1. Einfache ebene Tragwerke
|
|
|
- Bärbel Gerhardt
- vor 9 Jahren
- Abrufe
Transkript
1 Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse TM
2 Beispiel: B Loslager Gegeben: a Gewicht G = 5000 N Höhe h = 3 m Abstand a = 2,5 m Gesucht: Kräfte in den Lagern A und B h G A Festlager Prof. Dr. Wandinger 3. Tragwerksanalyse TM
3 Freischneiden: Die Lager werden entfernt. B x B a Die Kräfte, die die Lager auf das Bauteil ausüben, werden eingezeichnet. Die Pfeilrichtung legt die positive Richtung fest. h G Ergibt die Rechnung einen negativen Zahlenwert, so wirkt die Kraft entgegen der Pfeilrichtung. A x A A y y x Prof. Dr. Wandinger 3. Tragwerksanalyse TM
4 Gleichgewichtsbedingungen: Zur Bestimmung der 3 unbekannten Kräfte Ax, A y und B x stehen die 3 Gleichgewichtsbedingungen zur Verfügung: F x =0 : A x B x =0 A x =B x F y =0 : A y G=0 A y =G M A =0 : h B x a G=0 B x = a h G Zahlenwerte: A x =B x = 2, N=4167N, A y=5000 N Prof. Dr. Wandinger 3. Tragwerksanalyse TM
5 Beispiel: Kragbalken Freischnitt: L A x A y L A F α M A A y x F α Gegeben: L, F, α Gesucht: Lasten an der Einspannung A Gleichgewichtsbedingungen: F x =0 : F cos(α) A x =0 F y =0 : A y F sin(α)=0 M A =0 : M A L F sin (α)=0 Prof. Dr. Wandinger 3. Tragwerksanalyse TM
6 : Auflösen: F x =0 A x =F cos(α) F y =0 A y =F sin (α)=0 M A =0 M A =L F sin (α) Prof. Dr. Wandinger 3. Tragwerksanalyse TM
7 Wichtige Anmerkungen: Das Bauteil, für das die Gleichgewichtsbedingungen aufgestellt werden, muss komplett freigeschnitten sein. Es muss möglich sein, das freigeschnittene Bauteil in Gedanken beliebig zu verschieben. Die Gleichgewichtsbedingungen beziehen sich auf einen Freischnitt. Gleichgewichtsbedingungen ohne zugehörigen Freischnitt sind sinnlos! Prof. Dr. Wandinger 3. Tragwerksanalyse TM
8 Eingeprägte Kräfte und Reaktionskräfte: Eingeprägte Kräfte sind vorgegebene Kräfte wie z.b. Gewichtskraft, Winddruck oder Schneelast. Reaktionskräfte sind Zwangskräfte, die dadurch entstehen, dass die Bewegungsfreiheit des Körpers durch die Lager und Gelenke eingeschränkt wird. Beim Freischneiden werden die Lager durch die dort auftretenden Reaktionskräfte ersetzt. Die Reaktionskräfte werden durch die eingeprägten Kräfte verursacht. Werden die eingeprägten Kräfte entfernt, dann verschwinden auch die Reaktionskräfte. Prof. Dr. Wandinger 3. Tragwerksanalyse TM
9 Lager: Lager verhindern Bewegungen. Für jede verhinderte Verschiebung ist im Freischnitt eine unbekannte Kraft einzuzeichnen. Für jede verhinderte Verdrehung ist im Freischnitt ein unbekanntes Moment einzuzeichnen. Der Richtungssinn kann frei gewählt werden. Der gewählte Richtungssinn definiert den Richtungssinn einer positiven Kraft bzw. eines positiven Moments. Prof. Dr. Wandinger 3. Tragwerksanalyse TM
10 Die Wertigkeit eines Lagers gibt an, wie viele Bewegungsmöglichkeiten das Lager verhindert: Ein 1-wertiges Lager verhindert eine Bewegungsmöglichkeit. Es tritt eine Reaktionslast auf. Ein 2-wertiges Lager verhindert zwei Bewegungsmöglichkeiten. Es treten zwei Reaktionslasten auf. Ein 3-wertiges Lager verhindert drei Bewegungsmöglichkeiten. Es treten drei Reaktionslasten auf. Prof. Dr. Wandinger 3. Tragwerksanalyse TM
11 Feste Einspannung: Festlager: Loslager: Glatte Wand: Seil: Prof. Dr. Wandinger 3. Tragwerksanalyse TM
