Verschiedenes. Exponieren einer Matrix. Wir betrachten als Beispiel folgende Matrix: 0 1 A = 1 0

Größe: px
Ab Seite anzeigen:

Download "Verschiedenes. Exponieren einer Matrix. Wir betrachten als Beispiel folgende Matrix: 0 1 A = 1 0"

Transkript

1 Verschiedenes Exponieren einer Matrix Wir betrachten als Beispiel folgende Matrix: A = Man kann die Funktion f(a) einer Matrix A so berechnen, indem man auf die Reihendarstellung der Funktion f(x) zurückgeht. Im Falle der Exponentialfunktion ist diese Reihendarstellung von folgender Form: exp(x) = n! xn = + x + x +... Man schreibt also eine Funktion als Linearkombination von {, x, x,...}, was eine Basis des Raumes der Polynome ist. exp(iαa) = k! ik α k A k Man spaltet nun die Reihe auf in zwei verschiedene Reihen mit geraden Koeffizienten k = n und ungeraden Koeffizienten k = n + mit n N {0}. (n)! in α n A n + i n+ (n + )! αn+ A n+ Als nächstes schauen wir uns A n und A n+, also geradzahlige und nicht geradzahlige Potenzen der Matrix A an. A = = = 0 A n = (A ) n = n = A n+ = A n A = A = A Geradezahlige Potenzen von A sind also die zweidimensionale Einheitsmatrix und nicht geradzahlige Potenzen wieder die Matrix A selbst. Mit i n = ( ) n und i n+ = i i n = i( ) n folgt weiter: ( ) n (n)! αn A n + = ( ) n (n)! αn + ia i( ) n (n + )! αn+ A n+ = ( ) n (n + )! αn+ ( ) n (n)! αn + i ( ) n (n + )! αn+ A = Die Einheitsmatrix und die Matrix A lassen sich aus der Summe herausziehen, da diese natürlich nicht vom Summationsindex abhängen. Verwenden wir nun noch die Reihendarstellungen der Sinus- und Kosinusfunktionen, also cos(α) = so ergibt sich: ( ) n (n)! αn und sin(α) = ( ) n (n)! αn + ia ( ) n (n + )! αn+ ( ) n (n + )! αn+ = cos(α) + ia sin(α) Nun können wir noch die ursprüngliche Matrix A einsetzen: cos(α) i sin(α) cos(α) + ia sin(α) = cos(α) + i sin(α) = = exp(iαa) i sin(α) cos(α)

2 Das Levi-Civita-Symbol Das Levi-Civita-Symbol wird auch als total antisymmetrischer ε-tensor bezeichnet. Ein Tensor ist ein Objekt, das durch ein bestimmtes Transformationsverhalten bei Koordinatensystemtransformationen charakterisiert ist. Darauf wollen wir doch jetzt nicht näher eingehen. Es ist jedoch sinnvoll, auf den Begriff der totalen Antisymmetrie einzugehen. Dies bedeutet, dass sich das Vorzeichen von ε ijk ändert, sobald man zwei Indizes vertauscht: ε jik = ε ijk, ε ikj = ε ijk Setzen wir zwei Indizes gleich (also beispielsweise i = j), so gilt ε iik = ε iik, was nur für ε iik = 0 erfüllt ist. Analog funktioniert dies für die anderen Indizes. Sind also zwei oder mehr Indizes gleich, so verschwindet das Levi-Civita-Symbol. Setzt man ε 3 =, so gilt: ε 3 =, ε 3 =, ε 3 = ε 3 =, ε 3 =, ε 3 = ε = 0, ε = 0, ε 3 = 0, ε = 0, ε 3 = 0, ε 3 = 0,... Zusammenfassend kann man sagen: für (i, j, k) zyklisch aus (,, 3) ε ijk = für (i, j, k) antizyklisch aus (,, 3) 0 sonst (zwei oder drei Indizes gleich) Anwendungen des Levi-Civita-Symbols sind beispielsweise das Kreuzprodukt und die Determinante:.) Kreuzprodukt: Das Kreuzprodukt zweier Vektoren a und b ist wieder ein Vektor (der auf diesen beiden Vektoren senkrecht steht). Die k-te Komponente dieses neuen Vektors c lässt sich mit dem Levi-Civita-Symbol schreiben: c k = ( a b) k = i= j= ε ijk a i b j Summiert wird über die beiden Indizes i und j. Der Index k ist frei, über diesen wird nicht summiert. Führen wir also die Summationen aus: c = ( a b) = = ε }{{} a b + ε a }{{} b + ε 3 a }{{} b 3 + ε a }{{} b + ε 3 a }{{} 3 b + ε a }{{} b + ε 3 a }{{} b 3 + ε 3 a }{{} 3 b = = = = a b 3 a 3 b Für die anderen beiden Komponenten gilt (wobei wir nun die ε ijk mit zwei oder drei gleichen Indizes sofort gleich null setzen): c = ( a b) = ε 3 a b 3 + ε 3 a 3 b = a 3 b a b 3 c 3 = ( a b) 3 = ε 3 a b + ε 3 a b = a b a b Zusammenfassend gilt also (wie wir aus der Schule wissen): a a b 3 a 3 b b = a 3 b a b 3 a b a b.) Determinante einer Matrix: a.) zweidimensionale Matrix: det(a) = ε ij a i a j = ε a a + ε a a = a a a a i= j=

