Entwicklung einer hp-fast-multipole-
|
|
|
- Bärbel Buchholz
- vor 8 Jahren
- Abrufe
Transkript
1 Entwicklung einer hp-fast-multipole- Boundary-Elemente-Methode Übersicht: 1. Motivation 2. Theoretische Grundlagen a) Boundary-Elemente-Methode b) Fast-Multipole-Methode 3. Erweiterungen a) Elementordnung b) hp-methode c) Burton-Miller-Formulierung d) Halbraum-Formulierung 4. Reifen-Rollgeräusch-Simulation 5. Fazit und Ausblick
2 Motivation Produkte müssen hohe Umweltauflagen einhalten Messungen sind teuer und zeitaufwändig Numerische Simulation akustischer Eigenschaften Boundary-Elemente- Methode für Abstrahlungsprobleme besonders geeignet Methoden zur Beschleunigung und Fehlerreduktion erforderlich 2
3 Boundary-Elemente-Methode Wellengleichung Helmholtz-Gleichung 2 u x, t = 1 c 2 2 u(x, t) t 2 2 p x = k 2 p x BEM-Formulierung: Gewichtete Form der DGL Ω p x + k 2 p x w dω = 0 Fundamentallösung G x, y = 1 4π x y eik x y 3
4 Boundary-Elemente-Methode Randintegralgleichung c x p x = G x, y q y Γ G x, y n y p(y) dγ Diskretisierung N c i x p i x = G x, y φ j (y) dγ j j=1 Γ j q j N j=1 Γ j G x, y n y φ j (y) dγ j p j Gleichungssystem a 11 a 1N a N1 a NN x 1 x N = b 1 b N 4
5 Fast-Multipole-Methode Approximation der Einflüsse weit entfernter Kollokationspunkte Beschleunigung der BEM 1. Baumstruktur c i p i = NF (Gq G n p) dγ NF + FM (Gq G n p) dγ FM 5
6 Fast-Multipole-Methode 2. upward pass: multipole-to-multipole- Translationen 3. downward pass: local-to-local- und multipoleto-local-translationen 4. Auswertung: Nahfeld- und Fernfeld- Einflüsse 6
7 Elementordnung - Grundlagen Verlauf des Randwertes wird durch Ansatzfunktionen approximiert QUAD-Element 3. Ordnung Interpolation zwischen Randwerten in den Kollokationspunkten Grad des Interpolationspolynoms bestimmt Präzision der Näherung TRIA-Element 2. Ordnung 7
8 Interpolation - Grundlagen Viereckelemente: Multiplikation der Formeln für die eindimensionale Polynominterpolation Dreieckelemente: Verwendung von Flächenkoordinaten φ ij ξ, η = p j=0,j i ξ ξ j ξ i ξ j p i=0,i j η η i η j η i L i = A i A φ 0 = c(l 0 0)(L ) 8
9 Elementordnung - Grundlagen φ ξ, η = 1 im betrachteten Punkt und φ ξ, η = 0 in allen anderen Knoten p j m y = φ j m (y)p j Randwertverlauf über ein Element aus Superposition der Ansatzfunktionen K p m y = φ k m (y)p k k=1 N c i x p i x = G x, y φ j (y) dγ j j=1 Γ j q j N j=1 Γ j G x, y n y φ j (y) dγ j p j 9
10 Elementordnung - Ergebnisse p exakt x = ρce ikx e = p num p exakt p num Geringerer Fehler bei Elementen höherer Ordnung Höhere Elementordnung bei steigender Frequenz (Kollokationspunkte pro Wellenlänge) Rechenzeit und Speicherbedarf steigen stark an (Freiheitsgrade, Integrationsordnung) 10
11 hp-methode - Grundlagen Adaptive Netzverfeinerung zur Fehlerreduktion h-methode: Element wird geteilt (an geometrischen Singularitäten) p-methode: Elementordnung wird erhöht (sonst) Adaptivität durch Grenzwert für Fehlerindikator ε Mindestdruck 11
12 hp-methode - Ergebnisse Adaptive Netzverfeinerung e = p num p ref p num Reduktion des Fehlers Beschleunigung durch FMM Optimierung möglich 12
13 Burton-Miller-Formulierung - Grundlagen Problem der kritischen Frequenzen bei Außenraumproblemen Eigenfrequenzen des zugehörigen Innenraumproblems Burton-Miller-Formulierung: Kombination der konventionellen und der hypersingulären Randintegralgleichung c x p x = G x, y q y Γ G x, y n y p(y) dγ c x q x = Γ G x, y n x q y G x, y n y n x p(y) dγ CBIE + α HBIE = 0 Integration hypersingulärer Funktionen erfordert spezielle Techniken 13
