2.4 Eigenschaften des Gradienten

Größe: px
Ab Seite anzeigen:

Download "2.4 Eigenschaften des Gradienten"

Transkript

1 2.4 Eigenschaften des Gradienten Niveauflächen: Die Niveauflächen (D = 2 Höhenlinien) einer Funktion f sind die durch die Gleichung f(x, y, z) = c = const bestimmten Flächen(scharen); für jeden Wert von c ergibt sich eine Fläche. So sind etwa die Niveauflächen der Funktion Kreise mit dem Radius c. f(x, y, z) = x 2 + y 2 + z 2 Satz: Der Gradient steht senkrecht auf den Höhenlinien (Niveauflächen für D = 3) und zeigt (damit) in die Richtung des stärksten Anstiegs von z = f(x, y) bzw. w = f(x, y, z). Das sieht man so: Für eine infinitesimale Änderung von f bei Änderung der unabhängigen Variablen r um dr hatten wir df = f dr = f dr cos α erhalten. Also ist df = f dr cos α f dr Ist nun dr parallel oder antiparallel zu f, so steht in der obigen Ungleichung das Gleichheitszeichen, und damit ist dann die Änderung von f am größten. Ist andererseits dr parallel zu einer Höhenline (Niveaufläche) f(x, y) = const so ist df = 0, damit also f dr = 0; der Gradient steht also senkrecht zu den Höhenlinien bzw. Niveauflächen Formaler Beweis dafür, daß der Gradient senkrecht auf den Niveauflächen steht Sei N c := {(x, y, z) f(x, y, z) = c} eine Niveaufläche von f. Sei P ein beliebiger Punkt aus N c. Wir betrachten eine Kurve C, die durch P geht. Die

2 Kurve wird durch einen Parameter s, der zwischen den reellen Grenzen α und β liegt, beschrieben: C = {(x(s), y(s), z(s)) α < s < β} Da die Kurve in N c liegt, gilt für α < s < β: Deshalb ist 0 = dc ds c = f(x(s), y(s), z(s)) = df ds = f dx x ds + f dy y ds + f dz z ds = f ( dx ds, dy ds, dz ds ) = f d r ds Hierbei wurde für df das totale Differential df = df df df dx + dy + dx dy dz dz eingesetzt. Also ist d r senkrecht zum Gradienten von f. Was aber bedeutet ds d r? Es ist doch ds r(s + s) r(s) lim = d r s 0 s ds ; Mit einer Zeichnung(!) der glatten Kurve s r(s) macht man sich klar, daß r(s + s) r(s) einen Sekantenvektor dieser Kurve darstellt, d r(s) daher eine ds Tangente an die Kurve ist. Das heißt aber schließlich, daß f senkrecht zu allen Kurven ist, die in der Fläche N c liegen! Die Richtungsableitung Sei ˆn ein fester Einheitsvektor. Sei P ein fester Punkt und P ein Punkt, der sich so auf P zu bewegt, daß der Vektor P P stets parallel zu ˆn ist. Dann ist die Richtungsableitung von ϕ nach ˆn im Punkt P definiert als ϕ n = lim ϕ(p ) ϕ(p ) P P P P

3 Selbstverständlich wird sich ϕ unterschiedlich verhalten, wenn der Punkt P sich in verschiedene Richtungen bewegt; die Richtungsableitung ϕ mißt die n Änderung in Richtung ˆn. Wie läßt sich die Richtungsableitung berechnen? Sehr einfach, es gilt nämlich ϕ n = ˆn ϕ Um das einzusehen, beachtet man, daß die Richtungsableitung nach der Veränderung dϕ bei der Änderung der unabhängigen Variablen dr = P P = ˆn P P fragt. Mit dem totalen Differential folgt deshalb: dϕ = dr f = P P ˆn f Division durch P P liefert die obige Formel. Speziell wird für ˆn = e x die Richtungsableitung zu ϕ = e n x ϕ = ϕ, x also zur partiellen Ableitung. Die Richtungsableitung verallgemeinert also die partielle Ableitung auf beliebige Richtungen. Außerdem sieht man mit ϕ n = ˆn ϕ cos α = ϕ cos α daß die Richtungsableitung am größten ist (α = 0), wenn ˆn in Richtung des Gradienten von ϕ weist. 2.5 Die Divergenz eines Vektorfeldes Der Fluß eines Vektorfeldes Wir betrachten ein Flächenelement. Es hat eine bestimmte Orientierung im Raum, die durch einen Einheitsvektor ˆn der senkrecht auf dem Flächenelement steht beschrieben wird; ˆn heißt Flächennormale oder auch Normaleneinheitsvektor. Außerdem hat das Flächenelement eine bestimmte Größe (Fläche), die den Wert da haben soll. Insgesamt kann man daher Orientierung und Größe des Flächenelements durch den Vektor da = ˆndA beschreiben. Das Flächenelement liegt an einem

