Berechnung von Formfaktoren
|
|
|
- Jesko Straub
- vor 9 Jahren
- Abrufe
Transkript
1 Berechnung von Formfaktoren Oliver Deussen Formfaktorberechnung 1
2 Formfaktor ist eine Funktion in Abhängigkeit der Geometrie ist unabhängig von reflektierenden oder emittierenden Eigenschaften (ρ) der Oberflächen ist abhängig von Abstand und Orientierung zweier Elemente, (sowie der Sichtbarkeit zwischen diesen Elementen!) Bezeichnung: F ij : Anteil Licht, das von A i ausgehend A j trifft Oliver Deussen Formfaktorberechnung 2
3 Darstellung als zweifaches Flächen-Integral: F ij = 1 A i A i Aj cos θ cos θ π r 2 V ij da j da i Oliver Deussen Formfaktorberechnung 3
4 Darstellung als zweifaches Fläche-Raum-Integral: F ij = 1 A i dω j = cos θ j da j A i Ω r 2 cos θ i π V ij dω j da i Oliver Deussen Formfaktorberechnung 4
5 Darstellung als zweifaches Randintegral (Anwendung des Stockes schen Satzes, das Flächenintegral wird in diesem Fall zu einem Randintegral) F ij = 1 2π A i C i C j ln r dx i dx j + ln r dy i dy j + ln r dz i dz j Oliver Deussen Formfaktorberechnung 5
6 Generelle Berechnungsmethoden Oliver Deussen Formfaktorberechnung 6
7 Analytische Methoden für einfache Elemente (Element-Element) und für differentielle Flächen vollständige Sichtbarkeit wird vorausgesetzt 1. Differentielle Fläche auf Kreis Oliver Deussen Formfaktorberechnung 7
8 2. Differentielle Fläche auf Polygon (kommt häufig vor) F dai A j = 1 2π n i=1 β i cos α i Oliver Deussen Formfaktorberechnung 8
9 3. Formfaktor zwischen parallelen Rechtecken F ij = { [ 2 (1 + X 2 )(1 + Y 2 ] 1/2 ) ln πxy 1 + X 2 + Y 2 +Y ( ) 1 + X2 tan 1 Y X tan 1 X Y tan 1 Y } 1 + X 2 Oliver Deussen Formfaktorberechnung 9
10 4. Formfaktor zwischen senkrechten Rechtecken F ij = 1 πw ln [ { W tan 1 1 W + H tan 1 1 H H 2 + W 2 tan 1 1 H 2 +W 2 1+W 2 +H 2 (1+W 2 )(W 2 +H 2 ) (1+H 2 )(W 2 +H 2 ) ( (1+W 2 )(1+H 2 ) W 2 (1+W 2 +H 2 ) ) W 2 ( H 2 (1+H 2 +H 2 ) ) ]} H 2 Oliver Deussen Formfaktorberechnung 10
11 Algebraische Gesetze für Formfaktoren Oliver Deussen Formfaktorberechnung 11
12 Numerische Berechnung von Formfaktoren Gaußsche Quadratur: H = X h(x) dx Ĥ = n k=1 ω k h(x k ) mit: ω k : Gewichte, x k : Stützstellen Formfaktorberechnung (Zweifach-Integral): hierbei Stützpunkte entweder Punktpaare (x k, x k ) (R2 R 2 ) (im Falle von Fläche-Fläche Integralen) oder Punkt-Vektorpaare (x k, ω) (R 2 S 2 ) (für Fläche-Raum-Integrale) Oliver Deussen Formfaktorberechnung 12
13 beide Formen der Integrale haben dasselbe äußere Integral, daher: 1. Wähle Punkte x i auf A i 2. Werte das innere Integral da j für jeden Punkt aus oft wird nur ein Punkt x i verwendet F ij = 1 A i A i Ω G iω dω da i Ω G iω dω für Stützpunkt x i ansonsten: Normalisierte Summe von Punten x i Oliver Deussen Formfaktorberechnung 13
14 Wie kann über Hemisphäre gesampelt werden? Geometrischer Kern des Integrals: G iω = cos θ i π V ij wobei V ij = { 0 Punkt xi sieht Fläche A j nicht 1 sonst aufwändig: Sichtbarkeitsbestimmung FF von Element i zu allen anderen Elementen wird benötigt Sichtbarkeitsberechnung einmal durchführen FF entstehen durch Aufsummieren differentieller Formfaktoren (F ik wird verändert, wenn k das Element ist, das in Richtung d ω von da gesehen wird) Sampling der Hemisphäre erzeugt eine Zeile in K Oliver Deussen Formfaktorberechnung 14