12 Statisch bestimmte Lagerung: Eine Lagerung heißt statisch bestimmt, wenn sich die Lagerreaktionen aus den Gleichgewichtsbedingungen bestimmen lassen. Wenn die Gleichgewichtsbedingungen nicht zur Bestimmung der Lagerreaktionen ausreichen, heißt die Lagerung statisch unbestimmt. Bei ebenen Tragwerken gilt: Treten 3 Lagerreaktionen auf, so ist das Tragwerk statisch bestimmt gelagert. Treten mehr als 3 Lagerreaktionen auf, so ist das Tragwerk statisch unbestimmt gelagert. Prof. Dr. Wandinger 3. Tragwerksanalyse TM
13 Beispiel: statisch bestimmt: statisch unbestimmt: 3 Lagerreaktionen 4 Lagerreaktionen Prof. Dr. Wandinger 3. Tragwerksanalyse TM
14 Unzureichende Lagerung: Die angegebenen Regeln gelten nur, wenn das Tragwerk so gelagert ist, dass keine Bewegungen mehr auftreten können. F y x Das abgebildete Tragwerk kann sich in x-richtung bewegen. Ein Kräftegleichgewicht in x-richtung ist nicht möglich. Die drei unbekannten Lagerkräfte können aus den beiden verbleibenden Gleichgewichtsbedingungen nicht ermittelt werden. Prof. Dr. Wandinger 3. Tragwerksanalyse TM
1. Ebene gerade Balken
1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken
2. Zentrale Kraftsysteme
2. Zentrale Kraftsysteme Definition: Ein Kraftsystem, bei dem sich die Wirkungslinien aller Kräfte in einem Punkt schneiden, wird als zentrales Kraftsystem bezeichnet. Die Kräfte dürfen entlang ihrer Wirkungslinie
2. Sätze von Castigliano und Menabrea
2. Sätze von Castigliano und Menabrea us der Gleichheit von äußerer rbeit und Formänderungsenergie kann die Verschiebung am Lastangriffspunkt berechnet werden, wenn an der Struktur nur eine Last angreift.
Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik
Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition
Theoretische Einleitung Fachwerkbrücken Parabelbrücken
Quellen: www.1000steine.com, www.professorbeaker.com, http://andrea2007.files.wordpress.com, www.zum.de, www.morgenweb.de, www1.pictures.gi.zimbio.com Quellen: www.1000steine.com, www.professorbeaker.com,
Biegelinie
3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung
52 5 Gleichgewicht des ebenen Kraftsystems. Festlager
52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen
Biegelinie
3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung
Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik
Technische Mechanik 1. Einleitung 2. Statik des starren Körpers 3. Statik von Systemen starrer Körper 3.1 Gleichgewichtsbedingungen, das Erstarrungsprinzip 3.2 Lager 3.2.1 Lagerung in der Ebene 3.2.2 Allgemeiner
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis
4 Gleichgewicht gebundener Körper
23 Bindungen und en beschränken die Bewegungsfreiheiten eines Körpers (oder Teilsystems) und rufen Lagerreaktionen hervor, welche auf andere Belastungen des Körpers reagieren" und somit die Bindungen aufrechterhalten.
1. Haftung. Betrachtet wird ein Klotz auf einer rauen Oberfläche, an dem eine horizontale Kraft F angreift:
Das Coulombsche Gesetz: Betrachtet wird ein Klotz auf einer rauen Oberfläche, an dem eine horizontale Kraft F angreift: g m F rau Die Erfahrung zeigt: Solange die Kraft F einen bestimmten Betrag nicht
4. Allgemeines ebenes Kräftesystem
4. llgemeines ebenes Kräftesystem Eine Gruppe von Kräften, die an einem starren Körper angreifen, bilden ein allgemeines Kräftesystem, wenn sich ihre Wirkungslinien nicht in einem gemeinsamen Punkt schneiden.
