4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

Größe: px
Ab Seite anzeigen:

Download "4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich"

Transkript

1 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich, so wird der Körper verzerrt: Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich. Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

2 4. Verzerrungen Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

3 4. Verzerrungen 4.1 Verschiebung und Verzerrung 4.2 Verzerrungstransformation 4.3 Messung der Verzerrungen Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

4 4.1 Verschiebung und Verzerrung Verschiebung: Die Verschiebung der Punkte des Körpers wird durch einen ortsabhängigen Verschiebungsvektor u(p) beschrieben: x P ' =x P +u( x P, y P ) y P ' =y P +v( x P, y P ) y F x(p ' )= x(p)+u(p) P u P' x Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

5 4.1 Verschiebung und Verzerrung Verzerrung: Ein kleines Element des Körpers erfährt eine Translation, eine Rotation und eine Verzerrung. Die Verzerrung führt zu einer Änderung der Form des Elementes: Längenänderungen werden durch Dehnungen beschrieben. P Winkeländerungen werden durch Scherungen beschrieben. P' Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

6 4.1 Verschiebung und Verzerrung Zusammenhang zwischen Verschiebung und Verzerrung: Betrachtet werden drei Punkte P, Q und R auf dem Körper, die so gewählt sind, dass die Strecken PQ und PR parallel zu den Achsen des Koordinatensystems sind. Δy R P R' α P' Δx y Q β x Q' Die Punkte werden durch die Verschiebung auf die Punkte P', Q' und R' abgebildet. Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

7 4.1 Verschiebung und Verzerrung Koordinaten: Unverformt: P : ( x P, y P ) Q : ( x P +Δ x, y P ) R : ( x P, y P +Δ y ) Verformt: P ' : ( x P ', y P ' )=( x P +u( x P, y P ),y P +v ( x P, y P )) Q ' : ( x Q ', y Q ' )=( x P +Δ x+u( x P +Δ x, y P ), y P +v( x P +Δ x, y P )) R ' : ( x R ', y R ' )=( x P +u( x P, y P +Δ y), y P +Δ y+v ( x P, y P +Δ y)) Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

8 4.1 Verschiebung und Verzerrung In der Umgebung von Punkt P gilt für die Verschiebungen: u( x P +Δ x, y P )=u( x P, y P )+ u x Δ x v(x P +Δ x,y P )=v( x P,y P )+ v x Δ x u( x P, y P +Δ y)=u( x P, y P )+ u y Δ y v(x P,y P +Δ y)=v (x P, y P )+ v y Δ y Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

9 4.1 Verschiebung und Verzerrung Daraus folgt für die Koordinaten im verformten Zustand: x P ' =x P +u( x P, y P ), y P ' =y P +v( x P, y P ) x Q ' =x P +Δ x +u(x P, y P )+ u x Δ x=x P '+Δ x + u x Δ x y Q ' =y P +v (x P, y P )+ v x Δ x=y P '+ v x Δ x x R ' =x P +u( x P, y P )+ u y Δ y=x P '+ u y Δ y y R' =y P +Δ y+v ( x P, y P )+ v y Δ y=y P '+Δ y+ v y Δ y Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

10 4.1 Verschiebung und Verzerrung Längenänderungen: Länge der Strecke P'Q' : P ' Q ' = ( x Q ' x P ' ) 2 +(y Q ' y P ' ) 2 = ( u 1+ ) 2 + ( v ) 2 Δ x x x Für kleine Verzerrungen gilt: ( v x ) 2 1 Damit folgt: P ' Q ' ( 1+ u x ) Δ x Mit PQ =Δ x gilt für die Dehnung: P ' Q ' PQ ϵ x = = u PQ x Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

11 4.1 Verschiebung und Verzerrung Entsprechend folgt: P ' R ' PR ϵ y = = v PR y Winkeländerung: Für die Änderung des Winkels QPR gilt: Für kleine Winkeländerungen gilt: γ xy =α+β α tan (α)= x R ' x P ' y R ' y P ' = u y Δ y ( v 1+ ) y Δ y u y Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

12 4.1 Verschiebung und Verzerrung Damit gilt für die Scherung: Ergebnis: β tan(β)= y Q ' y P ' = x Q ' x P ' v x Δ x ( 1+ u x ) Δ x v x γ xy = u y + v x Wenn die Verschiebungsgradienten klein sind, gilt für die Verzerrungen: ϵ x = u x, ϵ y= v y, γ xy= u y + v x Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