15 Nusselt-Analogie Formfaktor von da i auf Element A j ist proportional zur Fläche der Doppelprojektion auf die Kreisscheibe Oliver Deussen Formfaktorberechnung 15
16 Fläche auf Einheits-Hemisphäre entspricht Raumwinkel (d ω cos θ j r 2 ) Projektion auf Grundfläche entspricht cos θ i (π durch Kreisfläche) cos θ i π cos θ j r 2 hierbei sind: cos θ i π cos θ j r 2 : G iω ohne Sichtbarkeit : äußerer Term Oliver Deussen Formfaktorberechnung 16
17 Hemicube-Verfahren Ersetze Kreis durch Würfel mit kleinen Zellen Sichtbarkeit bestimmen (über Z-Buffer und ID-Buffer), Oliver Deussen Formfaktorberechnung 17
18 für jedes x i für alle Seitenflächen Sichtbarkeit bestimmen Hardware einsetzbar Berechnung des Formfaktors: F ij = Cosinusterm Anzahl Pixel für Fläche A j Gesamtzahl Pixel pro Schritt werden alle F ij ermittelt Problem: Aliasing (Sampling-Probleme) Oliver Deussen Formfaktorberechnung 18
19 Sillions Verbesserung statt Würfel nur noch eine Fläche (Single plane method) Ersetze Z-Buffer durch Algorithmus von Warnock flexibler, geringere Aliasprobleme Elemente am Horizont werden übergangen (nicht so schlimm, sie tragen wenig zur Gesamthelligkeit bei) Oliver Deussen Formfaktorberechnung 19
20 Monte-Carlo-Raytracing reverse Nusselt-Analogie flexibel wichtige Teile werden genauer gesampelt Oliver Deussen Formfaktorberechnung 20
21 Flächensampling Hemispherensampling dann effizient, wenn FF von einzelnem Punkt zu allen Flächen berechnet werden muß oftmals: FF von einem Elementpaar muß bestimmt werden F dai A j = cos θ i cos θ j A j π r 2 V ij da j zwei Möglichkeiten: Monte-Carlo Integration oder Subdivision Monte-Carlo-Integration: bestimme Punkte auf A j und sammle FF-Teile auf Oliver Deussen Formfaktorberechnung 21
22 Oliver Deussen Formfaktorberechnung 22
23 Flächen-Unterteilung (Subdivision) 1. Möglichkeit: uniforme Unterteilung, einfache Formel für Teilflächen F dai A j = wird approximiert durch: cos θ i cos θ j A j π r 2 V ij da j F dai A j m k=1 cos θi k π (r k ) 2 cos θk j V (da i, A k j ) A k j immer noch Aliasing-Probleme Oliver Deussen Formfaktorberechnung 23
24 2. Möglichkeit: adaptive Unterteilung Fläche wird unterteilt, wenn Änderung pro Fläche zu groß bei hohen Gradienten wird öfter unterteilt höhere Genauigkeit Oliver Deussen Formfaktorberechnung 24
25 Oliver Deussen Formfaktorberechnung 25
26 Monte-carlo Fläche-Fläche Quadratur Erweiterung der bisherigen da i A j Methoden auf A i A j Oliver Deussen Formfaktorberechnung 26
5. Numerische Differentiation. und Integration
5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen
Trigonometrische Substitutionen
Trigonometrische Substitutionen Mit Hilfe der folgenden Substitutionen lassen sich eine Reihe von elementaren algebraischen Integranden explizit berechnen: x = a sin t : x = a tan t : x = a/ cos t : =
5. Numerische Differentiation. und Integration
5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen
2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1
Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt
Gibbs sampling. Sebastian Pado. October 30, Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells
Gibbs sampling Sebastian Pado October 30, 2012 1 Bayessche Vorhersage Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells Uns interessiert P (y X), wobei wir über das Modell marginalisieren
(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.