Fragen aus dem Repetitorium II
Fragen aus dem Repetitorium II Folgend werden die Fragen des Repetitoriums II, welche ihr im Skript ab Seite 182 findet, behandelt. Die Seiten werden ständig aktualisiert und korrigiert, so daß es sich
Mehmet Maraz. MechanikNachhilfe
Mehmet Maraz MechanikNachhilfe 1. Auflage 015 Inhaltsverzeichnis 1 Statik 1 1.1 Lagerungen und Lagerreaktionen................. 1. Kräftegleichgewichte......................... 5 1..1 Drehmoment.........................
3. Allgemeine Kraftsysteme
3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene
2. Exzentrischer Stoß
2. Exzentrischer Stoß 2.1 Ebener Stoß zwischen freien Körpern 2.2 Ebener Stoß auf gelagerten Körper 3.2-1 2.1 Ebener Stoß zwischen freien Körpern Aufgabenstellung: Zwei glatte Körper stoßen aufeinander.
1. Bewegungsgleichung
1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik
Technische Mechanik. Fachwerke
7 Fachwerke Fachwerke Fachwerke Anwendungsbeispiele... Beispiele aus dem Ingenieurwesen (wikipedia.org) Fachwerke 1 Fachwerke Anwendungsbeispiele nanowerk.com (T. Bückmann) wikipedia.org Beispiele aus
1 Schubstarrer Balken
Einsteinufer 5, 1587 Berlin PdvK Energiemethoden 7. Übungsblatt, WS 212/13, S. 1 1 Schubstarrer Balken Freischnitt und Schnittlasten für das reale System x läuft mit der Balkenachse, die strichlierte Linie
5 Haftreibung Technische Mechanik Haftreibung
5 Haftreibung Haftreibung 1 Haftkraft kompakt: Spezielles Lager Kontaktkraft: Aufgrund der Rauhigkeit kann sowohl vertikale Kraft N als auch horizontale Kraft H übertragen werden Kraft N ist Druckkraft
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis
Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik
S 1. Seilkräfte ufgaben zur Statik 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn m Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. S 2: Zentrales
Gleichgewicht am Punkt
Gleichgewicht am Punkt 3.1 Gleichgewichtsbedingung für einen Massenpunkt.. 52 3.2 Freikörperbild................................... 52 3.3 Ebene Kräftesysteme............................ 55 3.4 Räumliche
4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2.
4. Balken Balken sind eindimensionale Idealisierungen für Bauteile, die Längskräfte, Querkräfte und Momente übertragen können. Die Querschnittsabmessungen sind klein gegenüber der Länge. Beispiele: Brücken
2. Mehrteilige ebene Tragwerke
Mehrteilige ebene Trgwerke bestehen us mehreren gelenkig miteinnder verbundenen Teiltrgwerken. Zusätzlich zu den Lgerrektionen müssen die Kräfte in den Gelenken bestimmt werden. Prof. Dr. Wndinger 3. Trgwerksnlyse
Theorie zur Serie 1. erstellt von A. Menichelli. 14. Dezember 2017
Theorie zur Serie 1 erstellt von A. Menichelli 14. Dezember 2017 1 Vorgehen bei Statikaufgaben 1. System analysieren einzelne Stäbe identifizieren Lagerungstypen erkennen 2. System freischneiden Lagerungen
9 Mehrkörpersysteme. Anwendungsbeispiele
63 Bei vielen technischen Fragestellungen kann man die Verformungen der Maschinenteile gegenüber den durch Lager ermöglichten Bewegungen vernachlässigen. Die daraus resultierenden Modelle bezeichnet man
MECHANIK & WERKSTOFFE
MECHANIK & WERKSTOFFE Statik Lagerung von Körpern 1-wertig Pendelstütze Seil (keine Lasten dazwischen) (nur Zug) Loslager Anliegender Stab Kraft in Stabrichtung Kraft in Seilrichtung Kraft in Auflagefläche
3. Das Gleichungssystem
Lagerung: Damit das Fachwerk Kräfte aufnehmen kann, muss es gelagert werden, Die Lagerung muss so beschaffen sein, dass keine Starrkörperbewegungen oder Mechanismen mehr möglich sind. Die Verschiebungen
1. Zug und Druck in Stäben
1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger
Universität für Bodenkultur
Baustatik Übungen Kolloquiumsvorbereitung Universität für Bodenkultur Department für Bautechnik und Naturgefahren Wien, am 15. Oktober 2004 DI Dr. techn. Roman Geier Theoretischer Teil: Ziele / Allgemeine
Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1
Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten
3. Seilhaftung und Seilreibung
3. Seilhaftung und Seilreibung Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-1 3. Seilhaftung und Seilreibung 3.1 Haften 3.2 Gleiten Prof. Dr. Wandinger 5. Haftung und Reibung TM 1 5.3-2 Bei einer
4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.