13 4.1 Verschiebung und Verzerrung Beispiel: Gegeben sind die Verschiebungen u( x, y)=a x+b y v( x,y)=c x+d y Die Verzerrungen berechnen sich zu ϵ x = u x =a, ϵ y= v y =d γ xy = u y + v x =b+c y b d 1 D A = A' D' C B 1 a + b B' c a C' c + d x Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

14 4.2 Verzerrungstransformation Die bisher gefundenen Dehnungen geben an, wie sich die Längen von Strecken entlang der Koordinatenachsen ändern. Die bisher gefundene Scherung beschreibt die Änderung des Winkels zwischen zwei Strecken entlang der beiden Koordinatenachsen. Nun sollen die Dehnungen für beliebig orientierte Strecken und die Scherung für zwei beliebige senkrecht aufeinander stehende Strecken berechnet werden. Die Aufgabe lässt sich durch Umrechnung der Verzerrungen in ein gedrehtes Koordinatensystem lösen. Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

15 4.2 Verzerrungstransformation Drehung des Koordinatensystems: Koordinaten von Punkt P: η y P x=r cos(α), y=r sin(α) ξ=r cos(β), η=r sin(β) r β ξ Mit β = α ϕ folgt: α ϕ x ξ=r cos(α ϕ)=r cos(α)cos(ϕ)+ r sin(α)sin(ϕ) =x cos(ϕ)+y sin(ϕ) η=r sin(α ϕ)=r sin(α)cos(ϕ) r cos(α)sin(ϕ) =y cos(ϕ) x sin(ϕ) Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

16 4.2 Verzerrungstransformation Die Umrechnung vom gedrehten in das ursprüngliche Koordinatensystem erfolgt mit dem Winkel -ϕ. Damit lauten die Transformationsgleichungen für die Koordinaten: ξ = x cos(ϕ) + y sin(ϕ) η = x sin(ϕ) + y cos(ϕ), Die Komponenten des Verschiebungsvektors berechnen sich aus den Differenzen der Koordinaten. Sie transformieren sich daher wie die Koordinaten: u ξ = u cos(ϕ) + v sin(ϕ) v η = u sin(ϕ) + v cos(ϕ) x = ξ cos(ϕ) ηsin(ϕ) y = ξ sin(ϕ) + η cos(ϕ) Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

17 4.2 Verzerrungstransformation Ableitungen der Verschiebungen: Zur Berechnung der Verzerrungen im gedrehten System werden die Ableitungen der Verschiebungen im gedrehten System nach ξ und η benötigt: u ξ ξ = u ξ x x ξ + u ξ y y ξ = ( u x + ( u y cos(ϕ)+ v x sin(ϕ) ) cos(ϕ) cos(ϕ)+ v y sin(ϕ) ) sin(ϕ) = u x cos2 (ϕ)+ ( u y + v ) v sin(ϕ)cos(ϕ)+ x y sin2 (ϕ) Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

18 4.2 Verzerrungstransformation Entsprechend folgt: u ξ η = u y cos2 (ϕ) ( u x v y ) sin(ϕ)cos(ϕ) v x sin2 (ϕ) v η ξ = u y sin 2 (ϕ) ( u x v ) v sin(ϕ)cos(ϕ)+ y x cos2 (ϕ) v η η = u x sin 2 (ϕ) ( u y + v x ) sin(ϕ)cos(ϕ)+ v y cos2 (ϕ) Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

19 4.2 Verzerrungstransformation Verzerrungen im gedrehten Koordinatensystem: Mit den Beziehungen für die Ableitungen im gedrehten Koordinatensystem und für die Verzerrungen im Ausgangssystem folgt: ϵ ξ = u ξ ξ =ϵ x cos2 (ϕ)+γ xy sin(ϕ)cos(ϕ)+ϵ y sin 2 (ϕ) ϵ η = v η η =ϵ x sin2 (ϕ) γ xy sin(ϕ)cos(ϕ)+ϵ y cos 2 (ϕ) γ ξ η = u ξ η + v η ξ =γ xy (cos 2 (ϕ) sin 2 (ϕ)) 2 ( ϵ x ϵ y ) sin(ϕ)cos(ϕ) Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