3 Hier haben wir also das zweidimensionale ε-symbol verwendet, das analog zum dreidimensionalen definiert ist. Es gilt also: ε ij = ε ji, ε ii = 0 ε = ε = 0, ε =, ε = b.) dreidimensionale Matrix: det(a) = i= j= k= ε ijk a i a j a 3k = ε 3 a a a 3 + ε 3 a a 3 a 3 + ε 3 a 3 a a 3 + ε 3 a a 3 a 3 + ε 3 a 3 a a 3 + ε 3 a a a 33 = = a a a 33 + a a 3 a 3 + a 3 a a 3 a a 3 a 3 a 3 a a 3 a a a 33 Das ist nichts anderes als die bekannte Sarrussche Regel. Determinanten höherdimensionaler Matrizen kann man mit einem entsprechenden höherdimensionalen Levi-Civita-Symbol definieren, das dieselben Eigenschaften hat. Damit wollen wir uns jedoch jetzt nicht beschäftigen. Kommutatoren Kommutatoren sind wichtige Formalismen in der Algebra bzw. der Quantenmechanik in der Physik. Mittels der Berechnung eines Kommutators wird überprüft, ob man die Reihenfolge der Multiplikation von mathematischen Objekten vertauschen darf. Der Kommutator von A, B ist definiert durch: [A, B] := A B B A Ist [A, B] 0, so darf man A und B nicht vertauschen. Das ist nur im Falle [A, B] = 0 möglich! Aus der Definition des Kommutators kann man außerdem folgende Eigenschaften (Antisymmetrie!) ablesen: [B, A] = B A A B = (A B B A) = [A, B] und [A, A] = A A A A = 0 Natürlich ist der Kommutator einer Größe mit sich selbst gleich null. Schauen wir uns einige Beispiele an:.) Reelle Zahlen: [3, π] = 3 π π 3 = 3 π 3 π = 0 Natürlich ist die Multiplikation von reellen Zahlen vertauschbar (kommutativ). Das Kommutativgesetz kennen wir seit der fünften Klasse. Algebraisch bilden die reellen Zahlen (sowohl bezüglich Addition als auch Multiplikation) einen sogenannten Körper..) Matrizen: Die Matrixmultiplikation ist im allgemeinen nicht kommutativ. Man darf die Matrizen also bei der Multiplikation nicht einfach miteinander vertauschen. (Die Matrizen bilden bezüglich der Multiplikation einen sogenannten Ring.) Sei beispielsweise A = so gilt: A B = ( ) und B =, B A = ( 0 0 ) 3 6 [A, B] = A B B A = Eine Matrix, die man bei der Multiplikation mit jeder anderen Matrix vertauschen darf, ist die Einheitsmatrix: E = A E =, E A = [A, E] = A E E A = 0 3

4 Wir berechnen den Kommutator für folgende drei Matrizen: 0 i A =, A = und A i 0 3 = 0 0 i 0 i i 0 i 0 [A, A ] = A A A A = = = i = ia i 0 i 0 0 i 0 i [A, A 3 ] = A A 3 A 3 A = = = = ia i 0 0 i 0 i 0 i 0 i [A, A 3 ] = A A 3 A 3 A = = = = ia i 0 0 i 0 i 0 i 0 i 0 Mit der obigen Betrachtung gilt also außerdem: [A, A ] = ia 3, [A 3, A ] = ia, [A 3, A ] = ia [A, A ] = [A, A ] = [A 3, A 3 ] = 0 Wenn man jetzt das ganze scharf ansieht, kann das Ergebnis ganz kurz mit dem Levi-Civita-Symbol geschrieben werden: [A i, A j ] = i ε ijk A k k= Beispielsweise gilt: [A, A ] = i(ε A + ε A + ε 3 A 3 ) = ia 3 [A, A ] = i(ε A + ε A + ε 3 A 3 ) = ia 3 [A, A ] = i(ε A + ε A + ε 3 A 3 ) = 0 Die totale Antisymmetrie des Levi-Civita-Symbols spiegelt also die Antisymmetrie des Kommutators wieder, also [A i, A j ] = [A j, A i ] und [A i, A i ] = 0. Landau-Symbole ϕ(x) = o(ψ(x)) für x x 0 lim x x0 ϕ(x) ψ(x) = 0. ϕ(x) = O (ψ(x)) für x x 0 ϕ(x) ψ(x) bleibt für x x 0 beschränkt. In der Physik verwendet man (fast) ausschließlich das große Landau-Symbol O. Beispielsweise gilt: exp(x) = n! xn = + x + O(x ) = + x +... Mit O(x ) bezeichnet man alle restlichen Terme der Potenz und höher (Ordnung!), also: O(x ) = x + 3! x Es ist also x + 3! x x = + 3! x +... und damit für x 0 beschränkt (nämlich /), so wie es nach Definition sein muss. Weiterhin gilt: sin(x) = ( ) n (n + )! xn+ = x + O(x 3 ) mit O(x 3 ) = 3! x3 + 5! x ! x3 + 5! x x 3 = 3! + 5! x +... ist also beschränkt für x 0 (nämlich /3!). Ihr könnt auf dem Blatt einfach alle Landau-Symbole gleich null setzen. 4

5 Herleitung des Winkels beim letzten Blatt, Aufgabe (c) a.) Wir suchen einen Vektor, der senkrecht auf der Drehachse steht. Das wird beispielsweise erfüllt von b = wegen a b = 0. b.) Wir berechnen den gedrehten Vektor b durch Multiplikation mit D: b = D b = = + 0 c.) Nun berechnen wir den Winkel zwischen dem ursprünglichen Vektor b und dem gedrehten b : cos ϑ = b b b b Mit b b = + = und b = + 4 folgt: cos ϑ = = 4, b = = 4 = 4 ( ) ϑ = , 95 5

Das Levi-Civita-Symbol alias ε-tensor

Das Levi-Civita-Symbol alias ε-tensor 1 Das Levi-Civita-Symbol alias ε-tensor Wir gehen aus vom Kreuzprodukt und schreiben dieses auf eine zunächst komplex anmutende Art: a a 2 b 3 a 3 b 2 0 a 3 a 2 b 1 b = a 3 b 1 a 1 b 3 = a 3 0 a 1 b 2

Mehr

2.3.4 Drehungen in drei Dimensionen

2.3.4 Drehungen in drei Dimensionen 2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau

Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Prof. Dr. J. Schumacher Merkblatt zur Strömungsmechanik 1 Institut für Thermo- und Fluiddynamik Technische Universität Ilmenau Mathematische Grundlagen Mit den folgenden mathematischen Grundlagen sollten

Mehr

2.2 Kollineare und koplanare Vektoren

2.2 Kollineare und koplanare Vektoren . Kollineare und koplanare Vektoren Wie wir schon gelernt haben, können wir einen Vektor durch Multiplikation mit einem Skalar verlängern oder verkürzen. In Abbildung 9 haben u und v die gleiche Richtung,

Mehr

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der

Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Die Einheitsvektoren des Koordinatensystems K sind die Spalten der 7 Aus dem Beispiel lässt sich ablesen (und auch beweisen, siehe Mathematikvorlesung): Folgerung: Drehmatrizen haben die Determinante. Folgerung: Drehmatrizen sind orthogonale Matrizen, das heißt D = D

Mehr

Zusammenfassung zum Thema Vektor- und Matrizenrechnung

Zusammenfassung zum Thema Vektor- und Matrizenrechnung Zusammenfassung zum Thema Vektor- und Matrizenrechnung Mathematischer Vorkurs für Physiker und Naturwissenschaftler WS 2014/2015 Grundbegriffe der Linearen Algebra Viele physikalische Größen (Geschwindigkeit,

Mehr

Rechenmethoden der Physik Vorlesungsskript

Rechenmethoden der Physik Vorlesungsskript Rechenmethoden der Physik Vorlesungsskript Prof. Dr. Gernot Akemann Fakultät für Physik Universität Bielefeld Inhaltsverzeichnis 0 Inhaltsübersicht 5 0.1 Literatur: einige Standardwerke........................

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

Determinante. Die Determinante. einer quadratischen Matrix A mit Spalten a j kann durch folgende Eigenschaften definiert werden.

Determinante. Die Determinante. einer quadratischen Matrix A mit Spalten a j kann durch folgende Eigenschaften definiert werden. Determinante Die Determinante det A = det(a 1,..., a n ) einer quadratischen Matrix A mit Spalten a j kann durch folgende Eigenschaften definiert werden. Multilineariät: det(..., αa j + βb j,...) = α det(...,

Mehr

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n

Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $ $Id: matrixtex,v 14 2008/12/02 21:08:55 hk Exp $ $Id: vektortex,v 12 2008/12/05 11:27:45 hk Exp hk $ II Lineare Algebra 6 Die Matrixmultiplikation 63 Inverse Matrizen und reguläre lineare Gleichungssysteme

Mehr

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A. Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Skalarprodukte im Funktionenraum und orthogonale Funktionen

Skalarprodukte im Funktionenraum und orthogonale Funktionen 1 Skalarprodukte im Funktionenraum und orthogonale Funktionen Im Allgemeinen muss ein reelles Skalarprodukt (, ) (wir betrachten reelle Funktionen) folgende Eigenschaften ausweisen: Bilinearität (Linearität

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum

Abbildung 1: Geordnete Paare im zweidimensionalen euklidischem Raum Vektorrechnung Wir werden den Vektorbegriff anschaulich einführen und beschränken uns zunächst auf den zweidimensionalen euklidischen Raum. Die Elemente dieses Raumes sind Punkte P, Q, R, S,.... Geordnete

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem x y + z 1 x + y

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

= 9 10 k = 10

= 9 10 k = 10 2 Die Reihe für Dezimalzahlen 1 r = r 0 +r 1 10 +r 1 2 100 + = r k 10 k, wobei r k {0,,9} für k N, konvergiert, da r k 10 k 9 10 k für alle k N und ( 1 ) k 9 10 k 9 = 9 = 10 1 1 = 10 10 k=0 k=0 aufgrund

Mehr

zu beweisen, kann man sich daher auf einen speziellen, möglichst einfach strukturierten Raum

zu beweisen, kann man sich daher auf einen speziellen, möglichst einfach strukturierten Raum 9 Tensoren Im Teil I haben wir die wesentlichen Eigenschaften des physikalischen Raumes mit den Mitteln der linearen Algebra beschrieben. Die Orte im Raum haben wir mit den Punkten eines dreidimensionalen,

Mehr

SBP Mathe Aufbaukurs 2 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 2

SBP Mathe Aufbaukurs 2 # 0 by Clifford Wolf. SBP Mathe Aufbaukurs 2 SBP Mathe Aufbaukurs 2 # 0 by Clifford Wolf SBP Mathe Aufbaukurs 2 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker Wintersemester 3/4 Heimarbeitsblatt 4 Die Lösungshinweise dienen

Mehr

2 Die Algebra der Matrizen

2 Die Algebra der Matrizen Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem y + z = 1 + y z

Mehr

11. Vorlesung. Lineare Algebra und Sphärische Geometrie.

11. Vorlesung. Lineare Algebra und Sphärische Geometrie. 11. Vorlesung. Lineare Algebra und Sphärische Geometrie. In dieser Vorlesung behandeln wir eine geometrische Anwendung der linearen Algebra. Insbesondere betrachten wir orthogonale Abbildungen. 1. Orthogonale

Mehr

Tensoren. Oliver Jin, Florian Stöttinger, Christoph Tietz. January 24, 2012

Tensoren. Oliver Jin, Florian Stöttinger, Christoph Tietz. January 24, 2012 Tensoren Oliver Jin, Florian Stöttinger, Christoph Tietz January 24, 2012 Inhaltsverzeichnis Einleitung Einstein sche Summenkonvention Ko- und Kontravariant Stufen Transformationsverhalten Symmetrie Tensoralgebra

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 95 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv? Umkehrfunktionen Aufgabe 1. Sei A = {1, 2, 3, 4}. Definieren Sie eine bijektive Funktion f A A und geben Sie ihre Umkehrfunktion f 1 an. Lösung von Aufgabe 1. Zum Beispiel f, f 1 A A mit f(x) = x f 1 (x)

Mehr

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander: Definition: Euklidischer Raum mit Skalarprodukt Einsteinsche Summenkonvention (ES): über doppelt vorkommende Indizes wird summiert. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Körper, Ringe und Gruppen

TECHNISCHE UNIVERSITÄT MÜNCHEN. Körper, Ringe und Gruppen TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 2006/07 en Blatt 6 27.11.2006 Körper, Ringe und Gruppen Z13 Gruppen Seien GL

Mehr

3 Invertierbare Matrizen Die Inverse einer (2 2)-Matrix Eigenschaften invertierbarer Matrizen... 18

3 Invertierbare Matrizen Die Inverse einer (2 2)-Matrix Eigenschaften invertierbarer Matrizen... 18 Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik 2 Dr. Thomas Zehrt Vektoren und Matrizen Inhaltsverzeichnis Vektoren(Wiederholung bzw. Selbststudium 2. Linearkombinationen..............................

Mehr

Matrizen und Drehungen

Matrizen und Drehungen Matrizen und Drehungen 20. Noember 2003 Diese Ausführungen sind im wesentlichen dem Skript zur Vorlesung Einführung in die Theoretische Physik I und II on PD Dr. Horst Fichtner entnommen. Dieses entstand

Mehr

9 Lineare Algebra 2 (SS 2009)

9 Lineare Algebra 2 (SS 2009) 9 Lineare Algebra 2 (SS 2009) Vorbemerkung: Das Einsetzen von quadratischen Matrizen in Polynome. Im folgenden sei R ein kommutativer Ring und R[T] der Polynomring mit Koeffizienten in R (dies ist wieder

Mehr

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung )

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung ) Aufgabe 1: Berechne die Determinante und die Transponierte der folgenden Matrizen: 0 1 1.1 M =( 0 4 1 4 det M =0 4 1 4= 4 M T =( 5 3 3 1.2 1 1 3 A=( =( A T 3 0 1 5 1 3 3 1 0 3 3 1 4 4 det M = 5 1 1+3 3

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 9 20. Mai 2010 Kapitel 9. Matrizen und Determinanten Der Begriff der Matrix Die transponierte Matrix Definition 84. Unter einer (reellen) m n-matrix

Mehr

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME In diesem Abschnitt wiederholen wir zunächst grundlegende Definitionen und Eigenschaften im Bereich der Matrizenrechnung, die wahrscheinlich bereits in Ansätzen

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten 6.1 Symmetrische Gruppe Definition: Eine bijektive Abbildung von einer Menge X auf sich selbst heisst eine Permutation von X. Satz-Definition:

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen 1 Algebraische Strukturen 1.1 Innere Verknüpfungen 1.1.1 Grundbegriffe und Beispiele In der Analysis wie auch in der linearen Algebra kommen verschiedene Arten von Rechenoperationen vor, bei denen man

Mehr

3 Rechnen mit Indizes

3 Rechnen mit Indizes 3 Rechnen mit Indizes Übersicht 3.1 Einstein sche Summenkonvention..... 91 3.2 Skalarprodukt und das Kronecker-Symbol..... 93 3.3 Der Levi-Civita-Tensor... 97 3.4 Produkte mit Kronecker und Levi-Civita...

Mehr

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen Vortrag zum Seminar zur Analysis, 05.07.2010 André Stollenwerk, Eva-Maria Seifert Die Fourieranalysis beschäftigt sich mit dem Problem, inwiefern sich Funktionen mittels Sinus und Cosinus, das heißt periodischen

Mehr

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops 15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

Züchtungslehre - Einführung in Lineare Algebra Peter von Rohr

Züchtungslehre - Einführung in Lineare Algebra Peter von Rohr Züchtungslehre - Einführung in Lineare Algebra Peter von Rohr 04-09-2016 Einführung in Lineare Algebra Aus der linearen Algebra brauchen wir für diese Vorlesung nur das Rechnen mit Vektoren und Matrizen.