14 Hypersinguläre Integration - Grundlagen Regularisierung G x, y n x n y φ(y) Γ e dγ e = L L 0 φ(y) dγ e Γ e Hypersinguläre Integral wird zu schwach singulären Integrale umgeformt Gradienten für beliebige Elementordnungen erforderlich Integration über gesamte Oberfläche nötig + φ(y) φ(x) φ(x) r L 0 dγ e Γ e M + ( φ(x) φ(x) r)l 0 dγ m m=1,m e M Γ m + φ(x) n y K 0 dγ m m=1 Γ m 14
15 Burton-Miller-Formulierung - Ergebnisse p exakt r = 1 4πr eikr e = p num p exakt p num Reduktion des Fehlers bei kritischen Frequenzen Hypersinguläre Integration sowohl über konstante als auch Elemente höherer Ordnung möglich 15
16 Halbraum-Formulierung - Grundlagen Reflektierende Ebene beeinflusst das akustische Feld Diskretisierung der Ebene wird durch Halbraum- Formulierung vermieden Modifizierte Fundamentallösung: G H x, y = 1 4π r eik r + 1 4π r eik r Implementierung mittels Spiegelungstechnik 16
17 Halbraum-Formulierung - Ergebnisse p exakt r = 1 4πr eikr e = p num p exakt p num Fehler unter 8% Adaptive Netzverfeinerung Reduktion des Fehlers durch hp- Methode 17
18 Reifen-Rollgeräusch-Simulation Reduktion des Fehlers durch hp-methode Einfluss der Fahrbahn berücksichtigt Problem der kritischen Frequenzen behoben 18
19 Fazit und Ausblick Fazit: hp-fmbem ermöglicht effiziente Berechnung bei hoher Genauigkeit Burton-Miller-Formulierung für beliebige Elementordnungen anwendbar Effiziente Untersuchung von Halbraum-Problemen möglich Reale Probleme können kostengünstig und zeitsparend untersucht werden Ausblick: Optimale Berechnungsparameter Verbesserung des hp-algorithmus Effiziente hypersinguläre Integration 19
20 20
21 Berechnung der Fehlerindikatoren Fehlerindikatoren Mindestdruck μ 1 = K k=1 ( p k p elem ) K p min,1 = N j=1 p j N μ 2 = μ 1 p Netz p min,2 = p Netz μ 3 = μ 1 p elem p min,3 = p Netz0,2 p elem = K k=1 p k K 21
22 Diskretisierung des Quaders Diskretisierung h1 Diskretisierung h3 22
Kapitel 5 Randelementmethode
Kapitel 5 Randelementmethode. Einleitung Bei der Randintegralmethode wird eine partielle Differentialgleichung in 3D in eine Randintegralgleichung (2D Problem) übergeführt. Diese Randintegralgleichung
Dipl.-Ing. Christoph Erath 10. November FVM-BEM Kopplung. Was gewinnen wir, wenn wir zwei numerische Methoden miteinander koppeln?
Dipl.-Ing. Christoph Erath 10. November 2007 FVM-BEM Kopplung Was gewinnen wir, wenn wir zwei numerische Methoden miteinander koppeln? Seite 2 FVM-BEM Kopplung 10. November 2007 Dipl.-Ing. Christoph Erath
Finite Elemente Methoden (aus der Sicht des Mathematikers)
Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht: Partielle Differentialgleichungen, Approximation der Lösung, Finite Elemente, lineare und höhere Ansatzfunktionen, Dünn
Numerische Akustik. Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh
Numerische Akustik Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh 1 Einleitung Akustischen Messungen und Berechnungen sind mittlerweile in vielen Fällen nicht ohne Einsatz eines Computers
Glättung durch iterative Verfahren
Numerische Methoden in der Finanzmathematik II Sommersemester 211 Glättung durch iterative Verfahren Vorlesung Numerische Methoden in der Finanzmathematik II Sommersemester 211 Numerische Methoden in der
5. Eigenschwingungen
5. Eigenschwingungen Bei Innenraumproblemen gibt es wie bei elastischen Strukturen Eigenschwingungen. Eigenschwingungen sind rein reelle Lösungen der Helmholtz-Gleichung bei homogenen Randbedingungen.