4 bestimmten Punkt P im Raum. Das kann man durch die Schreibweise da(p ) bezeichnen. Wir interessieren uns jetzt für den Fluß eines Vektorfeldes v durch das Flächenelement da. Um eine Anschauung zu haben, stelle man sich unter v das Geschwindigkeitsfeld einer Flüssigkeit vor. Der Fluß dφ von v durch da ist dann das Flüssigkeitsvolumen δν, welches in der Zeit dt durch da fließt geteilt durch dt. In der Zeit dt schiebt sich ein Flüssigkeitszylinder mit Achse ds = vdt durch da. Über da hat er die (senkrechte) Höhe dh = ds cos α = ˆn ds (Zeichnung!) Damit fließt das Volumen δν = da dh = daˆn s = da vdt durch das Flächenelement und nach Division durch dt erhält man für den Fluß von v durch da: dφ = v da, Das ist also der Flüssigkeitsstrom, der Fluß durch da Fluß aus einem Volumenelement Quellstärke Wir betrachten einen (achsenparallenen) Würfel mit Mittelpunkt bei (x 0, y 0, z 0 ) und Seitenlängen dx, dy und dz. Wir fragen uns nach dem Fluß des Vektorfeldes v aus diesem Würfel. Dazu betrachten wir die sechs Seitenflächen des Würfels x = x 0 dx 2, x = x 0 + dx 2, y = y 0 dy 2, y = y 0 + dy 2, z = z 0 dz 2, z = z 0 + dz 2

5 mit den Mittelpunkten und berechnen Das werden wir später als dφ = P 1 (x 0 dx 2, y 0, z 0 ), P 2 (x 0 + dx 2, y 0, z 0 ), P 3 (x 0, y 0 dy 2, z 0), P 4 (x 0, y 0 + dy 2, z 0), P 5 (x 0, y 0, z 0 dz 2 ), P 6 (x 0, y 0, z 0 + dz 2 ) 6 v(p i ) da(p i ). i=1 v(p ) da(p ) bezeichnen als ein Integral über eine geschlossene Fläche. Für die Flächenelemente ergibt sich: woraus für die Summe der Ausdruck da(p 1 ) = dy dz ( 1) e x, da(p 1 ) = dy dz (+1) e x, da(p 3 ) = dz dx ( 1) e y, da(p 4 ) = dz dx (+1) e y, da(p 5 ) = dx dy ( 1) e z, da(p 6 ) = dx dy (+1) e z, (v x (x 0 + dx/2, y 0, z 0 ) v x (x 0 dx/2, y 0, z 0 )) dy dz + (v y (x 0, y 0 + dy/2, z 0 ) v y (x 0, y 0 dy/2, z 0 )) dz dx + (v z (x 0, y 0, z 0 + dz/2) v z (x 0, y 0, z 0 dz/2)) dx dy,

6 ensteht, worin wir mit der mittlerweise bekannten Schlußweise (Satz von Taylor) v x (x 0 + dx/2, y 0, z 0 ) v x (x 0 dx/2, y 0, z 0 ) = v x x dx v y (x 0, y 0 + dy/2, z 0 ) v y (x 0, y 0 dy/2, z 0 ) = v y y dy v z (x 0, y 0, z 0 + dz/2) v z (x 0, y 0, z 0 dz/2) = v z z dz ersetzen und schließlich die Gleichung erhalten. dφ = 6 v(p i ) da(p i ) i=1 = ( v x x + v y y + v z ) dx dy dz z := div v dx dy dz Damit haben wir die Differentialoperation der Divergenz eines Vektorfeldes gefunden. Mit dem Volumenelement dτ := dx dy dz gilt also dφ = div v dτ = vdτ Die Divergenz erweist sich damit als der Ausfluß des Vektorfeldes pro Volumeneinheit als die Quellstärke! Man sieht noch, daß sich die Divergenz eines Vektorfeldes v als das Skalarprodukt des Nabla-Operators mit dem Feld v ausdrücken läst: div v = v Rechenregeln Wir verwenden der Übersichtlichkeit halber zur Formulierung der Rechenregeln die Nabla-Schreibweise. φ und ψ seien skalare Felder A sei ein Vektorfeld und f sei eine reellwertige Funktion einer reellen Variablen:

7 (φψ) = ψ φ + φ ψ, (f(φ)) = f (φ) φ, (φ A) = A φ + φ A r = r r div r = D (Anzahl der Dimensionen) Die Divergenz des Elektrischen Feldes Die Maxwellsche Gleichung div E = 1 ɛ ρ besagt also, daß die Ladungen die Quellen des elektrischen Feldes sind. Beispiel: Es sei E( r) = α r. Dann ist div E = 3α. Also wird hiermit ein elektrisches Feld beschrieben, daß durch eine Ladungsverteilung der Dichte ρ = ɛ div E = 3ɛα hervorgerufen wird. Damit erhalten wir für das Feld ( E i ) im Innern einer gleichmäßig geladenen Kugel 1 E i ( r) = 1 3ɛ ρ r = Q 4πɛR 3 r. Hier wurde noch für eine Kugel mit Radius R und Ladung Q ρ = eingesetzt. Q 4π 3 R3 Dieses Feld wird an der Oberfläche stetig in das Außenfeld übergehen eine gleichmäßig geladene Kugel muß ein Nichtleiter sein, daher gibt es keine Oberflächenladungen, die zu einem Sprung der elektrischen Feldstärke führen würden. Außerhalb der Kugel muß aber offensichtlich div E = E = 0 gelten, da dort die Ladungsdichte Null ist. Für das Feld außerhalb der Kugel E a machen wir den Ansatz E a ( r) = αr β r, wobei die Konstanten α und β zunächst unbestimmt sind und aus den beiden Bestimmungsgleichungen 1 Daß das Feld ein radialsymmetrisches Feld ist, ist hier eigentlich nicht ersichtlich sondern müßte eigentlich aus den ensprechenden Randbedingungen erschlossen werden; die Symmetrie des Problems legt aber diesen Ansatz stark nahe.

8 E a = 0, E a = E i für r = R (Rand der Kugel). zu ermitteln sind. Berechnen wir also zunächst die Divergenz von 1 α E a : 1 α E a = r r β + r β r = r βr β 1 r r + rβ 3 = βr β + 3r β = (3 + β)r β ergibt. Auswertung der An- Daraus folgt: β = 3, so daß sich E a = α r r 3 schlußbedingeung für r = R ergibt: α 1 R 3 r = Q 4πɛR 3 r. Also folgt α = Q, womit sich schließlich das Außenfeld zu 4πɛ E a ( r) = Q r 4πɛ r. 3 Das Außenfeld ist also das gleiche, wie bei einer Punktladung. 2 Das elektrische Feld eines unendlich langen Zylinders mit homogener Ladungsdichte: Mit der gleichen Methode wollen wir für diese Geometrie das elektrische Feld ermitteln. Den Zylinder mit Radius R und Ladungsdichte σ legen wir längs der z-achse eines kartesichen Koordinatensystems. Den Abstand von der z-achse bezeichnen wir mit ρ, also ρ = x 2 + y 2. Den von der Zylinderachse wegweisenden Einheitsvektor bezeicnen wir mit e ρ, also e ρ = 1 (x, y, 0) x2 + y2 Wieder unterteilen wir das Feld in Innenfeld E i und Außenfeld E a. Aus der Geometrie des Problems liegt für diese Felder folgender Ansatz nahe: E i = f(ρ) e ρ, E a = g(ρ) e ρ. Die Funktionen f und g werden aus den Forderungen 2 Das hiermit auch begründet ist (warum?).

