmten Flächen(scharen); für jeden Wert von

Mehr

Teil 8. Vektoranalysis

Teil 8. Vektoranalysis Teil 8 Vektoranalysis 5 6 8. kalar- und Vektorfelder kalarfeld alternative chreibweisen: U = U(x, y, z) = U( r) R 3 P U(P ) R Visualisierung durch Niveaumengen oder Einschränkungen auf achsenparallele

Mehr

Die Laplace-Gleichung

Die Laplace-Gleichung Die Laplace-Gleichung Dr. Piotr Marecki April 19, 2008 1 Einführung Die Randwertprobleme für die Laplace Gleichung, 2 V (x) = 0, (1) spielen in der Theoretischen Physik eine wichtige Rolle, u.a. : In der

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Mathematische Methoden

Mathematische Methoden Institut für Theoretische Physik der Universität zu Köln http://www.thp.uni-koeln.de/~berg/so/ http://www.thp.uni-koeln.de/~af/ Johannes Berg Andrej Fischer Abgabe: Montag,. Juni Mathematische Methoden.

Mehr

Krummlinige Koordinaten

Krummlinige Koordinaten Krummlinige Koordinaten Einige Koordinatensysteme im R 3 haben wir bereits kennengelernt : x, x 2, x 3... kartesische Koordinaten r, φ, x 3... Zylinderkoordinaten r, φ, ϑ... Kugelkoordinaten Sind andere

Mehr

Mathematische Grundlagen

Mathematische Grundlagen G-CSC Goethe-Center for Scientific Computing der Universität Frankfurt 1. Übung zur Vorlesung Modellierung und Simulation 3 (WS 2012/13) Prof. Dr. G. Wittum Susanne Höllbacher, Martin Stepniewski, Christian

Mehr

Kapitel 22. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 22. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel Aufgaben Verständnisfragen Aufgabe. Gegeben sind kartesische Tensoren r ij k, s ij und t ij. Welche der folgenden Größen sind koordinateninvariant? s ii, s ij t jk, s ij t ji, r ijj, s ij t jk

Mehr

Vektor- und Tensoralgebra

Vektor- und Tensoralgebra Begleitblatt Alg zur Vorlesung Höhere Festigkeitslehre TFH Berlin, FB VIII, Prof. Dr.-Ing. A. Krawietz Vektor- und Tensoralgebra {e 1, e 2, e 3 } : Orthonormierte Basis Vektoren: a = 3 a i e i, b = 3 k=1

Mehr

1 Übungen zum Indexkalkül

1 Übungen zum Indexkalkül mpuls- & Energiebilanzen Energiemethoden 01. Übungsblatt, WS 2012/13, S. 1 1 Übungen zum ndexkalkül a Vektoren können in ndexschreibweise über einen freien ndex notiert werden. Also zum Beispiel als v

Mehr

Für räumliche Vektorfelder F, G und räumliche Skalarfelder U, V gelten folgende Rechenregeln. Rechenregeln für Differentialoperatoren 1-1

Für räumliche Vektorfelder F, G und räumliche Skalarfelder U, V gelten folgende Rechenregeln. Rechenregeln für Differentialoperatoren 1-1 Rechenregeln für Differentialoperatoren Für räumliche Vektorfelder F, G und räumliche Skalarfelder U, V gelten folgende Rechenregeln. Rechenregeln für Differentialoperatoren 1-1 Rechenregeln für Differentialoperatoren

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3

Wir erinnern zunächst an die verschiedenen Arten von Funktionen, die uns bisher begegnet sind: V : r 0 3 V ( r) 0 3 3 1. Mathematische Grundlagen Zur Vorbereitung fassen wir in diesem ersten Kapitel die wichtigsten mathematischen Konzepte zusammen, mit denen wir in der Elektrodynamik immer wieder umgehen werden. 1.1.

Mehr

Vektoralgebra und -analysis

Vektoralgebra und -analysis Kapitel 2 Vektoralgebra und -analysis Peter-Wolfgang Gräber Systemanalyse in der Wasserwirtschaft Ausgehend von einfachen, bekannten Darstellungen der Vektorrechnung werden die Grundregeln der Vektoralgebra

Mehr

Hochschule Düsseldorf University of Applied Sciences. 19. November 2015 HSD. Physik. Energie II

Hochschule Düsseldorf University of Applied Sciences. 19. November 2015 HSD. Physik. Energie II Physik Energie II Arbeit bei variabler Kraft Was passiert wenn sich F in W = Fx ständig ändert? F = k x Arbeit bei variabler Kraft W = F dx Arbeit bei variabler Kraft F = k x W = F dx = ( k x)dx W = F