20 4.2 Verzerrungstransformation Mit den trigonometrischen Beziehungen folgt: 2 sin(ϕ)cos(ϕ)=sin(2 ϕ), 2 cos 2 (ϕ)=1+cos(2 ϕ), 2 sin 2 (ϕ)=1 cos(2 ϕ) ϵ ξ = 1 2 ( ϵ x +ϵ y ) ( ϵ x ϵ y ) cos(2ϕ) + γ xy 2 sin(2 ϕ) ϵ η = 1 2 ( ϵ x +ϵ y ) 1 2 ( ϵ x ϵ y ) cos(2ϕ) γ xy sin(2 ϕ) 2 γ ξ η = 1 γ 2 2 ( ϵ x ϵ y )sin(2 ϕ) + xy cos(2 ϕ) 2 Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

21 4.2 Verzerrungstransformation Bemerkungen: Die Dehnung ε ξ beschreibt die Längenänderung einer Strecke, die mit der x-achse den Winkel ϕ einschließt. Die Verzerrungen ε x, ε y und ε xy = γ xy /2 transformieren sich genauso wie die Spannungen. Sie werden als Tensorverzerrungen bezeichnet. Im Gegensatz dazu heißen die Verzerrungen ε x, ε y und γ xy Ingenieurverzerrungen. Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

22 4.2 Verzerrungstransformation Beispiel: Gegeben: ϵ x =1, , ϵ y = 5, , γ xy = 7, Gesucht: Dehnung in Richtung ϕ = 30 Lösung: 1 2 ( ϵ x +ϵ y )=2, , 1 2 ( ϵ x ϵ y )=7, γ xy 2 = 3, ϵ ξ =2, , cos(60 ) 3, sin(60 ) =6, Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

23 4.2 Verzerrungstransformation Hauptachsen: Wie bei den Spannungen gibt es zwei senkrecht aufeinander stehende Richtungen, für die die Dehnungen Extremwerte annehmen und die Scherung verschwindet. Diese Richtungen heißen Hauptdehnungsrichtungen. Der rechte Winkel zwischen Linien entlang der Hauptdehnungsrichtungen wird durch die Verzerrung nicht verändert. Die Hauptdehnungsrichtungen berechnen sich zu tan(2 ϕ E )= 2ϵ xy ϵ x ϵ = γ xy y ϵ x ϵ y Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

24 4.2 Verzerrungstransformation Die zugehörigen Dehnungen sind die Hauptdehnungen. Wie bei den Spannungen folgt für die Hauptdehnungen: ϵ 1/ 2 = ϵ x +ϵ y 2 ± ( ϵ ϵ 2 x y ) 2 +ϵ 2 xy Bei Verwendung von Ingenieurverzerrungen gilt: ϵ 1/ 2 = ϵ x +ϵ y 2 ± ( ϵ ϵ 2 x y ) γ 2 xy Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

25 4.3 Messung der Verzerrungen Dehnungen lassen sich mit Dehnungsmessstreifen (DMS) messen, die auf die Oberfläche des Bauteils geklebt werden. Dabei wird ausgenutzt, dass die Änderung des elektrischen Widerstands eines DMS proportional zu seiner Längenänderung ist. Zur vollständigen Bestimmung des Verzerrungszustands an einem Punkt sind drei DMS nötig, die die Dehnungen in drei unterschiedlichen Richtungen messen. Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

26 4.3 Messung der Verzerrungen b γ β α a c x Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

27 4.3 Messung der Verzerrungen Auswertung der Messung: Aus der Messung seien die drei Dehnungen ε a, ε b und ε c bekannt, die zu den ab der x-achse gemessenen Winkeln α, β und γ gehören. Für die Dehnungen gilt: ϵ a = 1 2 ( ϵ x +ϵ y )+ 1 2 ( ϵ x ϵ y ) cos(2 α)+ 1 2 γ xy sin(2α) ϵ b = 1 2 ( ϵ x +ϵ y )+ 1 2 ( ϵ x ϵ y ) cos(2β)+ 1 2 γ xy sin(2β) ϵ c = 1 2 ( ϵ x +ϵ y )+ 1 2 ( ϵ x ϵ y ) cos(2 γ)+ 1 2 γ xy sin(2 γ) Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