4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem
4. Das Verfahren von Galerkin
4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren
2. Statisch bestimmte Systeme
1 von 14 2. Statisch bestimmte Systeme 2.1 Definition Eine Lagerung nennt man statisch bestimmt, wenn die Lagerreaktionen (Kräfte und Momente) allein aus den Gleichgewichtsbedingungen bestimmbar sind.
5 Gleichgewicht gebundener Systeme
29 Technische Systeme bestehen aus mehreren miteinander und mit der Umwelt verbundenen Maschinenteilen. Die Bewegung erfolgt über die Lagerfreiheiten, die Verformung der Körper kann i. Allg. vernachlässigt
Technische Mechanik. Statik
Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg
Übung zu Mechanik 1 Seite 19
Übung zu Mechanik 1 Seite 19 Aufgabe 33 Bestimmen Sie die Lage des Flächenschwerpunktes für den dargestellten Plattenbalkenquerschnitt! (Einheit: cm) Aufgabe 34 Betimmen Sie die Lage des Flächenschwerpunktes
Mechanik II: Deformierbare Körper für D-BAUG, D-MAVT Haus- & Schnellübung 1
Aufgabe S1: Ein Würfel mit Kantenlänge L und Gewicht G liegt reibungsbehaftet auf einer schiefen Ebene (Winkel 45 ). Wie in der Skizze dargestellt, wirkt am Würfel eine dreiecksverteilte Linienlast mit
Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden
47 8 achwerke achwerke sind Tragwerkstrukturen aus geraden Stäben. Sie finden ihren Einsatz überall dort, wo große Distanzen zu überbrücken sind. Durch ihren Aufbau vermeiden sie Momentenbelastungen und
Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1.
Der Satz von Betti oder warum Statik nicht statisch ist. Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. (1) Bevor
1. Aufgabe (ca % der Gesamtpunktzahl)
. Aufgabe (ca. 7.5 % der Gesamtpunktzahl) S 4 b G S S S 3 F A B 8a Das dargestellte Tragwerk besteht aus 4 Stäben und einer starren Scheibe. Es wird durch die Kraft F und durch die Gewichtskraft G (im
KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten.
KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 7. März Die Bearbeitungszeit für alle drei Aufgaben beträgt 9 Minuten. AUFGABE (6 Punkte) Der Stab in Abb. mit l =,5 m ist in gelenkig gelagert und in abgestützt.