9 E i = 1σ, ɛ E a = 0, f(r) = g(r) ermittelt. Die obigen Rechenregeln liefern zunächst für den Gradienten von ρ: ρ = e ρ, und für die Divergenz von e ρ : e ρ = (x, y, 0) ( 1) 1 ρ 2 e ρ ρ Weiter rechnet man = ( 1) 1 ρ + 21 ρ = 1 ρ, E i = e ρ f (ρ) e ρ + f(ρ) 1 ρ = f (ρ) + f(ρ) ρ E a = e ρ g (ρ) e ρ + g(ρ) 1 ρ = g (ρ) + g(ρ) ρ Damit folgen die Differentialgleichungen f (ρ) + f(ρ) = σ ρ ɛ, g (ρ) + g(ρ) = 0. ρ Wir lösen die zunächst die zweite Gleichung mit ein wenig Rechnung mit Differentialen : dg dρ + g ρ = 0,

10 also also also dg g + dρ ρ = 0, d ln g + d ln ρ = 0, ln g + ln ρ = C = const, und damit 3 g = C ρ. Die Differentialgleichung für f ist die inhomogene Variante derjenigen für g, also gewinnt man die allgemeine Lösung, indem zur für g gefundenen Lösung eine spezielle Lösung der inhomogenen Gleichung addiert wird. Die Struktur der rechten Seite legt für diese spezielle Lösung f s den Ansatz f s (ρ) = a + bρ nahe. Einsetzen ergibt: b + a + bρ = σ ρ ɛ, und damit a = 0 und b = σ, so daß die allgemeine Lösung für f durch 2ɛ gegeben ist. f(ρ) = σ 2ɛ ρ + C ρ. Jetz werden die Rand- und Anschlußbedingeungen verwendet, um die noch offenen Konstanten zu bestimmen: Die Lösung im Innenraum muß für ρ 0 endlich bleiben: Deshalb ist in der allgemeinen Lösung für f C = 0 zu setzen, so daß sich f(ρ) = σ 2ɛ ρ ergibt. Die Übereinstimmung von f und g bei ρ = R führt auf die Gleichung σ 2ɛ R = C R, aus der dann C = σ 2ɛ R2 und damit g(ρ) = σ 2ɛ R2 1 ρ folgt. Schließlich erhält man für die Felder: E i = σ 2ɛ ρ e ρ, E a = σ 2ɛ R2 1 ρ e ρ. 3 Das ist jetzt ein anderes C = const!

11 2.6 Die Rotation eines Vektorfeldes Im vorigen Abschnitt hatten wir gesehen, daß sich die Divergenz div A eines Vektorfeldes A als das Skalarprodukt des Nabla-Operators 4 mit dem Vektorfeld A schreiben läßt: div A = A. Es ist daher naheliegend zu fragen ob das formal gebildete Kreuzprodukt des Nabla-Operators mit dem Vektorfeld A eine sinnvolle Bedeutung hat. Die Rotation des Vektorfeldes A: Wir nennen die Rotation des Vektorfeldes A. rot A := A Berechnung der Rotation: Mit der Determinantendarstellung des Vektorproduktes e x e y e z u v = u x u y u z v x v y v z erhalten wir die Darstellung rot A = A e x e y e z = x y z A x A y A z. Welche Bedeutung hat dieser Differentialoperator? Dazu schauen wir uns das Geschwindigkeitsfeld v eines mit der Winkelgeschwindigkeit ω um die Achse ˆn rotierenden Körpers an, das mit ω := ωˆn durch v = ω r gegeben ist. Davon wollen wir die Rotation berechnen. Dazu erinnern wir uns an die bac-cab-formel der Vektorrechnung: und erhalten a ( b c) = b( a c) c( a b), v = ( ω r) =. ( ω. r) +. ( ω r. ) =. ( ω r. ) = ω( r) ω r = 3 ω ω = 2 ω. 4 Der Name soll von einem phönizischen Saiteninstrument gleicher Form stammen.