13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche
15. Bereichsintegrale
H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 8.6.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe
Wellen und Dipolstrahlung
Wellen und Dipolstrahlung Florian Hrubesch. März 00 Maxwellgleichungen a) Leiten Sie aus den Maxwellgleichungen im Vakuum die Wellengleichung im Vakuum her. Zeigen Sie, dass E, B und k senkrecht aufeinander
Serie 11. Analysis D-BAUG Dr. Cornelia Busch FS Überprüfen Sie die Gültigkeit des Satzes von Gauss
Analysis -BAUG r. Cornelia Busch F 6 erie. Überprüfen ie die Gültigkeit des atzes von Gauss F d div F dv, () anhand des Beispiels F(x, y, z) (3x, xy, xz), [, ] [, ] [, ] (Einheitswürfel im R 3 ). Wir berechnen
Selbsteinschätzung Mathe I Dieser Fragebogen wächst Woche für Woche mit.
Technische Universität Dresden, Institut für Wissenschaftliches Rechnen Dr. Ute Feldmann, Maximilian Becker Selbsteinschätzung Mathe I Dieser Fragebogen wächst Woche für Woche mit. Die 3 Kreise mit Ampelfarben
Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya
Substitution bei bestimmten Integralen -E Ma Lubov Vassilevskaya -E Ma Lubov Vassilevskaya Substitution bei bestimmten Integralen: Lernziele Was wir wissen: Wann berechnet man Integrale mit Hilfe einer
Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya
Mehrfachintegrale 1-E1 1-E2 Mehrfachintegrale c Die Erweiterung des Integralbegriffs führt zu den Mehrfachintegralen, die in den naturwissenschaftlich-technischen Anwendungen u.a. bei der Berechnung der
Lokale Beleuchtungsmodelle
Lokale Beleuchtungsmodelle Oliver Deussen Lokale Modelle 1 Farbschattierung der Oberflächen abhängig von: Position, Orientierung und Charakteristik der Oberfläche Lichtquelle Vorgehensweise: 1. Modell
12 Integralrechnung, Schwerpunkt
Dr. Dirk Windelberg Leibniz Universität Hannover Mathematik für Ingenieure Mathematik http://www.windelberg.de/agq Integralrechnung, Schwerpunkt Schwerpunkt Es sei ϱ die Dichte innerhalb der zu untersuchenden
Lösen der Matrizengleichung
Lösen der Matrizengleichung Oliver Deussen Lösungsverfahren K 1 letztes Kapitel: Berechnung der Formfaktoren F außerdem: B: zu berechnende Strahlung, E: gegebenes Eigenleuchten nun: Wie löst man K B =
Übungsblatt 3 Musterlösung
Numerik gewöhnlicher Differentialgleichungen MA4 - SS6 Übungsblatt Musterlösung Sei M,N N und f C M+N+ (B) eine komplexe Funktion, B eine kompakte Menge. Die Padé Approximation PN M (f)(x) ist die rationale
Entwicklung einer hp-fast-multipole-
Entwicklung einer hp-fast-multipole- Boundary-Elemente-Methode Übersicht: 1. Motivation 2. Theoretische Grundlagen a) Boundary-Elemente-Methode b) Fast-Multipole-Methode 3. Erweiterungen a) Elementordnung
Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken
Seminar Stochastische Unternehmensmodelle Varianzreduzierende Techniken 25. Juni 2015 1 / 37 Übersicht 1. Ziel des Vortrags 2. Einleitung 3. Varianzreduzierende Techniken Bedingtes Monte Carlo Importance
Technische Numerik Numerische Integration
W I S S E N T E C H N I K L E I D E N S C H A F T Technische Numerik Numerische Integration Peter Gangl Institut für Numerische Mathematik, Technische Universität Graz c Alle Rechte vorbehalten. Nachdruck
Abbildung 10.1: Das Bild zu Beispiel 10.1
Analysis 3, Woche Mannigfaltigkeiten I. Definition einer Mannigfaltigkeit Die Definition einer Mannigfaltigkeit braucht den Begriff Diffeomorphismus, den wir in Definition 9.5 festgelegt haben. Seien U,
Computergrafik 1 Beleuchtung
Computergrafik 1 Beleuchtung Kai Köchy Sommersemester 2010 Beuth Hochschule für Technik Berlin Überblick Lokale Beleuchtungsmodelle Ambiente Beleuchtung Diffuse Beleuchtung (Lambert) Spiegelnde Beleuchtung
