1.1.2 Stabkräfte berechnen
|
|
|
- Fabian Kappel
- vor 8 Jahren
- Abrufe
Transkript
1 1.1.2 Stabkräfte berechnen Wozu brauche ich dieses Thema? Man braucht die Berechnungsmethoden dieses Themas, um die Kräfte in Fachwerken zu berechnen. Auch Seilkräfte, z.b. im Bridle, können so ermittelt werden. Voraussetzung: Alle nachfolgenden Berechnungen beziehen sich auf Fachwerke. Das bedeutet, dass alle Stabkräfte (auch Seilkräfte) zentral auf einem Punkt angreifen. Das gilt auch für die Lasten, die nur in Knoten wirken. Das Resultat sind lediglich Druck- oder Zugkräfte in den Stäben. Bei Versatz von Stäben oder Kräften außerhalb von Knotenpunkten besteht kein Fachwerk. Es entstehen zusätzliche Biegemomente (s Schnittgrößen). Bild 12 24
2 Um nun die Stabkraftberechnung kennen zu lernen, greifen wir zu einem Beispiel, das im Rigging zu Hause ist. Es wird ein Abgriff an einer Traverse mit Rundschlinge untersucht. Es ist wichtig zu wissen, wie groß die Kräfte in den Strängen des Anschlagmittels sind, um entsprechendes Material auswählen zu können. Natürlich gibt es die gebrauchsfertigen Tabellen zu den Anschlagmitteln, die die zugehörigen Faktoren der Belastbarkeit für verschiedene Winkel angeben. Dennoch ist es wichtig zu wissen, wie sich diese Werte erklären und wo sie herkommen. Bsp.: Abgriff einer Traverse mit Rundschlinge Bild 13 Für diese Anordnung werden nun die Kräfte in den Strängen der Rundschlinge berechnet. Auch für die Stabkraftberechnung gibt es ein schrittweises Lösungsverfahren: 1. Skizze des statischen Systems am Knotenpunkt anfertigen 2. Komponentenzerlegung der schiefen Kräfte 3. Aufstellen und Lösen der Gleichgewichtsbedingungen 25
3 1. Skizze des statischen Systems Man greift sich für die Skizze stets einen Knotenpunkt mit einer bekannten Kraft heraus. In unserem Beispiel ist das sehr leicht, weil es nur einen relevanten Knotenpunkt gibt den mit der Lastangabe 10,0 kn. Alle bekannten Kräfte werden in bekannter Richtung eingezeichnet. Alle unbekannten Kräfte werden vom Knotenpunkt weg gezeichnet. Es wird für die unbekannten Kräfte also zunächst angenommen es seien Zugkräfte, die in unserem Beispiel am Schäkel ziehen. Bild 14 26
4 2. Komponentenzerlegung der schiefen Kräfte Als schiefe Kräfte wirken hier nur die Kräfte der Rundschlinge. Sie bestehen jeweils aus einer X- und einer Y-Komponente. Die bekannte Kraft 10 kn wirkt direkt auf der Y- Achse und braucht daher nicht zerlegt zu werden. Die Zerlegung selbst funktioniert wie bereits bei Kapitel 1, Zusammenfassen von Kräften, beschrieben. In unserem Fall haben beide Stränge den gleichen Namen, da beide durch identischen Winkel die gleiche Kraft aufnehmen. Für jede unserer Komponenten ergibt sich somit: sin 55 = Sx / S cos 55 = Sy / S Nun löst man die Gleichungen nach Sx und Sy auf: Sx = sin 55 * S Sy = cos 55 * S anders umgestellt: S = Sx / sin 55 S = Sy / cos 55 Zahlenwerte können im Fall der unbekannten Kräfte nicht eingesetzt werden. Mehr können wir in diesem Schritt nicht tun. 27
5 3. Aufstellen der Gleichgewichtsbedingungen Der Begriff der Gleichgewichtsbedingungen muss zunächst erläutert werden: Gleichgewicht bedeutet in der Statik, dass alle Kräfte, die auf einen ruhenden Körper wirken, zueinander im Gleichgewicht stehen. Das bedeutet, dass alle Kräfte sich gegenseitig kompensieren und in ihrer Gesamtwirkung so erscheinen, als sei keine Kraft vorhanden. Mathematisch gesehen ist die Summe aller Kräfte gleich null so als wäre keine Kraft vorhanden. Würde die Summe der Kräfte nicht gleich null sein, so würde der Körper beschleunigen. Für eine Aufhängung würde dies heißen, dass der Körper abstürzt. Nun aber zurück zu unserer Konstruktion. Wir drücken das Gleichgewicht nun mathematisch als Summe aller auftretenden Kräfte aus. Da