Aufgabe 1 (6 Punkte) Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik
Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 8. September 018 Prüfungsklausur Technische Mechanik I Aufgabe 1 (6 Punkte) Zwei Gewichte (Massen m 1, m ) sind
Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17)
Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17) Lösung 15.1: Element-Steifigkeitsmatrix Jeweils drei 2*2-Untermatrizen einer Element- Steifigkeitsmatrix
Lehrveranstaltung Stereostatik
Lehrveranstaltung Stereostatik Thema 2: Zentrale Kräftesysteme Bergische Universität Wuppertal Baumechanik und Numerische Methoden Prof. Dr.-Ing. W. Zahlten Mechanik 1 Zentrale Kräftesysteme 2.1 Problemstellung
1. Bewegungsgleichung
1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunktes TM 3
Übung 9: Ebene Schubfeldträger II
Ausgabe: 25..25 Übung 9: Ebene Schubfeldträger II Einleitung und Lernziele Schubfeldträger sind zentrale Strukturelemente im Leichtbau. Sie bieten gegenüber den einfacheren achwerkkonstruktionen einige
Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18)
Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18) Lösung 18.1: Die Aufgabe wird nach der im Beispiel des Abschnitt 18.1.5 demonstrierten Strategie für die Lösung
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 6 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 29,5 7 17 10 9,5 7 80 Davon erreicht Punkte: Gesamtergebnis
Zentrale Kräftesysteme
2 Zentrale Kräftesysteme Zentrale Kräftesysteme http://www.fotocommunity.de Einteilung von Kräften Grundsätzliches: Einzelkraft ist eine Idealisierung. Volumenkräfte Beispiel: Eigengewicht Flächenkräfte
Theoretische Mechanik
Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten
2.4 Systeme starrer Körper in der Ebene, das Erstarrungsprinzip
56 2 Statik des starren Körpers 2.4 Systeme starrer Körper in der Ebene, das Erstarrungsprinzip isher haben wir uns lediglich mit dem leichgewicht einzelner starrer Körper befaßt; in diesem Kapitel behandeln
3. Systeme von starren Körpern
Systeme von starren Körpern lassen sich folgendermaßen berechnen: Die einzelnen starren Körper werden freigeschnitten. Für jeden einzelnen Körper werden die Bewegungsgleichungen aufgestellt. Die kinematischen
= = > > Aufgabe 1 (6 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IV Profs. P. Eberhard / M. Hanss WS 2014/15 K 2
Institut für Technische und Num. Mechanik Technische Mechanik IV Profs. P. Eberhard / M. Hanss WS 014/15 K 1. Februar 015 Klausur in Technische Mechanik IV Nachname, Vorname E-Mail-Adresse (Angabe freiwillig)
4. Stoßvorgänge. Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten.
4. Stoßvorgänge Stoßvorgänge sind Vorgänge von sehr kurzer Dauer, bei denen zwischen den beteiligten Körpern große Kräfte auftreten. Gesucht wird ein Zusammenhang zwischen den Geschwindigkeiten vor dem
KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte)
KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 9. März 2 AUFGABE (6 Punkte) Der Stab 2 in Abb. mit l =,5 m ist in gelenkig gelagert und in 2 abgestützt. In wirkt die Kraft F = 5. N. a) Man bestimme die Reaktionen
2. Die Steifigkeitsmatrix
. Die Steifigkeitsmatrix Freiheitsgrade der Gesamtstruktur: Bei einem ebenen Fachwerk hat jeder Knoten zwei Freiheitsgrade, nämlich die Verschiebungen u x und u y, zu denen die Kräfte F x und F y gehören.
1. Stabsysteme. 1.1 Statisch bestimmte Stabsysteme 1.2 Statisch unbestimmte Stabsysteme 1.3 Stabsysteme mit starren Körpern
1. Stbsysteme 1.1 Sttisch bestimmte Stbsysteme 1.2 Sttisch unbestimmte Stbsysteme 1.3 Stbsysteme mit strren Körpern Prof. Dr. Wndinger 4. Trgwerke TM 2 4.1-1 1.1 Sttisch bestimmte Stbsysteme Längenänderung
Grundlagen der Physik 1 Lösung zu Übungsblatt 8
Grundlagen der Physik 1 Lösung zu Übungsblatt 8 Daniel Weiss 1. Dezember 29 Inhaltsverzeichnis Aufgabe 1 - inhomogener hängender Balken 1 a) Seilkräfte...................................... 1 b) Schwerpunkt....................................