κ Κα π Κ α α Κ Α
κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ
Einführung FEM 1D - Beispiel
p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie
Stefan Sauter, Christoph Schwab. Randelementmethoden. Analyse, Numerik und Implemen tierung schneller Algorithmen. Teubner
Stefan Sauter, Christoph Schwab Randelementmethoden Analyse, Numerik und Implemen tierung schneller Algorithmen Teubner B. G.Teubner Stuttgart Leipzig Wiesbaden Inhaltsverzeichnis Vorwort VII 1 Einführung
5 Interpolation und Approximation
5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)
Simulationstechnik V
Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 4. Teil Finite-Volumen-Methode
31 Die Potentialgleichung
3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-
(x x j ) R m [x] (3) x x j x k x j. R m [x]. (4)
33 Interpolation 147 33 Interpolation In vielen praktischen Anwendungen der Mathematik treten Funktionen f auf, deren Werte nur näherungsweise berechnet werden können oder sogar nur auf gewissen endlichen
KAPITEL 5. Nichtlineare Gleichungssysteme
KAPITEL 5. Nichtlineare Gleichungssysteme Beispiel 5.1. Gravitationskraft zwischen zwei Punktmassen m 1 und m 2 mit gegenseitigem Abstand r: F = G m 1m 2 r 2, wobei G = 6.67 10 11 Nm 2 /kg. Gravitationsfeld
Finite Elemente Modellierung
Finite Elemente Modellierung Modellerstellung Diskretisierung des Kontinuums Methode der Finite Elemente Anwendungsbeispiele der FEM Zugstab: Kraftmethode Zugstab: Energiemethode Zugstab: Ansatzfunktion
Berechnung von Formfaktoren
Berechnung von Formfaktoren Oliver Deussen Formfaktorberechnung 1 Formfaktor ist eine Funktion in Abhängigkeit der Geometrie ist unabhängig von reflektierenden oder emittierenden Eigenschaften (ρ) der
Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013
Gitterfreie Methoden 1D 2D Florian Hewener 29. Oktober 2013 Gliederung 1 Interpolationsprobleme Problemstellung Haar-Räume 2 Mehrdimensionale Polynominterpolation 3 Splines Kubische Splines und natürliche
Numerische Methoden I FEM/REM
Numerische Methoden I FEM/REM Dr.-Ing. Markus Kästner ZEU 353 Tel.: 035 463 32656 E-Mail: [email protected] Dresden, 27.0.206 Klausur Datum: 2.3.206 Numerische Methoden RES, SM, MT (DPO 203),
Interpolation und Integration mit Polynomen
Interpolation und Integration mit Polynomen Philipp Andrea Zardo Universität Kassel 23. Februar 2006 / Kassel Outline 1 Einleitung Was ist numerische Mathematik? Die eulersche e-funktion Ein Wurzelalgorithmus
Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen
Kurztest zur Numerik I WiR AG, Dep. Mathematik, NT-Fakultät, Universität Siegen Wintersemester 2012/201 Zwischentest Teil 1: 1. Was bedeuten die Bezeichnungen O(h) und o(h)? (Definition) (siehe Skript!)
Modellieren in der Angewandten Geologie II. Sebastian Bauer
Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine
Kevin Caldwell. 18.April 2012
im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig
Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)
Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 8 Partielle
Weiterentwicklung eines Verfahrens zur Schallquellenortung an Verbrennungsmotoren
Weiterentwicklung eines Verfahrens zur Schallquellenortung an Verbrennungsmotoren Bestimmung der Schalldruck- und -Schnelleverteilung einer abstrahlenden Oberfläche mit Hilfe der Boundary-Element-Methode
Berechnungen in der Akustik - Möglichkeiten und Grenzen
Otto von Estorff Berechnungen in der Akustik - Möglichkeiten und Grenzen Inhalt: Einleitung Finite-Elemente-Methode Boundary-Elemente-Methode Vergleiche Messung/Rechnung Entwicklungsbedarf Zusammenfassung
VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.
NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet
Finite Elemente I Konvergenzaussagen
Finite Elemente I 195 5 onvergenzaussagen 5 onvergenzaussagen TU Bergakademie Freiberg, SoS 2006 Finite Elemente I 196 5.1 Interpolation in Sobolev-Räumen Wesentlicher Baustein der FE-onvergenzanalyse
Mathematik 3 für Informatik
Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4
Partielle Differentialgleichungen
Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
Maximumprinzip und Minimumprinzip
Maximumprinzip und Minimumprinzip Daniela Rottenkolber LMU München Zillertal / 13.12.2012 16.12.2012 Daniela Rottenkolber Maximumprinzip und Minimumprinzip 1/14 Übersicht Motivation mit Beispielen Schwaches
6. Adaptive Finite-Element-Methoden
6. Adaptive Finite-Element-Methoden Adaptive Finite-Element-Methoden werden eingesetzt, um die FE-Lösung lokal oder global zu verbessern. Dieses Thema ist Gegenstand der heutigen Vorlesung. 6.1 Herleitung
Numerische Verfahren
Numerische Verfahren Jens-Peter M. Zemke [email protected] Institut für Numerische Simulation Technische Universität Hamburg-Harburg 15.04.2008 TUHH Jens-Peter M. Zemke Numerische Verfahren Numerische
Nichtlineare Gleichungssysteme
Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei
Lineare Gleichungssysteme Hierarchische Matrizen
Kompaktkurs Lineare Gleichungssysteme Hierarchische Matrizen M. Bebendorf, O. Steinbach O. Steinbach Lineare Gleichungssysteme SIMNET Kurs 24. 27.4.26 / 6 Numerische Simulation stationäre und instationäre
KAPITEL 10. Numerische Integration
KAPITEL 10. Numerische Integration 10.1 Einleitung Sei Es gilt I Ĩ = b I = b a a f(x) f(x) dx f(x) dx, Ĩ = b b a f(x) dx. a f(x) f(x) dx (b a) f f. I Ĩ I (b a) f f b a f(x) dx = ba f dx b a f(x) dx f f
8 Interpolation. 8.1 Problemstellung. Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen. x 0 < x 1 <... < x n.
8 Interpolation 81 Problemstellung Gegeben: Diskrete Werte einer Funktion f : R R an n + 1 Stützstellen x 0 < x 1 < < x n Eingabedaten: (x 0, f 0 ),(x 1, f 1 ),,(x n, f n ) Gegebene Daten (x j, f j ) Analysis
Effiziente Simulation der Einkopplung statistischer Felder in Leitungsstrukturen mit der Momentenmethode
Effiziente Simulation der Einkopplung statistischer Felder in Leitungsstrukturen mit der Momentenmethode Mathias Magdowski 1, Arne Schröder 2, Heinz Brüns 2, Ralf Vick 1 1 Lehrstuhl für Elektromagnetische
3. Erzwungene gedämpfte Schwingungen
3. Erzwungene gedämpfte Schwingungen 3.1 Schwingungsgleichung 3.2 Unwuchtanregung 3.3 Weganregung 3.4 Komplexe Darstellung 2.3-1 3.1 Schwingungsgleichung F(t) m Bei einer erzwungenen gedämpften Schwingung
Numerische Simulation mit finiten Elementen. O. Rheinbach
Numerische Simulation mit finiten Elementen O. Rheinbach Numerische Simulation mit finiten Elementen INHALT 0.1 Finite Differenzen in 2D 1. Einleitung 1.1 Vorbemerkungen 1.2 Rand- und Anfangswertaufgaben
Der CG-Algorithmus (Zusammenfassung)
Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine
Polynominterpolation
Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses
Kapitel 4. Numerische Differentiation und Integration
Kapitel 4 Numerische Differentiation und Integration Prof. R. Leithner, E. Zander Einführung in numerische Methoden für Ingenieure 4/2 Integration und Differentiation Probleme bei der Integration und Differentiation
Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang
Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen
Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015
Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 5 Aufgabe 8 (Speichertechniken) Finite Elemente Übung 5 a) Stellen Sie die Matrix
Institut für Geometrie und Praktische Mathematik
RWTH Aachen Institut für Geometrie und Praktische Mathematik Diplom VP Numerik 13. September 004 Aufgabe 1 10 0 40 Gegeben sei die Matrix A = 80 10 10. 10 5 5 (6 Punkte) a) Skalieren (Zeilenäquilibrierung)
Finite Elemente am Beispiel der Poissongleichung
am Beispiel der Poissongleichung Roland Tomasi 11.12.2013 Inhalt 1 2 3 Poissongleichung Sei R n ein Gebiet mit abschnittsweise glattem Rand und f L 2 (). Wir suchen u : R, so dass u = f in, u = 0 Physikalische
4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich
4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,
Praktikum I PP Physikalisches Pendel
Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische
Seminar. Visual Computing. Poisson Surface Reconstruction. Peter Hagemann Andreas Meyer. Peter Eisert: Visual Computing SS 11.