4. Transiente Analyse
4. Transiente Analyse Bei der transienten Analyse wird der zeitliche Verlauf der Antwort auf eine zeitlich veränderliche Last bestimmt. Die zu lösende Bewegungsgleichung lautet: [ M ] [ü ]+[ D ] [ u ]+
Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3
Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung
Numerik SS Übungsblatt 3
PROF. DR. BERND SIMEON CHRISTIAN GOBERT THOMAS MÄRZ Numerik SS 9 Übungsblatt 3 Aufgabe 1 Clenshaw-Curtis-Quadratur Wie bereits bei der Polynominterpolation bietet es sich auch zur Quadratur an Tschebysheff-
Übungsblatt 1 Musterlösung
Numerik gewöhnlicher Differentialgleichungen MA234 - SS6 Übungsblatt Musterlösung Aufgabe (Interpolationspolynom) a) Bestimmen Sie die Hilfspolynome L i, i =,,2, für x =, x = 2 und x 2 = 3 nach der Formel
Matrixelemente von Tensoroperatoren und die Auswahlregeln
Vorlesung 3 Matrixelemente von Tensoroperatoren und die Auswahlregeln In der Quantenmechanik müssen wir ab und zu die Matrixelemente von verschiedenen Operatoren berechnen. Von spezieller Bedeutung sind
Prüfungklausur HM 1 (Ing), Lösungshinweise
Aufgabe : a Welche komplexen Zahlen erfüllen die Gleichung z + i z =? Skizzieren Sie die Lösungsmenge in der Gaussschen Zahlenebene. 6 Punkte b Für welche komplexen Zahlen z gilt (z + i = 8 e π i? Die
Sampling. 7. Vorlesung
Sampling 7. Vorlesung Photorealistische Computergrafik Thorsten Grosch Einleitung Bisher Lösung der Rendering Equation durch das Radiosity Verfahren mit den Vereinfachungen Heute Diskretisierung der Geometrie
Lösungen zur Experimentalphysik III
Lösungen zur Experimentalphysik III Wintersemester 008/009 Prof. Dr. L. Oberauer Blatt 7.10.08 Aufgabe 1: a) Die Formel für die Fouriertrafo ist aus der Vorlesung und der Zentralübung bekannt. Somit folgt
1.12. MAKROSKOPISCHE ELEKTROSTATIK 87. In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik.
.. MAKROSKOPISCHE ELEKTROSTATIK 87. Makroskopische Elektrostatik.. Polarisation, dielektrische erschiebung In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik rot
Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)
Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle
14.3 Berechnung gekrümmter Flächen
4.3 Berechnung gekrümmter Flächen Gekrümmte Flächen werden berechnet, indem sie als Graph einer Funktion zweier Veränderlicher aufgefasst werden. Fläche des Graphen einer Funktion zweier Veränderlicher
Übungen zu Integralsätzen Lösungen zu Übung 19
9. Sei IR 3 der Einheitswürfel Übungen zu Integralsätzen Lösungen zu Übung 9 erifizieren Sie für : {(x, y, z) IR 3 : x, y, z.} den Gaußschen Divergenzsatz. Lösung: v(x, y, z) : (4xz, y, yz) erifizieren
Q 1. d 2 e x. welche den Zusammenhang zwischen Stromdichte und Ladungsdichte beschreibt. Da die Stromdichte hier nur eine x-komponente besitzt, gilt
Elektromagnetische Felder Wellen: Lösung zur Klausur Herbst 999 Aufgabe Das Potential einer Punktladungen Q am Ort r lautet V { r} = Q 4πɛɛ 0 r r Hier soll das Potential einer gegebenen Raumladung ρ v
2.3.4 Drehungen in drei Dimensionen
2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1
Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt
1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:
Übungsblatt 4 Musterlösung
Numerik gewöhnlicher Differentialgleichungen MA2304 - SS6 Übungsblatt 4 Musterlösung Aufgabe 7 (Nullstellen als Eigenwerte) Die Polynome {S n } n=0,,2,, S n P n, mit führem Koeffizienten eins, heißen Orthogonalpolynome
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen
Die Oberfläche der Verpackung besteht aus sechs Teilen: 2 Trapeze (vorne und hinten), und 4 Rechtecke.