28 4.3 Messung der Verzerrungen Die gesuchten Größen ε x, ε y und γ xy sind Lösung des linearen Gleichungssystems (1+cos(2α)) ϵ x + (1 cos(2α) )ϵ y + sin(2 α) γ xy = 2ϵ a (1+cos(2 β)) ϵ x + (1 cos(2β)) ϵ y + sin(2β) γ xy = 2ϵ b (1+cos(2 γ))ϵ x + (1 cos(2 γ)) ϵ y + sin(2 γ) γ xy = 2 ϵ c Für α = 0, β = 45 und γ = 90 lautet das Gleichungssystem 2 ϵ x = 2 ϵ a ϵ x + ϵ y + γ xy = 2ϵ b 2ϵ y = 2 ϵ c ϵ x =ϵ a γ xy =2ϵ b ϵ a ϵ c ϵ y =ϵ c Prof. Dr. Wandinger 2. Ebene Elastizitätstheorie TM

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck: Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der

Mehr

KREISFUNKTIONEN. Allgemeines

KREISFUNKTIONEN. Allgemeines KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.

Mehr

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).

Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß). Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn! Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 5. Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen.

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen. Analytische Geometrie Seite 1 von 6 1. Wichtige Formeln AB bezeichnet den Vektor, der die Verschiebung beschreibt, durch die der Punkt A auf den Punkt B verschoben wird. Der Vektor, durch den die Verschiebung

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Repräsentation und Transformation von geometrischen Objekten

Repräsentation und Transformation von geometrischen Objekten Repräsentation und Transformation von geometrischen Objekten Inhalt: Grundlagen Überblick Einfache Transformationen in der Ebene Homogene Koordinaten Einfache Transformationen in der Ebene mit homogenen

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

1. Unterteilung von allgemeinen Dreiecken in rechtwinklige

1. Unterteilung von allgemeinen Dreiecken in rechtwinklige Trigonometrie am allgemeinen Dreieck Wir können auch die Seiten und Winkel von allgemeinen Dreiecken mit Hilfe der Trigonometrie berechnen. Die einfachste Variante besteht darin, ein beliebiges Dreieck

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

Eine Methode zur Positionsberechnung aus Relativmessungen. Von Eckhardt Schön, Erfurt

Eine Methode zur Positionsberechnung aus Relativmessungen. Von Eckhardt Schön, Erfurt Eine Methode zur Positionsberechnung aus Relativmessungen Von Eckhardt Schön, Erfurt Mit 4 Abbildungen Die Bewegung der Sterne und Planeten vollzieht sich für einen irdischen Beobachter scheinbar an einer

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4 1.4 Trigonometrie I Inhaltsverzeichnis 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2 2 Die trigonometrischen Funktionen 4 2.1 Was sind trigonometrischen Funktionen?........................... 4 2.2

Mehr

Trigonometrie. Schülerzirkel Mathematik Schülerseminar

Trigonometrie. Schülerzirkel Mathematik Schülerseminar Schülerzirkel Mathematik Schülerseminar Trigonometrie Im Schülerseminar für Schülerinnen und Schüler der Klassenstufen 8 10 wurde die Trigonometrie innerhalb der Einheit über komplexe Zahlen behandelt,

Mehr

KORREKTURANLEITUNGEN zum Testheft A1

KORREKTURANLEITUNGEN zum Testheft A1 Projekt Standardisierte schriftliche Reifeprüfung in Mathematik KORREKTURANLEITUNGEN zum Testheft A1 A1 Zahlen N Z Q R 0,03-6 π 3 10-3 1 Bemerkung: Die Aufgabe gilt nur dann als richtig gelöst, wenn alle

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung

Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung 1.0 Das Quadrat ABCD mit der Seitenlänge a cm ist Grundfläche eines Würfels mit der Deckfläche EFGH, wobei E über A, F über B usw. liegen. Zur Grundfläche ABCD parallele Ebenen schneiden die Würfelkanten

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Was bedeutet Trigonometrie und mit was beschäftigt sich die Trigonometrie?

Was bedeutet Trigonometrie und mit was beschäftigt sich die Trigonometrie? Einführung Was bedeutet und mit was beschäftigt sich die? Wortkunde: tri bedeutet 'drei' Bsp. Triathlon,... gon bedeutet 'Winkel'/'Eck' Bsp. Pentagon das Fünfeck mit 5 Winkeln metrie bedeutet 'Messung'

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

3. Zentrales ebenes Kräftesystem

3. Zentrales ebenes Kräftesystem 3. Zentrales ebenes Kräftesystem Eine ruppe von Kräften, die an einem starren Körper angreifen, bilden ein zentrales Kräftesystem, wenn sich die Wirkungslinien aller Kräfte in einem Punkt schneiden. f

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α

Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.