Poisson Surface Reconstruction Peter Hagemann Andreas Meyer Seminar 1 Peter Eisert: SS 11 Motivation Zur 3D Darstellung von Objekten werden meist Scan-Daten erstellt Erstellung eines Dreieckmodells aus
Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie
Kapitel 8 Störungstheorie 8.1 Motivation Die meisten quantenmechanischen Problemstellungen lassen sich (leider) nicht exakt lösen. So kommt zum Beispiel der harmonische Oszillator in der Natur in Reinform
KAPITEL 8. Interpolation
KAPITEL 8. Interpolation 8.2 Lagrange-Interpolationsaufgabe für Polynome Wir beschränken uns auf die Lagrange-Interpolation mit Polynomen. Der Raum der Polynome vom Grad n: Stützstellen: Π n = { n j=0
Zehnstellige Probleme. Maik Rassau
Zehnstellige Probleme Seminar 18.11.13 Maik Rassau Newton: Problem 1 2 Würfel 2 Würfel Würfel1: Würfel2: mit mit Kraft für Einheitspunktmassen = x- Komponente der Kraft zw. zwei Pktmassen = => Gesuchtes
7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)
Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl
Entwicklung von p-mehrgitter-verfahren für turbulente Strömungen
Entwicklung von p-mehrgitter-verfahren für turbulente Strömungen Institut für Aerodynamik und Strömungstechnik DLR 10.11.2011 1 / 24 Übersicht Motivation DG-Verfahren Gleichungen p-mehrgitter Voraussetzungen
Approximationstheorie und Approximationspraxis
Approximationstheorie und Approximationspraxis Martin Wagner Bergische Universität Wuppertal Fachbereich C - Mathematik und Naturwissenschaften AG Optmierung und Approximation 3. Februar 2010 1 / 20 Motivation
5 Interpolation und numerische Approximation
Numerik I 194 5 Interpolation und numerische Approximation 5.1 Polynominterpolation 5.2 Spline-Interpolation 5.3 Diskrete Fourier-Transformation 5.4 Schnelle Fourier-Transformation (FFT) 5.5 Eine Anwendung
Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L
Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem
11.4. Lineare Differentialgleichungen höherer Ordnung
4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in
3. Übertragungsfunktionen
Definitionen: Die Fourier-Transformierte der Impulsantwortfunktion heißt Übertragungsfunktion: H ( f )= h(t )e 2 π i f t dt Mithilfe der Übertragungsfunktion kann die Fourier-Transformierte der Antwort
Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)
M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.
Implizite Funktionen. Ist für eine stetig differenzierbare Funktion f : R n R m R n. so lässt sich das Gleichungssystem
Implizite Funktionen Ist für eine stetig differenzierbare Funktion f : R n R m R n f (x, y ) = (0,..., 0) t, det f x (x, y ) 0, so lässt sich das Gleichungssystem f k (x 1,..., x n, y 1,..., y m ) = 0,
Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn
Numerik für Informatiker, Elektrotechniker und Naturfreunde von Michael Lehn Verfasst von Patrick Schneider E-Mail: [email protected] Universität Ulm Institut für Numerische Mathematik Sommersemester
6. Polynom-Interpolation
6. Polynom-Interpolation 1 6.1. Klassische Polynom-Interpolation 2 6.2. Lösung mit Hilfe Lagrange scher Basisfunktionen 3 6.3. Lösung mit Hilfe Newton scher Basisfunktionen 4 6.4. Fehlerabschätzung für
Die Interpolationsaufgabe besteht darin, eine (einfache) Funktion u n U n zu finden,
Kapitel 3 Interpolation 31 Einführung Bemerkung 31 Motivation, Aufgabenstellung Gegeben seien eine Funktion f C([a,b]) und x i [a,b], i = 0,n, mit a x 0 < x 1 < < x n b (31) Die Interpolationsaufgabe besteht
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren
Spline-Räume - B-Spline-Basen
Spline-Räume - B-Spline-Basen René Janssens 4. November 2009 René Janssens () Spline-Räume - B-Spline-Basen 4. November 2009 1 / 56 Übersicht 1 Erster Abschnitt: Räume von Splinefunktionen Grundlegende
Numerische Methoden I FEM/REM
Numerische Methoden I FEM/REM Dr.-Ing. Markus Kästner ZEU 353 Tel.: 035 463 32656 E-Mail: [email protected] Dresden, 06.0.206 Zusammenfassung 8. Vorlesung. Schiefwinklige Scheibenelemente Numerischer