12 Die Rotation ist also ein Maß für die Wirbelstärke eines Feldes.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

3. Die Divergenz und die Quellen des elektrischen Feldes

3. Die Divergenz und die Quellen des elektrischen Feldes 3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 12: Integralsätze von Gauss und Stokes Prof. Dr. Erich Walter Farkas Mathematik I+II, 12. Integralsätze 1 / 25 1 Gauss-scher Integralsatz

Mehr

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem 4 Grenzflächen, Leiter und das elektrostatische Randwertproblem Bei der Berechnung elektrostatischer Felder und Potentiale mussten wir bisher voraussetzen, dass wir die Ladungsverteilungen im gesamten

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

Divergenz und Rotation von Vektorfeldern

Divergenz und Rotation von Vektorfeldern Divergenz und Rotation von Vektorfeldern Mit Hilfe des Nabla-Operators können nun zwei weitere wichtige elementare Operationen definiert werden, welche formal der Bildung des Skalarproduktes bzw. des äußeren

Mehr

1 Vektoralgebra (3D euklidischer Raum R 3 )

1 Vektoralgebra (3D euklidischer Raum R 3 ) Institut für Physik der Martin-Luther-Universität Halle-Wittenberg WS 202/203 Vorlesung Elektrodynamik LAG PD Dr. Angelika Chassé) Vektoralgebra 3D euklidischer Raum R 3 ). Grundbegriffe = Vektordefinition

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Funktionen mehrerer Variabler

Funktionen mehrerer Variabler Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras

Technische Universität Berlin Fakultät II Institut für Mathematik SS 13 G. Bärwolff, C. Mehl, G. Penn-Karras Technische Universität Berlin Fakultät II Institut für Mathematik SS 3 G. Bärwolff, C. Mehl, G. Penn-Karras 9..3 Oktober Klausur Analysis II für Ingenieure Rechenteil. Aufgabe Punkte i) Wir berechnen zunächst

Mehr

Aufgabe Summe max. P Punkte

Aufgabe Summe max. P Punkte Klausur Theoretische Elektrotechnik TET Probeklausur xx.xx.206 Name Matr.-Nr. Vorname Note Aufgabe 2 3 4 5 6 7 Summe max. P. 5 0 5 5 5 5 5 00 Punkte Allgemeine Hinweise: Erlaubte Hilfsmittel: Taschenrechner,

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient

Vorlesung: Analysis II für Ingenieure. Wintersemester 07/08. Michael Karow. Themen: Niveaumengen und Gradient Vorlesung: Analysis II für Ingenieure Wintersemester 07/08 Michael Karow Themen: Niveaumengen und Gradient Wir betrachten differenzierbare reellwertige Funktionen f : R n G R, G offen Zur Vereinfachung

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 [email protected] Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx.

HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt. Mathematik II für Bauingenieure. (f) 4 sin x cos 5 x dx. 3 x e x2 dx (i) e 2x 1 dx. HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik II Mathematik II für Bauingenieure Wiederholungsaufgaben zur Prüfungsklausur im Juli 2007 1 Integralrechnung Aufgabe 1 : Berechnen Sie die folgenden

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

4.5 Schranken an die Dichte von Kugelpackungen

4.5 Schranken an die Dichte von Kugelpackungen Gitter und Codes c Rudolf Scharlau 19. Juli 2009 341 4.5 Schranken an die Dichte von Kugelpackungen Schon in Abschnitt 1.4 hatten wir die Dichte einer Kugelpackung, speziell eines Gitters bzw. einer quadratischen

Mehr

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten

3.4 Gradient, Divergenz, Rotation in anderen Koordinaten 3.3.5 Rechenregeln Für Skalarfelder f, g und Vektorfelder v, w gelten die Beziehungen fg) = f g + g f v w) = v ) w + w ) v + v w) + w v) f v) = f v + v f v w) = w v) v w) 3.5a) 3.5b) 3.5c) 3.5d) f) = div

Mehr

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. "Ausfluss pro Volumenelement"

Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche. suggestive Notation. Ausfluss pro Volumenelement Zusammenfassung: Satz v. Gauß Satz v. Gauß: Volumenintegral der Divergenz = Flussintegral über Fläche Volumen Rand des Volumens = Oberfläche Symbolisch: suggestive Notation Geometrische Definition der

Mehr

19.3 Oberflächenintegrale

19.3 Oberflächenintegrale 19.3 Oberflächenintegrale Definition: Sei D R 2 ein Gebiet und p : D R 3 eine C 1 -Abbildung x = p(u) mit x R 3 und u = (u 1, u 2 ) T D R 2 Sind für alle u D die beiden Vektoren und u 1 linear unabhängig,

Mehr

Integration über allgemeine Integrationsbereiche.