Aufgabe 1a) Schritt 1: Oberflächenformel aufstellen Gesucht ist die Oberfläche des Prismas. Das heißt, 2, mit G als Grundfläche und M als Mantel. Die Oberfläche der Verpackung besteht aus sechs Teilen:
H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur
H. Schmidli Mathematik für Physiker WS / Lösung der Klausur. a) Zähler und Nenner konvergieren gegen. Somit verwenden wir die Regel von L Hospital e sin x x x e cos x (cos x)e sin x x (sin x)e cos x x
3.7 Das magnetische Feld in Materie
15 KAPITEL 3. MAGNETOSTATIK 3.7 Das magnetische Feld in Materie Wie wir in den vorangegangenen Kapiteln bereits gesehen haben, wird die magnetische Induktionsdichte B durch ein Vektorpotenzial A charakterisiert,
2 x x 2 y 2 vol(a) = d(x, y, z) = 4 3 x3 dx = [ 1
UNIVERSITÄT ARLSRUHE Institut für Analsis HDoz Dr P C unstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Phsik und Geodäsie inklusive omplexe Analsis
Zylinderkoordinaten 1 E1. Ma 2 Lubov Vassilevskaya
Zylinderkoordinaten E E E3 Berechnung in beliebigen krummlinigen Koordinaten Die Koordinaten sind durch die Beziehungen definiert: x x u, v, w, y y u, v, w, z z u, v, w Für sie sollen stetige partielle
Klassische Polynom Interpolation.
Klassische Polynom Interpolation. Bestimme ein Polynom (höchstens) n ten Grades p n (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n, das die gegebenen Daten interpoliert, d.h. p n (x i ) = f i, 0 i n. Erster
Oberfläche von Körpern
Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h
Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15
5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet
19. Januar Universität Erlangen-Nürnberg Department Mathematik PD Dr. Markus Bause. . Danach liefert die Gauss-Elinination. .
Universität Erlangen-Nürnberg Department Mathematik PD Dr Markus Bause Numerik I 9 Januar A Gegeben sei die Matrix A = a Führen Sie eine Zeilenskalierung der Matrix durch Klausur b Bestimmen Sie mit Hilfe
HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I
HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man
Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen
Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)
Übung 1 - Musterlösung
Experimentalphysik für Lehramtskandidaten und Meteorologen 8. April 00 Übungsgruppenleiter: Heiko Dumlich Übung - Musterlösung Aufgabe Wir beginnen die Aufgabe mit der Auflistung der benötigten Formeln
Funktionen mehrerer Variabler
Funktionen mehrerer Variabler Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Funktionen mehrerer Variabler Übersicht Funktionsbegriff 1 Funktionsbegriff Beispiele Darstellung Schnitte 2 Partielle Ableitungen
r 1 Abb. 1: Schlinge um Kreis im Abstand 1
Hans Walser, [20130119a] Schlinge um Kreis Anregung: R. S., Z. 1 Die Uralt-Aufgabe Um einen Kreis mit Radius r wird eine Schlinge im Abstand 1 gelegt (Abb. 1). Wie lang ist die Schlinge im Vergleich zum
Institut für Geometrie und Praktische Mathematik
RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen
Graphische Datenverarbeitung
Graphische Datenverarbeitung Globale Beleuchtungsrechnung: Ray Tracing und Radiosity Prof. Dr.-Ing. Detlef Krömker Goethe-Universität, Frankfurt Übersicht 1. Rückblick 2. Globale Beleuchtungsmodelle 3.