Erweiterungen der LR-Zerlegung
Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg [email protected] Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen
Partielle Differentialgleichungen Kapitel 11
Partielle Differentialgleichungen Kapitel Die Laplace- und Poisson- Gleichungen Die Struktur bei elliptischen Gleichungen zweiter Ordnung ist nicht wesentlich verschieden bei Operatoren mit konstanten
ODE-Solver. Inhalt. Einleitung. grundlegende Algorithmen. weiterführende Algorithmen
Martin Reinhardt angewandte Mathematik 8. Semester Matrikel: 50108 ODE-Solver 11. Mai 2011 Inhalt Einleitung grundlegende Algorithmen weiterführende Algorithmen Martin Reinhardt (TUBAF) 1 Orientierung
im Ottomotor mit der Large Eddy Simulation
Numerische Berechnung der Strömung im Ottomotor mit der Large Eddy Simulation F. Magagnato Übersicht Motivation Numerisches Schema von SPARC Netzgenerierung und Modellierung LES des ROTAX Motors bei 2000
7.5 Erwartungswert, Varianz
7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k
6 Polynominterpolation
Vorlesungsskript HM-Numerik (SS 2014): Kapitel 6 Version: 1 Juli 2014 6 Polynominterpolation Gegeben: Wertepaare { (x i,f i ) R 2 i = 0,,n } Gesucht: Einfache Funktion g : R R mit g(x i ) = f i i {0,1,,n}
Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen
Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung
Gegenbeispiele in der Wahrscheinlichkeitstheorie
Gegenbeispiele in der Wahrscheinlichkeitstheorie Mathias Schaefer Universität Ulm 26. November 212 1 / 38 Übersicht 1 Normalverteilung Definition Eigenschaften Gegenbeispiele 2 Momentenproblem Definition
Numerische Mathematik
Numerische Mathematik SS 999 Augabe 6 Punkte Das Integral I ln d soll numerisch bis au eine Genauigkeit von mindestens - approimiert werden. a Wie groß muss die Anzahl N der Teilintervalle sein damit mit
Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie
Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................
3. Lineare Gleichungssysteme
3. Lineare Gleichungssysteme 1 3.1. Problemstellung 2 3.2. Direkte Verfahren 3 3.3. Normen und Fehleranalyse 4 3.4. Iterative Verfahren 5 3.5. Konvergenz von linearen Iterationsverfahren 6 3.6. Gradienten-Verfahren
2. Vorlesung Partielle Differentialgleichungen
2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 22. Oktober 204 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz
Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben
Newton-Verfahren zur optimalen Steuerung nichtlinearer elliptischer Randwertaufgaben Patrick Knapp Berichtseminar zur Bachelorarbeit Universität Konstanz 14.12.2010 Einleitung Aufgabenstellung min J(y,
Institut für Geometrie und Praktische Mathematik
RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik 4 Punkte Es gibt zu jeder der Aufgaben vier Teilaufgaben. Diese sind mit bzw. zu kennzeichnen hinschreiben. Es müssen
E 3. Ergänzungen zu Kapitel 3
E 3. Ergänzungen zu Kapitel 3 1 E 3.1 Kritisches Verhalten des van der Waals Gases 2 E 3.2 Kritisches Verhalten des Ising Spin-1/2 Modells 3 E 3.3 Theorie von Lee und Yang 4 E 3.4 Skalenhypothese nach
Modifikation der Eigenschaften von Antikaonen in dichter Materie
Modifikation der Eigenschaften von Antikaonen in dichter Materie Thomas Roth 7. Juli 2004 Motivation Kaonen...... in dichter Materie Motivation Kaonen... sind die leichtesten Mesonen mit Strangeness ±1...
Kleine Formelsammlung zu Mathematik für Ingenieure IIA
Kleine Formelsammlung zu Mathematik für Ingenieure IIA Florian Franzmann 5. Oktober 004 Inhaltsverzeichnis Additionstheoreme Reihen und Folgen 3. Reihen...................................... 3. Potenzreihen..................................
Validierung von Strukturmodellen mit Messdaten aus natürlicher Erregung
Validierung von Strukturmodellen mit Messdaten aus natürlicher Erregung Gerrit Übersicht Antwortmessung unter natürlicher Erregung Systemidentifikation mit ARMA-Modellen Modellvalidierung mit iterativen