es zwei Richtungen gibt (X,Y), gibt es auch zwei Gleichungen. ΣFix = 0 ΣFiy = 0 Summe aller Kräfte in X-Richtung ist gleich null Summe aller Kräfte in Y-Richtung ist gleich null Jetzt werden alle Kräfte in der Gleichung gelistet. Beginnen wir mit der Y-Richtung, da bereits eine Kraft in dieser Richtung bekannt ist (10 kn). Für alle Kräfte wird hier das richtige Vorzeichen angesetzt. Jede Kraft (Pfeil) wird berücksichtigt! ΣFiy = 0 = 10,0 kn Sy Sy (Sy negativ, weil Pfeile nach unten) Diese Gleichung wird nach Sy aufgelöst: <> 0 = 10,0 kn 2 x Sy <> 2 * Sy = 10,0 kn <> Sy = 5,0 kn Sy ist die Vertikalkomponente unserer Aufhängung. Um an die Kraft im Strang selbst zu kommen, müssen wir den Zusammenhang zwischen Sy und S herstellen. Dazu können wir auf die Komponentenzerlegung zurückgreifen. Dort steht: S = Sy / cos 55 eingesetzt: S = 5,0 kn / cos 55 = 8,717 kn Die zweite Gleichung ΣFix = 0 wird hier nicht mehr benötigt! 28
6 In jedem Strang der Rundschlinge wirkt eine Kraft von 8,717 kn. Man kann das Ergebnis auch mit dem Programm Zentrales Kräftesystem V2.0 überprüfen, indem man alle Kräfte dort einsetzt und nachsieht, ob wirklich Gleichgewicht herrscht. Das heißt, dass Fres = 0 sein muss! Bild 15 Wir haben richtig gerechnet! 29
Gleichgewicht am Punkt
Gleichgewicht am Punkt 3.1 Gleichgewichtsbedingung für einen Massenpunkt.. 52 3.2 Freikörperbild................................... 52 3.3 Ebene Kräftesysteme............................ 55 3.4 Räumliche
3. Zentrales ebenes Kräftesystem
3. Zentrales ebenes Kräftesystem Eine ruppe von Kräften, die an einem starren Körper angreifen, bilden ein zentrales Kräftesystem, wenn sich die Wirkungslinien aller Kräfte in einem Punkt schneiden. f
Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik
Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition
Rheinische Fachhochschule Köln
Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello e-mail: Semester Klausur Datum BM II, S K 01. 07. 13 Genehmigte Hilfsmittel: Fach Urteil Statik u. Festigkeit Ergebnis: Punkte Taschenrechner
2. Zentrale Kraftsysteme
2. Zentrale Kraftsysteme Definition: Ein Kraftsystem, bei dem sich die Wirkungslinien aller Kräfte in einem Punkt schneiden, wird als zentrales Kraftsystem bezeichnet. Die Kräfte dürfen entlang ihrer Wirkungslinie
5) GLEICHGEWICHT VON KRAEFTEN (Auflagerreaktionen)
BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 5) GLEICHGEWICHT VON KRAEFTEN (Auflagerreaktionen) 1) Einleitung 2) Definition 3) Gleichgewichtsbedingungen der Ebene 4) Beispiele zur Bestimmung
= 1kN F 1 F 2. = 2,5 kn. 2m 4m 2m. = 0,75 kn/m. Webinar: Statik Thema: Schnittgrößen
Webinar Statik Thema Schnittgrößen Bestimme für die nachfolgenden beiden Aufgaben die Schnittgrößen und Schnittgrößenverläufe! F 1 = 1k = 2,5 k a) 30 = 0,75 k/m b) Lösung Teil a) Wir beginnen damit den
Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke. 5., aktualisierte Auflage
Raimond Dallmann Baustatik Berechnung statisch bestimmter Tragwerke., aktualisierte uflage .3 leichgewicht am Punkt 9 F + F 3 Hinweis: Da die Länge des Richtungsvektors beliebig ist, wurde für n nicht
Fachwerkträger. Arten von Bindern und Benennung der Stäbe Nachfolgende Skizze zeigt die möglichen Varianten von Bindern:
Fachwerkträger Merke: Unter einem Fachwerk versteht man eine Konstruktion, die aus einzelnen geraden Stäben gebildet wird. Diese Stäbe haben die Lasten aufzunehmen. Sie erhalten dadurch Längskräfte. Die
Webinar: Statik Thema: Cremonaplan Zeicherische Ermittlung der Stabkräfte eines Fachwerks. 4 kn 6 kn I IV V VI III
Webinar: Statik Thema: Cremonaplan Zeicherische Ermittlung der Stabkräfte eines Fachwerks Aufgabe: Cremonaplan 8 9 0 Gegeben sei das obige Fachwerk welches durch die beiden äußeren Kräfte belastet wird.
Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik
S 1. Seilkräfte ufgaben zur Statik 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn m Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. S 2: Zentrales
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 6 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 29,5 7 17 10 9,5 7 80 Davon erreicht Punkte: Gesamtergebnis
3. Allgemeine Kraftsysteme
3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene
Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden
47 8 achwerke achwerke sind Tragwerkstrukturen aus geraden Stäben. Sie finden ihren Einsatz überall dort, wo große Distanzen zu überbrücken sind. Durch ihren Aufbau vermeiden sie Momentenbelastungen und
0,6 m. 0,4m. Gegeben seien die obigen drei auf den Balken wirkenden Kräfte mit:
Kurs: Statik Thema: Resultierende bestimmen Aufgabe 1) Wo liegt bei der Berechnung der Resultierenden der Unterschied zwischen Kräften mit einem gemeinsamen Angriffspunkt und Kräften mit unterschiedlichen
Fachwerke
1. Fachwerke Ein Fachwerk besteht aus einzelnen Stäben, die in den Knoten gelenkig miteinander verbunden sind. Am Beispiel des Fachwerks lassen sich die einzelnen Berechnungsschritte einer Finite-Elemente-Rechnung
Aufgabe 1 (6 Punkte) Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik
Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 8. September 018 Prüfungsklausur Technische Mechanik I Aufgabe 1 (6 Punkte) Zwei Gewichte (Massen m 1, m ) sind
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 6 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 29,5 7 17 10 9,5 7 80 Davon erreicht Punkte: Gesamtergebnis
Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18)
Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18) Lösung 18.1: Die Aufgabe wird nach der im Beispiel des Abschnitt 18.1.5 demonstrierten Strategie für die Lösung
Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast
www.statik-lernen.de Beispiele Gelenkträger Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Einfeldträgers veranschaulicht.
Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17)
Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17) Lösung 15.1: Element-Steifigkeitsmatrix Jeweils drei 2*2-Untermatrizen einer Element- Steifigkeitsmatrix
Kurs: Statik Thema: Allgemeine Kräftegruppe Bestimmung der Resultierenden F 5
Kurs: Statik Thema: Allgemeine Kräftegruppe Bestimmung der esultierenden Aufgabe: Belasteter Balken F 5 F 1 F 2 F 3 F 4 F 5 55 110 a a a a a Gegeben: F1 = 20 N F2 = 15 N F3 = 30 N F4 = 10 N F5 = 45 N a
Umwelt-Campus Birkenfeld
Klausur GRUMEMA SS 2017 Name: Vorname: Mat.-Nr.: Bitte nicht ausfüllen Gesamtpunktzahl: Unterschrift Technische Mechanik: Maschinenelemente: 120 Erreichte Punktzahl: Note: Termin: Mi, 20.07.2017, 13 00
Übungsaufgaben zur Vektorrechnung
Übungsaufgaben zur Vektorrechnung W. Kippels 9. Januar Inhaltsverzeichnis Aufgaben. Aufgabe..................................... Aufgabe a................................ Aufgabe b................................
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Musterlösung 40 % der Punkte werden zum Bestehen benötigt Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte:
Theoretische Mechanik
Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten
2. Statisch bestimmte Systeme
1 von 14 2. Statisch bestimmte Systeme 2.1 Definition Eine Lagerung nennt man statisch bestimmt, wenn die Lagerreaktionen (Kräfte und Momente) allein aus den Gleichgewichtsbedingungen bestimmbar sind.