Mehr

. (1.1) also über eine Lorentzkurve. In Abb. 1.1 ist der Grenzwertprozess dargestellt. Die Eigenschaften

. (1.1) also über eine Lorentzkurve. In Abb. 1.1 ist der Grenzwertprozess dargestellt. Die Eigenschaften . Diracsche δ-funktion. Diracsche δ-funktion Die Diracsche δ-funktion δ(x) besitzt den Definitionsbereich x R und ist charakterisiert durch die folgende Eigenschaft: I dxδ(x x 0 ) = { für x 0 I R 0 für

Mehr

Aufgaben zu Kapitel 22

Aufgaben zu Kapitel 22 Aufgaben zu Kapitel Aufgaben zu Kapitel Verständnisfragen Aufgabe. Gegeben sind kartesische Tensoren r ij k, s ij und t ij. Welche der folgenden Größen sind koordinateninvariant? s ii, s ij t jk, s ij

Mehr

Vorlesung. Mathematik für Physiker III. Kapitel 3 Differentialformen. 10. Differentialformen 1. Ordnung

Vorlesung. Mathematik für Physiker III. Kapitel 3 Differentialformen. 10. Differentialformen 1. Ordnung Vorlesung Mathematik für Physiker III Kapitel 3 Differentialformen 10. Differentialformen 1. Ordnung Sei V ein Vektorraum über R, V sein Dualraum. Zu einer k-dimensionalen Untermannigfaltigkeit M des R

Mehr

Repetitorium C: Nabla, 2-, 3-dim. Integrale, Satz v. Gauß

Repetitorium C: Nabla, 2-, 3-dim. Integrale, Satz v. Gauß Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 6/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugler http://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_6_7/r_ rechenmethoden_6_7/

Mehr

Verschiedenes. Exponieren einer Matrix. Wir betrachten als Beispiel folgende Matrix: 0 1 A = 1 0

Verschiedenes. Exponieren einer Matrix. Wir betrachten als Beispiel folgende Matrix: 0 1 A = 1 0 Verschiedenes Exponieren einer Matrix Wir betrachten als Beispiel folgende Matrix: A = Man kann die Funktion f(a) einer Matrix A so berechnen, indem man auf die Reihendarstellung der Funktion f(x) zurückgeht.

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

Mathematik für Ingenieure A III Wintersemester 2008

Mathematik für Ingenieure A III Wintersemester 2008 1 / 35 Mathematik für Ingenieure A III Wintersemester 28 J. Michael Fried Lehrstuhl Angewandte Mathematik III 21.11.28 2 / 35 Wiederholung Divergenz und Rotation Gradient und Laplace-Operator Merkregeln

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Mathematische Rechenmethoden

Mathematische Rechenmethoden Mathematische Rechenmethoden Version vom SS 2014 Universität Mainz Fachbereich 08 Theorie der kondensierten Materie Prof. Dr. Friederike Schmid Mathematische Rechenmethoden für Physiker Mathematische Rechenmethoden

Mehr

Übungen zu M1 WS 2007/2008

Übungen zu M1 WS 2007/2008 Übungen zu M1 WS 2007/2008 1. Welche der folgenden Mengen sind Vektorräume über R und in welchem Sinn? a {f : R n R f stetig} b {x R n n i=1 (x i 2 = 1} = S n 1 c {f : R R f (streng monoton steigend} 2.

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Solutions I Publication:

Solutions I Publication: WS 215/16 Solutions I Publication: 28.1.15 1 Vektor I 4 2 Ein Objekt A befindet sich bei a = 5. Das zweite Objekt B befindet sich bei b = 4. 2 3 (a) Die Entfernung von Objekt A zum Ursprung ist die Länge

Mehr

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS.

Analysis III. Teil I. Rückblick auf das letzte Semester. Themen aus dem SS Inhalt der letzten Vorlesung aus dem SS. Analysis III für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Teil I Rückblick auf das letzte Semester Fakultät für Mathematik, Informatik und Naturwissenschaften

Mehr

Analysis für Physiker Zusätze

Analysis für Physiker Zusätze Analysis für Physiker Zusätze nach den Vorlesungen von Prof. Dr. Werner Timmermann (Sommersemester 2007, Wintersemester 2007/08) Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stand: 23.

Mehr

Rechenmethoden für Studierende der Physik im ersten Jahr

Rechenmethoden für Studierende der Physik im ersten Jahr Markus Otto Rechenmethoden für Studierende der Physik im ersten Jahr Spektrum k-/jl AKADEMISCHER VERLAG Vorwort v 1 Vektorrechnung 1 1.1 Grundlagen der Vektorrechnung 1 1.1.1 Richtung und Betrag 1 1.1.2

Mehr

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3

1. Juli F k x k (X), X D. k=1 (X) F. x 2 (X) F 3. x 1 F 2. F 1 (X). rot F (X) = F n (X) = F j x i. , 1 i, j 3 . Juli 28 3 9 Vektoranalysis 9. Divergenz und otation Es sei D n offen und = [,..., n ] T sei stetig differenzierbares Vektorfeld. Unter der Divergenz des Vektorfeldes versteht man den Ausdruck div = n

Mehr

Rechenmethoden der Physik Vorlesungsskript

Rechenmethoden der Physik Vorlesungsskript Rechenmethoden der Physik Vorlesungsskript Prof. Dr. Gernot Akemann Fakultät für Physik Universität Bielefeld Inhaltsverzeichnis 0 Inhaltsübersicht 5 0.1 Literatur: einige Standardwerke........................

Mehr

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2

Mehr

12. Partielle Ableitungen

12. Partielle Ableitungen H.J. Oberle Analysis III WS 2012/13 12. Partielle Ableitungen 12.1 Partielle Ableitungen erster Ordnung Gegeben: f : R n D R, also eine skalare Funktion von n Variablen x = (x 1,..., x n ) T. Hält man

Mehr

Mathematischer Einführungskurs für die Physik

Mathematischer Einführungskurs für die Physik Siegfried Großmann Mathematischer Einführungskurs für die Physik 9., überarbeitete und erweiterte Auflage Mit 123 Figuren, über 110 Beispielen und 233 Selbsttests mit Lösungen STUDIUM VIEWEG+ TEUBNER Inhalt

Mehr

Analysis. Lineare Algebra

Analysis. Lineare Algebra Analysis Ableitung Ableitungsregeln totale und partielle Ableitung Extremwertbestimmung Integrale partielle Integration Substitution der Variablen Koordinatentransformationen Differentialgleichungen Lineare

Mehr

Vom Spannungstensor zum Impulsstrom

Vom Spannungstensor zum Impulsstrom Vom Spannungstensor zum Impulsstrom Physikalische Grundpraktika FU-Berlin Quelle: Skript zur Mechanik, Herrmann Welche Größe wird durch den Pfeil symbolisiert? Wie hängt die Größe (formal) mit anderen

Mehr

Vektoren - Die Basis

Vektoren - Die Basis Vektoren - Die Basis Motivation (Als Vereinfachung - der Schreibarbeit - wählen wir meistens Vektoren in R 2.) Eigentlich ist ja Alles klar! Für einen Vektor a gilt a = ( a x a y )! Am Ende werden wir

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

5. Grundgleichungen der Magnetostatik

5. Grundgleichungen der Magnetostatik 5. Grundgleichungen der Magnetostatik 5.1 Divergenz der magnetischen Induktion Wir bestimmen jetzt die eldgleichungen der Magnetostatik, d.h. infinitesimale (lokale) Gleichungen für die magnetische lussdichte,

Mehr

Gradient eines Skalarfeldes

Gradient eines Skalarfeldes Gradient eines Skalarfeldes 1-E Gradient eines Skalarfeldes Definition 1: Unter dem Gradient eines differenzierbaren Skalarfeldes Φ (x, y) versteht man den aus den partiellen Ableitungen 1. Ordnung von

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

5. Grundgleichungen der Magnetostatik

5. Grundgleichungen der Magnetostatik 5. Grundgleichungen der Magnetostatik 5.1 Divergenz der magnetischen Induktion Wir bestimmen etzt die eldgleichungen der Magnetostatik, d.h. infinitesimale (lokale Gleichungen für die magnetische lussdichte,

Mehr

Klassische Theoretische Physik I WS 2013/ Kronecker und Levi-Civita Symbole ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Kronecker und Levi-Civita Symbole ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 2013/2014 Prof. Dr. J. Schmalian Blatt 4 Dr. P. P. Orth Abgabe und Besprechung 22.11.2013 1. Kronecker und

Mehr

Skript zum Brückenkurs 2014

Skript zum Brückenkurs 2014 Skript zum Brückenkurs 214 Tobias Müller TobiasMueller@physik.uni-kassel.de 3. April 214 Inhaltsverzeichnis 1 Vektoren und Matrizen 3 1.1 Vektrorrechnung im R n............................ 3 1.1.1 Rechenoperationen...........................

Mehr

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k). 4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die

Mehr

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya

Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya Zylinderkoordinaten E E E3 Berechnung in beliebigen krummlinigen Koordinaten Die Koordinaten sind durch die Beziehungen definiert: x x u, v, w, y y u, v, w, z z u, v, w Für sie sollen stetige partielle

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 11/12 Böse, Penn-Karras, Schneider

Technische Universität Berlin Fakultät II Institut für Mathematik WS 11/12 Böse, Penn-Karras, Schneider Technische Universität Berlin Fakultät II Institut für Mathematik WS / Böse, Penn-Karras, Schneider 5.4. Rechenteil April Klausur Analysis II für Ingenieure Musterlösung. Aufgabe 3 Punkte Wir haben g(x,

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel 2.Transatlantische Vorlesung aus Oaxaca, Mexiko, 20. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Tensoranalysis Mai 2010

Tensoranalysis Mai 2010 Tensoranalysis Mai 2010 Einführung Der Tensor ist ein mathematisches Objekt aus der Algebra und Differentialgeometrie. Der Begriff wurde ursprünglich in der Physik eingeführt und später mathematisch präzisiert.

Mehr

Elastizität und Bruchmechanik

Elastizität und Bruchmechanik Technische Universität Berlin 1 Institut für Mechanik 6. Juni 2008 Kräftegleichgewicht Spannungstensor Satz von Gauss Vertauschung Massenmittelpunktsbeschleunigung Zusammenfassung erstes Bewegungsgesetz

Mehr

Wiederholung: Integralsätze im Raum

Wiederholung: Integralsätze im Raum Wiederholung: Integralsätze im Raum Sei S R 2 ein glattes Flächenstück, d.h. man hat eine (reguläre) Parametrisierung Φ : D R 2 S R 3, (x, y) s = Φ(x, y). S Φ(x, y) T 1 dx T 2 dy Φ D (x, y) e 1 dx e 2

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum Vektorrechnung Wir werden den Vektorbegriff anschaulich einführen und beschränken uns zunächst auf den zweidimensionalen euklidischen Raum. Die Elemente dieses Raumes sind Punkte P, Q, R, S,.... Geordnete

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz

Mehr

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix Matrizen Definition: i Eine m n Matrix A ist ein rechteckiges Schema aus Zahlen, mit m Zeilen und n Spalten: a a 2 a n a 2 a 22 a 2n a m a m2 a mn Die Spaltenvektoren dieser Matrix seien mit a,, a n bezeichnet

Mehr

Zusammenfassung zum Thema Vektor- und Matrizenrechnung

Zusammenfassung zum Thema Vektor- und Matrizenrechnung Zusammenfassung zum Thema Vektor- und Matrizenrechnung Mathematischer Vorkurs für Physiker und Naturwissenschaftler WS 2014/2015 Grundbegriffe der Linearen Algebra Viele physikalische Größen (Geschwindigkeit,

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der 7 Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Folgerung: Drehmatrizen haben die Determinante. Folgerung: Drehmatrizen sind orthogonale Matrizen, das heißt D = D

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem

Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,

Mehr

1 Partielle Differentiation

1 Partielle Differentiation Technische Universität München Christian Neumann Ferienkurs Analysis 2 Vorlesung Dienstag SS 20 Thema des heutigen Tages sind Differentiation und Potenzreihenentwicklung Partielle Differentiation Beim

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Das Levi-Civita-Symbol alias ε-tensor

Das Levi-Civita-Symbol alias ε-tensor 1 Das Levi-Civita-Symbol alias ε-tensor Wir gehen aus vom Kreuzprodukt und schreiben dieses auf eine zunächst komplex anmutende Art: a a 2 b 3 a 3 b 2 0 a 3 a 2 b 1 b = a 3 b 1 a 1 b 3 = a 3 0 a 1 b 2

Mehr

5 Der Gaußsche und Stokes sche Integralsatz

5 Der Gaußsche und Stokes sche Integralsatz HM III = MATH III FT 2013 50 5 Der Gaußsche und Stokes sche Integralsatz Der Gaußsche Integralsatz umgangssprachlich am eispiel strömender Flüssigkeiten: Die Flüssigkeitsmenge, die durch die Oberfläche

Mehr

Definition. Eine 2-Form ω auf einem affinen Raum (X, V, +) ist eine differenzierbare Abbildung

Definition. Eine 2-Form ω auf einem affinen Raum (X, V, +) ist eine differenzierbare Abbildung 2.6 Flächenintegrale Die passenden Integranden für Flächenintegrale sind weder Vektorfelder noch 1-Formen, sondern sogenannte 2-Formen. 2.6.1 2-Formen In Abschnitt 2.3 haben wir gelernt, dass 1-Formen

Mehr

Mathematische Einführung

Mathematische Einführung Lehrstuhl für Technische Elektrophysik Technische Universität München Übungen zu "Elektrizitätslehre" (Prof. Wachutka) Mathematische Einführung Die vorliegende Einführung in die Mathematik zur Vorlesung

Mehr