Mehr

Lineare (affine) Abbildung

Lineare (affine) Abbildung Lineare affine Aildung A e 2 a e Wir üerziehen die Eene neen dem vertrauten Quadrat-Gitternetz, das durch die Basisvektoren e und e 2 festgelegt ist, mit einem Parallelogramm-Gitternetz, dessen Maschen

Mehr

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Aus Kapitel 4 Technische Mechanik Aufgaben

Aus Kapitel 4 Technische Mechanik Aufgaben 6 Aufgaben Kap. 4 Aus Kapitel 4 Aufgaben 4. Zugproben duktiler Werkstoffe reißen im Zugversuch regelmäßig mit einer größtenteils um 45 zur Kraftrichtung geneigten Bruchfläche. F F 3. Mohr scher Spannungskreis:

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

1 Analytische Geometrie

1 Analytische Geometrie Analytische Geometrie. Grundlagen, Begriffe, Schreibweisen Achsenkreuz Die Achsen heißen in dieser Darstellung x und -Achse. Punkte Punkte werden weiterhin mit großen, lateinischen Buchstaben bezeichnet

Mehr

6. Orbits und die Runge-Lenz Vektor

6. Orbits und die Runge-Lenz Vektor Übungen zur T: Theoretische Mechani, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physi.uni-muenchen.de 6. Orbits und die Runge-Lenz Vetor Übung 6.: Die Rücehr der Kanonenugel

Mehr

mentor Lernhilfe: Mathematik 10. Klasse Baumann

mentor Lernhilfe: Mathematik 10. Klasse Baumann mentor Lernhilfe: Mathematik 10. Klasse Geometrie: Winkelfunktionen, Trigonometrie, Additionstheoreme, Vektorrechnung von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 10. Klasse Baumann schnell

Mehr

mentor Lernhilfe: Mathematik 7. Klasse Baumann

mentor Lernhilfe: Mathematik 7. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse

Mehr

1. Eindimensionale Bewegung

1. Eindimensionale Bewegung 1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt

Mehr

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten. V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

7.3 Lorentz Transformation

7.3 Lorentz Transformation 26 KAPITEL 7. SPEZIELLE RELATIVITÄTSTHEORIE 7.3 Lorent Transformation In diesem Abschnitt sollen die Transformationen im 4-dimensionalen Minkowski Raum betrachtet werden. Dabei wollen wir uns auf solche

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Der Punkt von Fermat 1

Der Punkt von Fermat 1 Der Punkt von Fermat 1 Geometrie Der Punkt von Fermat Autor: Peter Andree Inhaltsverzeichnis 9 Der Punkt von Fermat 1 9.1 Die Aufgabe von Fermat an Torricelli................... 1 9.2 Der klassische, analytische

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.

4. Die ebene Platte. 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten. Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4. 4. Die ebene Platte 4.1 Schallabstrahlung von Platten 4.2 Biegeschwingungen von Platten Prof. Dr. Wandinger 4. Schallabstrahlung Akustik 4.4-1 Schallabstrahlung einer unendlichen ebenen Platte: Betrachtet

Mehr

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner

Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner Stoff für den Einstufungstest Mathematik in das 2. Jahr AHS 1) Gleichungen/ Gleichungssysteme/ Terme Lineare Gleichungen

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Kapitel 3: Geometrische Transformationen

Kapitel 3: Geometrische Transformationen [ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen

Mehr

2.4 Stoßvorgänge. Lösungen

2.4 Stoßvorgänge. Lösungen .4 Stoßvorgänge Lösungen Aufgabe 1: a) Geschwindigkeit und Winkel: Für die Wurfhöhe gilt: H = v 0 g sin Die zugehörige x-koordinate ist: x 1 = v 0 g sincos Aus diesen beiden Gleichungen lässt sich die

Mehr

2. Aufgabe Vereinfachen Sie die folgenden Ausdrücke so, dass möglichst wenige Multiplikationen ausgeführt werden müssen!

2. Aufgabe Vereinfachen Sie die folgenden Ausdrücke so, dass möglichst wenige Multiplikationen ausgeführt werden müssen! Studiengang: PT/LOT/PVHT Semester: WS 9/ lgebra Serie: 2 Thema: Matrizen, Determinanten. ufgabe Gegeben sind die Matrizen = µ 2 3 2 µ 3 2 4, B = 2 Berechnen Sie: a) 2 + 3B b) B 2 c) B T d) B T e) T B f)