ZUGELASSENE HILFSMITTEL:
ZUGELASSENE HILFSMITTEL: Täuschungsversuche führen zum Ausschluss und werden als Fehlversuch gewertet. Mobiltelefone und andere elektronische Geräte sowie nicht zugelassene Unterlagen bitte vom Tisch räumen.
Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)
Diplomprüfung Frühjahr 2009 Prüfungsfach Statik Klausur am 23.02.2009 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig) Aufgabe 1 2 3 4 5 6 7 8 9 Summe mögliche Punkte 20 5 5 25 25 30
Baustatik und Holzbau. Übungen Technische Mechanik I Lösungen
Prof. Ralf-W. oddenberg austatik und Holzbau Hochschule Wismar Übungen Technische echanik I Lösungen Wintersemester 16/17 Lösungen zu Übungen Technische echanik I Inhalt Inhaltserzeichnis Lösungen zu Übungen
Technische Mechanik. Fachwerke
7 Fachwerke Fachwerke Fachwerke Anwendungsbeispiele... Beispiele aus dem Ingenieurwesen (wikipedia.org) Fachwerke 1 Fachwerke Anwendungsbeispiele nanowerk.com (T. Bückmann) wikipedia.org Beispiele aus
Theorie zu Serie 2. erstellt von A. Menichelli. 16. Februar 2018
Theorie zu Serie erstellt von A. Menichelli 16. Februar 018 1 Spannungen in D 1.1 Allgemein Die Definition der Spannung ist im allgemeinen die Verteilung einer Kraft auf der Fläche, auf der diese Kraft
52 5 Gleichgewicht des ebenen Kraftsystems. Festlager
52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis
Zentrale Kräftesysteme
2 Zentrale Kräftesysteme Zentrale Kräftesysteme http://www.fotocommunity.de Einteilung von Kräften Grundsätzliches: Einzelkraft ist eine Idealisierung. Volumenkräfte Beispiel: Eigengewicht Flächenkräfte
1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn,
1.Fachwerke # Frage Antw. P. F1 = 4,5 kn, F =,4 kn, 1 a Prüfen Sie das Fachwerk auf statische Bestimmtheit k=s+ ist hier 5 = 7 +, stimmt. Also ist das FW statisch bestimmt. 4 b Bestimmen Sie die Auflagerkraft
In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf.
6. Ebene Fachwerke In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6.1 Definition Ein ideales Fachwerk besteht aus geraden, starren Stäben, die miteinander
Modulprüfung Baustatik I am 21. November 2018
HOCHSCHULE WISMAR Fakultät für Ingenieurwissenschaften Bereich Bauingenieurwesen Prof. Dr.-Ing. R. Dallmann Modulprüfung Baustatik I am 1. November 018 Name:.................................................................
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis
Überprüfen Sie, ob die Tragfähigkeit des Tragwerkes gewährleistet ist.
Stahlfachwerk Für eine 10 m hohe Lagerhalle in Saarbrücken hat der Tragwerksplaner für Ober- und Untergurt ein HEA 180 S235 Profil gewählt, für die Streben 2 L100 x 65 x 8 S235 Winkelprofile und für die
VEKTOREN. Beispiel: Ermitteln Sie die Resultierende aus den beiden Kräften graphisch.