Integralrechnung für GLET
Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten
15.5 Stetige Zufallsvariablen
5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven
Fachwörterliste Mathematik für Berufsintegrationsklassen
Fachwörterliste Mathematik für Berufsintegrationsklassen Lerngebiet 2.4: Grundkenntnisse der Geometrie München, Februar 2019 ISB Berufssprache Deutsch Erarbeitet im Auftrag des Bayerischen Staatsministeriums
Mathematik. Abiturprüfung Prüfungsteil A (CAS) Arbeitszeit: 90 Minuten
Mathematik Abiturprüfung 2015 Prüfungsteil A (CAS) Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie
Übungsaufgaben zu Kapitel 1 bis 4 (Studiengang Produktionstechnik)
Hochschule für Technik und Wirtschaft Dresden Wintersemester 8/9 Fakultät Informatik/Mathematik Prof. Dr. B. Jung Übungsaufgaben zu Kapitel bis 4 (Studiengang Produktionstechnik) Aufgabe : Vereinfachen
1 Das Prinzip von Cavalieri
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 14 11.6.14 Höhere Mathematik II für die Fachrichtung Informatik 5. Saalübung 11.6.14 1 Das Prinzip von
Grundkenntnisse. Begriffe, Fachtermini (PRV) Gib die Winkelart von an.
Begriffe, Fachtermini (PRV) / Sätze / Formeln (PRV) / Regeln / Funktionen und Darstellung (PRV) / Relative Häufigkeit und Wahrscheinlichkeit (PRV) / Tabellenkalkulation (PRV) TÜ-Nr. 501D Begriffe, Fachtermini
Mathematischer Vorkurs Lösungen zum Übungsblatt 3
Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester [email protected] Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)
H.J. Oberle Analysis II SoSe Interpolation
HJ Oberle Analysis II SoSe 2012 7 Interpolation 71 Allgemeine Problemstellung Interpolation ist die Kunst, zwischen den Zeilen einer Tabelle zu lesen (Rutishauser) Von f : R R seien Funktionswerte (x j,
Klausurvorbereitung Höhere Mathematik Lösungen
Klausurvorbereitung Höhere Mathematik Lösungen Yannick Schrör Christian Mielers. Februar 06 Ungleichungen Bestimme die Lösungen für folgende Ungleichungen. x+ > x + x + Fall : x, x + > x + 6 Lösung im
Klassische Theoretische Physik II
v SoSe 28 Klassische Theoretische Physik II Vorlesung: Prof. Dr. K. Melnikov Übung: Dr. H. Frellesvig, Dr. R. Rietkerk Übungsblatt 3 Ausgabe: 3.7.8 Abgabe: 2.7.8 bis 9:3 Aufgabe : Teller 8 Punkte Wir entwenden
Einführung FEM 1D - Beispiel
p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie
Klassische Theoretische Physik I WS 2013/2014
Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2
Mehrdimensionale Integration
Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der
Mathematik 3 für Informatik
Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4
Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik
Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum
Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung. Stand April 2012
Dimensionen Mathematik 5 GK Grundkompetenzen für die neue Reifeprüfung Stand April 2012 Inhaltsverzeichnis Buchkapitel Inhaltsbereiche Seite Zahlen und Rechengesetze Funktionen Gleichungen Lineare Gleichungssysteme
Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über
9 Innere Produkte In diesem Kapitel betrachten wir immer Vektorräume über dem Körper der reellen Zahlen R oder dem Körper der komplexen Zahlen C. Definition 9.1: Sei V ein Vektorraum über R. Ein inneres
Mehrdimensionale Integralrechnung 1
Mehrdimensionale Integralrechnung Im - dimensionalen Fall wurde die Integralrechnung eingeführt, um Flächen unter Kurven zu berechnen. Eine ähnliche Fragestellung führt uns auf die mehrdimensionale Integralrechnung.
Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.
PC-Übung Nr.1 vom
PC-Übung Nr.1 vom 17.10.08 Sebastian Meiss 25. November 2008 1. Allgemeine Vorbereitung a) Geben Sie die Standardbedingungen in verschiedenen Einheiten an: Druck p in Pa, bar, Torr, atm Temperatur T in
Kapitel D : Flächen- und Volumenberechnungen
Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung
Moderne Theoretische Physik WS 2013/2014
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher
Lineare Differentialgleichungen 1. Ordnung
Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl
Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 28. Juli 2014, Uhr
KIT SS 4 Klassische Theoretische Physik II V: Prof Dr M Mühlleitner, Ü: Dr M auch Klausur Lösung 8 Juli 4, 7-9 Uhr Aufgabe : Kurzfragen (+++=8 Punkte (a Verallgemeinerte Koordinaten sind Koordinaten, die
42 Orthogonalität Motivation Definition: Orthogonalität Beispiel
4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der