Mehr

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1

Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1 Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Mechanische Spannung und Elastizität

Mechanische Spannung und Elastizität Mechanische Spannung und Elastizität Wirken unterschiedliche Kräfte auf einen ausgedehnten Körper an unterschiedlichen Orten, dann erfährt der Körper eine mechanische Spannung. F 1 F Wir definieren die

Mehr

11 Üben X Affine Funktionen 1.01

11 Üben X Affine Funktionen 1.01 Üben X Aine Funktionen.0 Zeichne die Graphen zu olgenden Funktionsgleichungen! + + d c b a Augabenkarte von MUED Lösung X Aine Funktionen.0 + + d c b a Üben X Aine Funktionen.0 Bestimme die Funktionsgleichung

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,

B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R, B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Lösung zur Übung 2. Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken.

Lösung zur Übung 2. Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken. Lösung zur Übung Aufgabe 5 Berechnen Sie die kleinste Periode folgender Funktionen a) y(x) = sin(x) cos(x) Lösung durch Ausrechnen Die Funktion lässt sich durch die Doppelwinkelfunktion des Sinus ausdrücken.

Mehr

Musterlösung Lineare Algebra und Geometrie Herbstsemester 2015, Aufgabenblatt 6

Musterlösung Lineare Algebra und Geometrie Herbstsemester 2015, Aufgabenblatt 6 Musterlösung Lineare Algebra und Geometrie Herbstsemester 015, Aufgabenblatt 6 Aufgabenblatt 6 40 Punkte Aufgabe 1 (Bandornamente) Ordne die sechs Bandornamente rechts den sieben Klassen zu. Zu jeder Klasse

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Rainer Hauser September 013 1 Einleitung 1.1 Der Begriff Funktion Eine Funktion ordnet jedem Element m 1 einer Menge M 1 ein Element m einer Menge M zu. Man schreibt dafür f:

Mehr

Trigonometrie am rechtwinkligen Dreieck

Trigonometrie am rechtwinkligen Dreieck 1. Geschichtliches Trigonometrie am rechtwinkligen Dreieck Die Trigonometrie ein Teilgebiet der Geometrie, welches sich mit Dreiecken beschäftigt. Sie entstand vor allem aus der frühen stronomie 1, hat

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.

Mehr

Arbeitsblatt Geometrie / Trigonometrie

Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016

Mehr

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Udo Backhaus 14. Dezember 2004 1 Prinzip Die Messung der Astronomischen Einheit durch Kontaktzeitmessungen beim Venustransit

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Das Skalarprodukt zweier Vektoren

Das Skalarprodukt zweier Vektoren Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften

Mehr

Trägheitsmomente starrer Körper

Trägheitsmomente starrer Körper Trägheitsmomente starrer Körper Mit Hilfe von Drehschwingungen sollen für einen Würfel und einen Quader die Trägheitsmomente für verschiedene Drehachsen durch den Schwerpunkt gemessen werden. Das zugehörige

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Lösung zum Parabolspiegel

Lösung zum Parabolspiegel Lösung zum Parabolspiegel y s 1 s 2 Offensichtlich muss s = s 1 + s 2 unabhängig vom Achsenabstand y bzw. über die Parabelgleichung auch unabhängig von x sein. f F x s = s 1 + s 2 = f x + y 2 + (f x) 2

Mehr

Aufgaben zu sin, cos und tan im rechtwinkligen Dreieck

Aufgaben zu sin, cos und tan im rechtwinkligen Dreieck Aufgaben zu sin, cos und tan im rechtwinkligen Dreieck 1) Eine Leiter ist 3m von einer Wand entfernt. Die Leiter ist 5m lang. In welcher Höhe ist die Leiter an die Wand gelehnt und welchen Neigungswinkel

Mehr

Stoffgesetze Spannungszustand

Stoffgesetze Spannungszustand 16. 9.4 Stoffgesete Spannungsustand Belastungen ereugen in elastischen Bauteilen einen Spannungsustand, der sowohl vom Ort als auch von der Orientierung (Winkel) des betrachteten Schnittes beüglich der

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Theoretische Physik I Mechanik Blatt 1

Theoretische Physik I Mechanik Blatt 1 PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 1 WS 27/28 8. 1. 27 1. Parabelbahn. Ein Punkt bewege sich auf der Kurve, die durch die Gleichung y 2 = 4ax + 4a 2 a > beschrieben

Mehr