Beispiel: Ermitteln Sie die Resultierende aus den beiden Kräften graphisch. 4 kn 6 kn 5 kn 3,5 kn Seite 1 von 19 Beispiel: Die Kraft F soll auf 2 Kraftkomponenten entlang der Wirkungslinien aufgeteilt
Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen:
Aufgabe Ü3 Im dargestellten Drehstomnetz sind folgende Impedanzen angeschlossen: R = 1 Ω L1 W1 W4 I 1 R X C = 3 Ω X L = 2 3 Ω L2 W2 I 2 jx L -jx C = 13 V = 13 V e j120 L3 W3 W5 I 3 = 13 V e j120 N 1. Zeichnen
Theoretische Einleitung Fachwerkbrücken Parabelbrücken
Quellen: www.1000steine.com, www.professorbeaker.com, http://andrea2007.files.wordpress.com, www.zum.de, www.morgenweb.de, www1.pictures.gi.zimbio.com Quellen: www.1000steine.com, www.professorbeaker.com,
Fachwerke. 1 Definition & Annahmen. 2 Statische Bestimmtheit VII III
Fachwerke Definition & nnahmen Ein Fachwerk oder auch Stabwerk soll aus geraden Stäben bestehen, die miteinander nur durch Knoten (vorstellbar als ideale Kugelgelenke) miteinander verbunden sind. Äußere
1. Formänderungsenergie
1. Formänderungsenergie 1.1 Grundlagen 1. Grundlastfälle 1.3 Beispiele.1-1 1.1 Grundlagen Zugstab: F L F x E, A F W u u An einem am linken Ende eingespannten linear elastischen Stab greift am rechten Ende
2 Wirkung der Kräfte. 2.1 Zusammensetzen von Kräften Kräfte mit gemeinsamer Wirkungslinie
2 Wirkung der Kräfte Kräfte, die auf einen Körper wirken, werden diesen verschieben, wenn kein gleichgroßer Widerstand dagegen wirkt. Dabei wird angenommen, dass die Wirkungslinie der Kraft durch den Schwerpunkt
1. Ebene gerade Balken
1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken
FACHBEREICH ARCHITEKTUR WS 16/17 TECHNISCHE UNIVERSITÄT KAISERSLAUTERN VEKTOREN
FACHBEREICH ARCHITEKTUR WS 16/17 Beispiel: Ermitteln Sie die Resultierende aus den beiden Kräften graphisch. 4 kn 6 kn 5 kn 3,5 kn Seite 1 von 18 FACHBEREICH ARCHITEKTUR WS 16/17 Beispiel: Die Kraft F
Aufgabe 1 Um welche Strecke verlängert sich eine Feder mit D = 50 N/m, wenn eine Masse von 1 kg angehängt wird? Lösung: s = 0.2 m
13. Statik 13.1. Federgesetz Federgesetz F =D s [ D]= [ F ] [s] = N m Umrechnung 1 N cm =100 N m Um welche Strecke verlängert sich eine Feder mit D = 50 N/m, wenn eine Masse von 1 kg angehängt wird? Lösung:
Mechanik 1. Übungsaufgaben
Mechanik 1 Übungsaufgaben Universitätsprofessor Dr.-Ing. habil. Jörg Schröder Universität Duisburg-Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 1 Seite 1 Aufgabe
Mechanik II: Deformierbare Körper für D-BAUG, D-MAVT Haus- & Schnellübung 1
Aufgabe S1: Ein Würfel mit Kantenlänge L und Gewicht G liegt reibungsbehaftet auf einer schiefen Ebene (Winkel 45 ). Wie in der Skizze dargestellt, wirkt am Würfel eine dreiecksverteilte Linienlast mit
3 Zentrale ebene Kräftegruppen
25 3 Zentrale ebene Kräftegruppen 3.1 Erste Grundaufgabe: Zerlegung... 26 3.2 Zweite Grundaufgabe: Reduktion... 30 3.3 Dritte Grundaufgabe: Gleichgewicht... 34 3.4 ufgaben zu Kapitel 3... 39 Springer achmedien
1. Geradlinige Bewegung
1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 8 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 Summe Punkte: 29 18,5 11 11 10,5 80 Davon erreicht Punkte: Gesamtergebnis
Vordiplom Mechanik/Physik WS 2000/2001
Aufgabe 1 a) Ein allgemeines Kräftesystem besteht aus folgenen Kräften: F 1 =30 N α 1 =90 Angriffspunkt: (x,y)=(0,0) F =0 N α =110 Angriffspunkt: (x,y)=(1,1) F 3 =0 N α 3 =70 Angriffspunkt: (x,y)=(,0)
5.3 Drehimpuls und Drehmoment im Experiment
5.3. DREHIMPULS UND DREHMOMENT IM EXPERIMENT 197 5.3 Drehimpuls und Drehmoment im Experiment Wir besprechen nun einige Experimente zum Thema Drehimpuls und Drehmoment. Wir betrachten ein System von N Massenpunkten,
Fragen aus dem Repetitorium II
Fragen aus dem Repetitorium II Folgend werden die Fragen des Repetitoriums II, welche ihr im Skript ab Seite 182 findet, behandelt. Die Seiten werden ständig aktualisiert und korrigiert, so daß es sich
Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)
Diplomprüfung Herbst 27 Prüfungsfach Statik Klausur am 27.8.27 ame: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 6 7 8 9 Summe mögliche Punkte 2 5 5 25 25 25 25 25
Baumechanik - Repetitorium
Mechanik und Numerische Methoden Thema 1: Fachwerke Aufgabe 1.1 Ein ebenes Fachwerk wird durch eine Reihe von Einzelkräften unterschiedlicher Größe belastet. a) Weisen Sie nach, dass das Fachwerk statisch
3. Kraftgrößenverfahren
.Kraftgrößenverfahren von 8. Kraftgrößenverfahren. Prinzip Das Prinzip des Kraftgrößenverfahrens ist es ein statisch unbestimmtes System durch Einschalten von Gelenken und Zerschneiden von Stäben oder
1. Einfache ebene Tragwerke
Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse
Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen
www.statik-lernen.de Beispiele (Ein-) Gelenkrahmen Seite Auf den folgenden Seiten wird das 'Kraftgrößenverfahren' (X A -Methode) zur Berechnung der Schnittkräfte statischer Systeme am Beispiel eines 2-fach
4. Das Verfahren von Galerkin
4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren
F H. Extremfälle: α ~ 0 (ganz flache Ebene) F N ~ F G ; F H ~ 0 Es gibt keine Hangabtriebskraft (Flachdach) Begründung: sin 0 = 0; cos 0 = 1
3.2.5 Zerlegung von Kräften (am Beispiel der schiefen Ebene) Aus der Statik ist bekannt, dass sich resultierende Kräfte aus einzelnen Kräften zusammensetzen können (Addition einzelner Kräfte). Ebenso kann
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 8 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 3 4 Summe Punkte: 9 8,, 8 Davon erreicht Punkte: Gesamtergebnis Klausur Testate Summe
Hausübung 1. Aufgabe 1.1a: Resultierende im Zentralen Kräftesystem (grafisch) Baumechanik I - WS 2013 / 2014 PVL Hausübung 1
Hausübung 1 Name, Vorname: Matr.Nr.: 1 087 477 Ausgabe: 02.12.2013 Rückgabe: 19.12.2013 Anerkannt: ja / nein Aufgabe 1.1a: Resultierende im Zentralen Kräftesystem (grafisch) +α Kräfte 1 bis 3 (maßstäblich,
Übungsaufgaben zur Vektorrechnung
Übungsaufgaben zur Vektorrechnung Wolfgang Kippels. Oktober 8 Inhaltsverzeichnis Vorwort Einleitung Einfache Aufgaben. Aufgabe..................................... Aufgabe a................................
TECHNISCHE MECHANIK A (STATIK)
Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 4 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 9 15 10 9 6 80 Davon erreicht Punkte: Gesamtergebnis
Statik. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)
Diplomprüfung Herbst 2009 Prüfungsfach Statik Klausur am 05.10.2009 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 6 7 8 9 Summe mögliche Punkte 20 5 5 25 25 30
A2.3 Lineare Gleichungssysteme
A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen
1.3. Aufgaben zur Statik
1.3. Aufgaben ur Statik Aufgabe 1: Kräfteerlegung Ein Schlitten kann auf einer Schiene horiontal bewegt werden. Im Winkel von = 40 ur Schiene ieht ein Seil mit der Kraft = 100 N an dem Schlitten. Bestimme
K l a u s u r N r. 1 G K M 12
K l a u s u r N r. G K M 2 Aufgabe Bestimmen Sie die Ableitungsfunktion zu den folgenden Funktionen! a) f (x) (sin x) 2 (cos x) 2 b) f (x) (6 x 2 5) sin (2 x 3 + 5 x) c) f (x) 2 x 6 4 2 x 3 d) f (x) 4
Dynamik Lehre von den Kräften
Dynamik Lehre von den Kräften Physik Grundkurs Stephie Schmidt Kräfte im Gleichgewicht Kräfte erkennt man daran, dass sie Körper verformen und/oder ihren Bewegungszustand ändern. Es gibt Muskelkraft, magnetische
Übung zu Mechanik 1 Seite 65
Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus
Baustatik I und II. Klausur am Name: Vorname: Matrikelnummer: (bitte deutlich schreiben)
Bachelorprüfung Herbst 2010 Prüfungsfach Baustatik I und II Klausur am 23.08.2010 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 6 7 Summe mögliche Punkte 30 29
Hochschule Wismar University of Technology, Business and Design
achgebiet austatik und Holzbau Prof. Ralf-W. oddenberg Hochschule Wismar University of Technology, usiness and esign Prüfung Technische Mechanik I vom 7.. 5 Name, Vorname : Matr.-Nr. : ufgabe Summe Punkte
Mehmet Maraz. MechanikNachhilfe
Mehmet Maraz MechanikNachhilfe 1. Auflage 015 Inhaltsverzeichnis 1 Statik 1 1.1 Lagerungen und Lagerreaktionen................. 1. Kräftegleichgewichte......................... 5 1..1 Drehmoment.........................
Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.
Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis
Lineare Gleichungssysteme mit 2 Variablen
Lineare Gleichungssysteme mit 2 Variablen Lineare Gleichungssysteme mit 2 Variablen Einzelne lineare Gleichungen mit zwei Variablen Bis jetzt haben wir nur lineare Gleichungen mit einer Unbekannten (x)
Musterlösungen (ohne Gewähr)
Herbst 010 Seite 1/0 rage 1 ( Punkte) Ein masseloser Balken der Länge l stützt sich wie skizziert über einen masselosen Stab auf dem Mittelpunkt P einer Rolle ab. Ein horizontal verlaufendes Seil verbindet
Technische Mechanik! Statik von Prof. Bruno Assmann und Prof. Dr.-Ing. Peter Selke 19., überarbeitete Auflage. Oldenbourg Verlag München
Technische Mechanik! Statik von Prof. Bruno Assmann und Prof. Dr.-Ing. Peter Selke 19., überarbeitete Auflage Oldenbourg Verlag München Inhaltsverzeichnis Vorwort Verwendete Bezeichnungen IX XI 1 Einführung
5. Zustandsgleichung des starren Körpers
5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch
Musterlösung zur 10. Übung Mechanik II SS 08. Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2
Musterlösung ur 10. Übung Mechanik II SS 08 Aufgabe 1: Schubspannungen infolge Querkraft: Bei dünnwandigen Querschnitten t 1, t 2 b, h können die Schubspannungen in Richtung der bereichsweise einuführenden
-Immer wenn man eine Ungleichung mit einer negativen Zahl multipliziert oder durch eine negative Zahl teilt
A.26 Ungleichungen 1 A.26 Ungleichungen Die Ungleichheitszeichen: < kleiner. größer. >1 bedeutet,
Stabwerkslehre - WS 11/12 Prof. Dr. Colling
Fachhochschule Augsburg Studiengang Bauingenieurwesen Stabwerkslehre - WS 11/12 Name: Prof. Dr. Colling Arbeitszeit: Hilfsmittel: 90 min. alle, außer Rechenprogrammen 1. Aufgabe (ca. 5 min) Gegeben: Statisches
4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE
BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 4) ZUSAMMENSETZEN UND ZERLEGEN VON KRAEFTEN IN DER EBENE 1) Kräfte greifen in einem Punkt an a) Zusammensetzen (Reduktion) von Kräften -
Klausur Technische Mechanik
Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 11/02/14 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt
Aufgaben zum Skalarprodukt
Aufgaben zum Skalarprodukt 3 1.0 Gegeben ist der Vektor a= 4. 5 0 0 1.1 Berechnen Sie a und a. 1.2 Berechnen Sie denjenigen Vektor der Länge 5 LE, der dieselbe Orientierung hat wie der Gegenvektor von
Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung
TBM, Physik, T. Borer Übung 1-006/07 Übung 1 Mechanik Impuls/Kraft als Vektor, Impulsbilanz/Grundgesetz, Reibung Lernziele - die vektorielle Addition bzw. Zerlegung von Impuls, Impulsstrom und Kraft zur
Überprüfen Sie, ob die Tragfähigkeit des Tragwerkes gewährleistet ist.
Stahlfachwerk Für eine 10 m hohe Lagerhalle in Saarbrücken hat der Tragwerksplaner für Ober- und Untergurt ein HEA 180 S235 Profil gewählt, für die Streben 2 L100 x 65 x 8 S235 Winkelprofile und für die
Theorie zur Serie 1. erstellt von A. Menichelli. 14. Dezember 2017
Theorie zur Serie 1 erstellt von A. Menichelli 14. Dezember 2017 1 Vorgehen bei Statikaufgaben 1. System analysieren einzelne Stäbe identifizieren Lagerungstypen erkennen 2. System freischneiden Lagerungen