Mehr

1.2 Das kartesische Koordinatensystem

1.2 Das kartesische Koordinatensystem Kapitel 1 Vektoralgebra 1.1 Einführung Am ersten Kapitel widmen wir uns den Grundlagen der Vektoralgebra, wobei wir speziell auf die Definitionen von Skalaren und Vektoren eingehen und Produkte zwischen

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

Exkurs: Klassifikation orthogonaler 2 2-Matrizen.

Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Exkurs: Klassifikation orthogonaler 2 2-Matrizen. Aussage: Es gilt: (a) Jede orthogonale 2 2 Matrix A mit det(a) = 1 hat das Aussehen cos(α) sin(α) D(α) = sin(α) cos(α), wobei α [0,2π[. Ist sin(α) 0, so

Mehr

Lektion 3. 1 Theorie. NTS1-P Natur, Technik und Systeme 1 Praktikum Herbstsemester 2012

Lektion 3. 1 Theorie. NTS1-P Natur, Technik und Systeme 1 Praktikum Herbstsemester 2012 NTS1-P Natur, Technik und Systeme 1 Praktikum Herbstsemester 2012 Dr Christoph Kirsch ZHAW Winterthur Lektion 3 In dieser Lektion werden Sie in MATLAB mit Vektoren und Matrizen rechnen 1 Theorie Wie Sie

Mehr

täglich einmal Scilab!

täglich einmal Scilab! Mathematik 1 - Übungsblatt 7 täglich einmal Scilab! Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind skalare Größen (=einfache Zahlen im Gegensatz zu vektoriellen

Mehr

Kapitel 15 Lineare Gleichungssysteme

Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Kapitel 15 Lineare Gleichungssysteme Mathematischer Vorkurs TU Dortmund Seite 1 / 27 Kapitel 15 Lineare Gleichungssysteme Definition 15.1 (Lineares Gleichungssystem

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren Kapitel 1 Vektoren und Matrizen In diesem Kapitel stellen wir die Hilfsmittel aus der linearen Algebra vor, die in den folgenden Kapiteln öfters benötigt werden. Dabei wird angenommen, dass Sie die elementaren

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 1 und 4..14 Lösungshinweise zur Klausur für Studierende der Fachrichtungen el, kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind.

Mehr

Matrixelemente von Tensoroperatoren und die Auswahlregeln

Matrixelemente von Tensoroperatoren und die Auswahlregeln Vorlesung 3 Matrixelemente von Tensoroperatoren und die Auswahlregeln In der Quantenmechanik müssen wir ab und zu die Matrixelemente von verschiedenen Operatoren berechnen. Von spezieller Bedeutung sind

Mehr

Vektoren - Die Basis

Vektoren - Die Basis Vektoren - Die Basis Motivation (Als Vereinfachung - der Schreibarbeit - wählen wir meistens Vektoren in R 2.) Eigentlich ist ja Alles klar! Für einen Vektor a gilt a = ( a x a y )! Am Ende werden wir

Mehr

Trainingsaufgaben Teil 1 (Sie müssen nicht alle Aufgaben bearbeiten. Eine Auswahl der Lösungen wird in der letzten VL und Ü des Semesters besprochen)

Trainingsaufgaben Teil 1 (Sie müssen nicht alle Aufgaben bearbeiten. Eine Auswahl der Lösungen wird in der letzten VL und Ü des Semesters besprochen) Trainingsaufgaben Teil 1 (Sie müssen nicht alle Aufgaben bearbeiten. Eine Auswahl der Lösungen wird in der letzten VL und Ü des Semesters besprochen) Aufgabe 1 Fassen Sie soweit möglich zusammen: 54 3

Mehr

HM II Tutorium 3. Lucas Kunz. 10. Mai 2016

HM II Tutorium 3. Lucas Kunz. 10. Mai 2016 HM II Tutorium 3 Lucas Kunz 10. Mai 2016 Inhaltsverzeichnis 1 Theorie für das Tutorium 2 1.1 Definition der Determinante.......................... 2 1.2 Errechnung von Determinanten........................

Mehr

Weihnachts-Übungen zur Mathematik I für Physiker

Weihnachts-Übungen zur Mathematik I für Physiker MATHEMATISCHES INSTITUT WS 018/019 DER UNIVERSITÄT MÜNCHEN Weihnachts-Übungen zur Mathematik I für Physiker Prof. Dr. D.-A. Deckert Blatt 10 Hiermit möchten wir Ihnen ein paar Weihnachtsgeschichten mit

Mehr

Blatt 09.3: Reihenentwicklung

Blatt 09.3: Reihenentwicklung Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

Übungsblatt

Übungsblatt Übungsblatt 3 3.5.27 ) Die folgenden vier Matrizen bilden eine Darstellung der Gruppe C 4 : E =, A =, B =, C = Zeigen Sie einige Gruppeneigenschaften: a) Abgeschlossenheit: Berechnen Sie alle möglichen

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y 1 = a 11 x 1 + a 12 x 2 + a 13 x3 y 2 = a 21 x 1 + a 22 x 2 + a 23 x3... Koeffizienten a ij i - te Gleichung

Mehr

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α

a 2β... a n ω alle Permutationen von α β γ... ω a 3 γ ( 1) k a 1α Mathematik 1 - Übungsblatt 7 Lösungshinweise Tipp: Verwenden Sie zur Kontrolle Scilab, wo immer es möglich ist. Aufgabe 1 (Definitionsformel für Determinanten) Determinanten quadratischer Matrizen sind

Mehr

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper)

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) U = u 11 u 12 u 1n 1 u nn 0 u 22 u 2n 1 u 2n 0......... 0 0 u n 1n 1 u n 1n 0 0 0 u nn Eine nicht notwendig quadratische Matrix A = (a ij ) heißt obere

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 17 Vektoren Kapitel 15 Vektoren Mathematischer Vorkurs TU Dortmund Seite 13 / 17 Vektoren 151 Denition: Vektoren im Zahlenraum

Mehr

YOUNG SCIENTISTS. 4 dimensionale komplexe Zahlen in der Computergrafik. Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE

YOUNG SCIENTISTS. 4 dimensionale komplexe Zahlen in der Computergrafik. Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE YOUNG SCIENTISTS 4 dimensionale komplexe in der Computergrafik Bastian Weiß 19. Mai 2017 INSTITUT FÜR ANGEWANDTE GEOMETRIE Programm Vorbereitung (Wiederholung) Komplexe Vektoren Quaternionen Quaternionen

Mehr

Lineare Algebra. Beni Keller SJ 16/17

Lineare Algebra. Beni Keller SJ 16/17 Lineare Algebra Beni Keller SJ 16/17 Matritzen Einführendes Beispiel Ein Betrieb braucht zur Herstellung von 5 Zwischenprodukten 4 verschiedene Rohstoffe und zwar in folgenden Mengen: Z 1 Z 2 Z Z 4 Z 5

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

1. Raum und Koordinatensysteme

1. Raum und Koordinatensysteme 1 1. Raum und Koordinatensysteme Messgrößen in der Physik Messen geschieht zunächst durch Vergleich mit einem Maßstab. Messbare Grundgrößen der klassischen Mechanik sind räumliche Abstände, zeitliche Abstände

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

Wichtige Kenntnisse der Linearen Algebra

Wichtige Kenntnisse der Linearen Algebra Wichtige Kenntnisse der Linearen Algebra In Kapitel 3 der Vorlesung werden wir sehen (und in Kapitel 6 vertiefen, dass zur Beschreibung von Quantensystemen mathematische Begriffe aus dem Gebiet der Linearen

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri Lineare Algebra Gymnasium Immensee SPF PAM Bettina Bieri 6. Oktober 2011 Inhaltsverzeichnis 1 Matrizen 1 1.1 Einleitung............................. 1 1.2 Der Begriff Matrix........................ 1 1.2.1

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Ergänzung zum HM Tutorium

Ergänzung zum HM Tutorium Ergänzung zum HM Tutorium Patrik Hlobil Niko Kainaris Dieses Dokument erhebt keinen Anspruch auf Vollständigkeit oder Korrektheit. Es stellt keine Vorlesungszusammenfassung dar, sondern soll euch lediglich

Mehr

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007

Einführung Vektoralgebra VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen. October 6, 2007 Hochschule Esslingen October 6, 2007 Overview Einführung 1 Einführung 2 Was sind Vektoren? Vektoren werden geometrisch definiert als Pfeilklassen: Strecken mit gleichem Betrag, gleicher Richtung und Orientierung.

Mehr

Länge, Skalarprodukt, Vektorprodukt

Länge, Skalarprodukt, Vektorprodukt Länge, Skalarprodukt, Vektorprodukt Jörn Loviscach Versionsstand: 20. April 2009, 19:39 1 Überblick Ein Vektorraum muss nur eine Minimalausstattung an Rechenoperationen besitzen: die Addition zweier Vektoren

Mehr