1. Prinzip von d'alembert
1. Prinzip von d'alembert 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik 2 5.1-1 1.1
1. Geradlinige Bewegung
1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei
2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay
ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 4 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 9 15 10 9 6 80 Davon erreicht Punkte: Gesamtergebnis
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 6 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 29,5 7 17 10 9,5 7 80 Davon erreicht Punkte: Gesamtergebnis
f = f = f = Institut für Technische und Num. Mechanik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P März 2018
Institut für Technische und Num. Mechanik Maschinendynamik Prof. P. Eberhard / Dr.-Ing. F. Fleißner WS 2017/18 P 1 20. März 2018 Prüfung in Maschinendynamik Nachname, Vorname Aufgabe 1 (6 Punkte) Bestimmen
TM I. Aufgabe 1.1. Aufgabe 1.2. Gegeben sind die Spaltenvektoren. a = 1. , b = 6 7. , d = , c = c z. Man berechne. a) die Summe a + b,
TM I Aufgabe 1.1 Gegeben sind die Spaltenvektoren 3 2 a = 1, b = 6 7 Man berechne a) die Summe a + b, 2 b) das Skalarprodukt a b,, c = 3 5 c) die Koordinate c z für den Fall, dass a c ist, d) das Kreuzprodukt
2. Kontinuierliche Massenänderung
Untersucht wird ein Körper, der kontinuierlich Masse ausstößt. Es sollen zunächst keine äußeren Kräfte auf den Körper wirken. Bezeichnungen: Masse des ausstoßenden Körpers: m(t) Pro Zeiteinheit ausgestoßene
3. Lager und Lagerreaktionen
3. Lager und Lagerreaktionen 3.1. Beispiee, Grundbegriffe 3.2. Ebene Beanspruchung 3.3. Räumiche Beanspruchung HAW Hamburg M+P Ihenburg TM1/ Lager, Lagerreaktionen 1 Beispiee (Bauwesen) HAW Hamburg M+P
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis
5. Kritische Drehzahl
Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Musterlösung 40 % der Punkte werden zum Bestehen benötigt Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte:
2.4 Stoßvorgänge. Lösungen
.4 Stoßvorgänge Lösungen Aufgabe 1: a) Geschwindigkeit und Winkel: Für die Wurfhöhe gilt: H = v 0 g sin Die zugehörige x-koordinate ist: x 1 = v 0 g sincos Aus diesen beiden Gleichungen lässt sich die
1.1.2 Stabkräfte berechnen
1.1.2 Stabkräfte berechnen Wozu brauche ich dieses Thema? Man braucht die Berechnungsmethoden dieses Themas, um die Kräfte in Fachwerken zu berechnen. Auch Seilkräfte, z.b. im Bridle, können so ermittelt
Aufgabe 1 (9 Punkte) Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik
Techn. Mechani & Fahrzeugdynami TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 7. März 017 Prüfungslausur Technische Mechani I Familienname, Vorname Matriel-Nummer Fachrichtung Aufgabe 1 (9 Punte)
20 Statik Die resultierende Kraft im ebenen Kräftesystem
20 Statik Die resultierende Kraft im ebenen Kräftesstem 6.1.3 Beispiel zur Resultierenden im allgemeinen Kräftesstem An einem Brückenträger mit der Segmentlänge a=4m greifen die äußeren Kräfte F 1 =F 2
Fachwerke
1. Fachwerke Ein Fachwerk besteht aus einzelnen Stäben, die in den Knoten gelenkig miteinander verbunden sind. Am Beispiel des Fachwerks lassen sich die einzelnen Berechnungsschritte einer Finite-Elemente-Rechnung
Das Fachwerk ist statisch unterbestimmt (Mechanismus) und fällt in sich zusammen. Abbildung 1: Rahmenfachwerk
Übung 2: Fachwerke Aufgabe Musterlösung Das Rahmenwerk in Abb. besteht aus biegesteifen Stäben und Knoten. Es wird auf seiner Unterseite mittig mit einer abwärts gerichteten, vertikalen Kraft belastet
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 8 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 3 4 Summe Punkte: 9 8,, 8 Davon erreicht Punkte: Gesamtergebnis Klausur Testate Summe
Einführung in die Statik und räumliche Kraftsysteme
Leseprobe Kirbs Einführung in die Statik und räumliche Kraftsysteme TECHNISCHE MECHANIK Studienbrief 2-050-0904 3. Auflage 2008 HOCHSCHULVERBUND DISTANCE LEARNING Impressum Verfasser: Prof. Dr.-Ing. Jörg
Musterlösungen (ohne Gewähr)
Herbst 010 Seite 1/0 rage 1 ( Punkte) Ein masseloser Balken der Länge l stützt sich wie skizziert über einen masselosen Stab auf dem Mittelpunkt P einer Rolle ab. Ein horizontal verlaufendes Seil verbindet
1. EINFLUSSLINIEN FÜR KRAFTGRÖßEN
Arbeitsblätter 1 Hinweise zur Konstruktion und Berechnung von Einflusslinien Definition: Eine Einflusslinie (EL) liefert den Einfluss einer Wanderlast P = 1 von festgelegter Wirkungsrichtung. längs des
3. Zentrales ebenes Kräftesystem
3. Zentrales ebenes Kräftesystem Eine ruppe von Kräften, die an einem starren Körper angreifen, bilden ein zentrales Kräftesystem, wenn sich die Wirkungslinien aller Kräfte in einem Punkt schneiden. f
2. Freie Schwingungen
2. Freie Schwingungen Die einfachsten schwingungsfähigen Systeme sind lineare Systeme: Die Rückstellkräfte sind proportional zur Auslenkung. Die Dämpfungskräfte sind proportional zur Geschwindigkeit. Bei
Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke. 5., aktualisierte Auflage
Raimond Dallmann Baustatik Berechnung statisch bestimmter Tragwerke., aktualisierte uflage .3 leichgewicht am Punkt 9 F + F 3 Hinweis: Da die Länge des Richtungsvektors beliebig ist, wurde für n nicht
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
in den knotenzentrierten Koordinatensystemen des linken und rechten Knotens (Element i) bekannt sind. Das Prinzip der Berechnung lat
Kapitel Gleichgewicht von Stabwerken Durch die Festlegung auf die grundlegenden Elementtypen und die knotenzentrierten Koordinatensysteme ist der Weg zur Formulierung der Gleichgewichtsbedingungen vorgezeichnet.
Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk.
TechMech Zusammenfassung Ebene & räumliche Bewegungen Drehmoment M [Nm] Andreas Biri, D-ITET 31.07.13 1. Grundlagen Eine starre ebene Bewegung ist entweder eine Translation: alle Punkte haben parallele
Aufgabe 1 (3 Punkte) m m 2. Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik
Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 1. März 016 Prüfungsklausur Technische Mechanik I Familienname, Vorname Matrikel-Nummer Fachrichtung Aufgabe 1 (3
5. Tragsysteme. Vorlesung und Übungen 1. Semester BA Architektur.
5. Tragsysteme Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu BI - I Tragsysteme
Lehrveranstaltung Stereostatik
ehrveranstaltung Stereostatik Thema 7: Berechnung ebener Rahmen Bergische Universität Wuppertal Baumechanik und Numerische Methoden Prof. Dr.-Ing. W. Zahlten Mechanik 1 Ebene Rahmen 7.1 Problemstellung
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 8 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 Summe Punkte: 29 18,5 11 11 10,5 80 Davon erreicht Punkte: Gesamtergebnis
04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:
Klausur Technische Mechanik C 04/0/ Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen,
1. Grundlagen der ebenen Kinematik
Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes
1. Eindimensionale Bewegung
1. Eindimensionale Bewegung Die Gesamtheit aller Orte, die ein Punkt während seiner Bewegung einnimmt, wird als Bahnkurve oder Bahn bezeichnet. Bei einer eindimensionalen Bewegung bewegt sich der Punkt