Integration über allgemeine Integrationsbereiche. Integration über allgemeine Integrationsbereiche. efinition: Sei R n eine kompakte und messbare Menge. Man nennt Z = { 1,..., m } eine allgemeine Zerlegung von, falls die Mengen k kompakt, messbar und

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 9: Satz von Stokes und Divergenzsatz D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas Serie 9: Satz von Stokes und Divergenzsatz Bemerkungen: Die Aufgaben der Serie 9 bilden den Fokus der Übungsgruppen vom 28./30. April. 1. Berechnen

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

1 Das Prinzip von Cavalieri

1 Das Prinzip von Cavalieri KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 14 11.6.14 Höhere Mathematik II für die Fachrichtung Informatik 5. Saalübung 11.6.14 1 Das Prinzip von

Mehr

2. Vorlesung Wintersemester

2. Vorlesung Wintersemester 2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III (Theorie Elektrodynamik) WS 1-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

Übungsblatt 09. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 09. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 9 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 9.6.8 Aufgaben. Durch eine Spule mit n Windungen, die einen Querschnitt A 7, 5cm hat, fliesst

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Übungen zu Integralsätzen Lösungen zu Übung 19

Übungen zu Integralsätzen Lösungen zu Übung 19 9. Sei IR 3 der Einheitswürfel Übungen zu Integralsätzen Lösungen zu Übung 9 erifizieren Sie für : {(x, y, z) IR 3 : x, y, z.} den Gaußschen Divergenzsatz. Lösung: v(x, y, z) : (4xz, y, yz) erifizieren

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

Elektrizität und Magnetismus - Einführung

Elektrizität und Magnetismus - Einführung Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz

Mehr

Berechnung von Formfaktoren

Berechnung von Formfaktoren Berechnung von Formfaktoren Oliver Deussen Formfaktorberechnung 1 Formfaktor ist eine Funktion in Abhängigkeit der Geometrie ist unabhängig von reflektierenden oder emittierenden Eigenschaften (ρ) der

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray [email protected] 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen Theoretischen Physik II SS 007 Klausur II - Aufgaben und Lösungen Aufgabe Hohlleiter Gegeben sei ein in z-richtung unendlich langer, gerader Hohlleiter (Innenradius R/3, Außenradius R), der einen Stromfaden

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

Grundlagen der Vektorrechnung

Grundlagen der Vektorrechnung Grundlagen der Vektorrechnung Ein Vektor a ist eine geordnete Liste von n Zahlen Die Anzahl n dieser Zahlen wird als Dimension des Vektors bezeichnet Schreibweise: a a a R n Normale Reelle Zahlen nennt

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

12. Mehrfachintegrale

12. Mehrfachintegrale - 1-1. Mehrfachintegrale Flächen- und Volumenelemente Naive Gemüter sind geneigt, den Flächeninhalt dx dy (kartesische Koordinaten) in den neuen Koordinaten durch du dv anzugeben. Das ist i.a. falsch!

Mehr

14 Partielle Ableitung, totales Differential und Gradient

14 Partielle Ableitung, totales Differential und Gradient 27 14 Partielle Ableitung, totales Differential und Gradient 14.1 Die partielle Ableitung Die geometrische Bedeutung der Ableitung einer Funktion mit einer Variablen ist bekanntlich die Steigung der Tangente

Mehr

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen

Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen Thema14 Der Satz über inverse Funktionen und der Satz über implizite Funktionen In diesem Kapitel betrachten wir die Invertierbarkeit von glatten Abbildungen bzw. die Auflösbarkeit von impliziten Gleichungen.

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 [email protected] Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Übungsblatt 4 ( )

Übungsblatt 4 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt 4 (08.06.0) ) Geladene Kugeln Zwei homogen geladene Eisenkugeln mit den Ladungen Q = q = q = 0, 0µC haben einen

Mehr

Lösung der Aufgabe ALT 1) aus 6C 18 = 36 folgt C = 9. Daher gilt: Nullstellen:

Lösung der Aufgabe ALT 1) aus 6C 18 = 36 folgt C = 9. Daher gilt: Nullstellen: Lösung der Aufgabe ALT 1) a) y = f(x) = f (x)dx = (x 2 2x 3)dx = x3 3 x2 3x + C 3 ( x3 3 3 x2 3x + C) dx = [ x4 12 x3 3 3x2 x=3 2 + Cx] x= 3 aus 6C 18 = 36 folgt C = 9. Daher gilt: y = f(x) = x3 3 x2 3x

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Flächeninhalt, Volumen und Integral

Flächeninhalt, Volumen und Integral Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 [email protected] Website: www.astro.uni-bonn.de/tp-l

Mehr

2.2 4-Stromdichte [Griffiths , Jackson 11.9]

2.2 4-Stromdichte [Griffiths , Jackson 11.9] Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte

Mehr

Randwertprobleme der Elektrostatik

Randwertprobleme der Elektrostatik Kapitel 3 Randwertprobleme der Elektrostatik 3.1 Eindeutigkeitstheorem Wir wollen im folgenden zeigen, dass die Poisson-Gleichung bzw. die Laplace-Gleichung eine eindeutige Lösung besitzt, wenn eine der

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Kapitel 3. Koordinatensysteme

Kapitel 3. Koordinatensysteme Kapitel 3 Koordinatensysteme Bisher haben wir uns bei der Beschreibung von Vektoren auf das kartesische Koordinatensystem konzentriert. Für viele physikalische Anwendungen sind aber kartesische Koordinaten

Mehr

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60 D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Kurven & Flächen im Raum

Kurven & Flächen im Raum Kurven & Flächen im Raum Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 20. Februar 2016 Inhaltsverzeichnis 1 Einleitung 1 2 Repetition 2 3 Vektorielle Darstellung von Kurven im

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

9. Die Integralrechnung II

9. Die Integralrechnung II 9. Die Integralrechnung II 9.. Mehrdimensionale Bereichsintegrale Dimension n des Integrationsbereiches B Dimension des Definitionsbereiches D. (i) n = : Einfachintegrale (Int-B = Gerade ; db = d ) db.

Mehr

f(x) = 1 5 ex c Roolfs

f(x) = 1 5 ex c Roolfs Krümmung Die lineare Näherung von Funktionen durch Geraden (Tangenten) bildet die Grundlage der Differentialrechnung. Quadratische Näherungen durch Parabeln werden bei Reihenentwicklungen betrachtet. Durch

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

mit 0 < a < b um die z-achse entsteht.

mit 0 < a < b um die z-achse entsteht. Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Alg. II SS 6 Blatt 8 13.6.6 Aufgabe 38: Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { (x, y, z) R 3 y, (x b) + z a } mit

Mehr

Analysis Leistungskurs

Analysis Leistungskurs Universität Hannover September 2007 Unikik Dr. Gerhard Merziger Analysis Leistungskurs Themen Grundlagen, Beweistechniken Abbildungen (surjektiv, injektiv, bijektiv) Vollständige Induktion Wichtige Ungleichungen

Mehr

Füllstand eines Behälters

Füllstand eines Behälters Füllstand eines Behälters Der Behälter ist eines der häufigsten Apparate in der chemischen Industrie zur Aufbewahrung von Flüssigkeiten. Dabei ist die Kenntnis das Gesamtvolumens als auch des Füllvolumens

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Rotationskörper. Ronny Harbich. 1. August 2003 (geändert 24. Oktober 2007)

Rotationskörper. Ronny Harbich. 1. August 2003 (geändert 24. Oktober 2007) Rotationskörper Ronny Harbich 1. August 2003 geändert 24. Oktober 2007) Inhaltsverzeichnis 1 Einführung 3 2 Anschauliche Herleitung 4 2.1 Darstellungen................................. 4 2.2 Gleichungen

Mehr

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005

Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005 Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

12. Übungsblatt zur Mathematik II für MB

12. Übungsblatt zur Mathematik II für MB Fachbereich Mathematik Prof. Dr. U. Reif R. Hartmann, T. Koch SS 1 5.7.21 12. Übungsblatt zur Mathematik II für MB Aufgabe 39 Divergenz Berechnen Sie die Divergenz folgender Vektorfelder: xyz + 2xy F 1

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

14.3 Berechnung gekrümmter Flächen

14.3 Berechnung gekrümmter Flächen 4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr