Theoretische Mechanik
|
|
|
- Erica Mann
- vor 9 Jahren
- Abrufe
Transkript
1 Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten die Massen m 1 und m 2, die sich entsprechend der Abbildung im Gleichgewicht befinden. Überlegen Sie sich die Art des Gleichgewichts! Bestimmen Sie aus dem d Alembertschen Prinzip das Massenverhältnis m 1 /m 2 für die in der Abbildung angegebene Anordnung! Für die beiden Massen werden die virtuellen Verrückungen δ r 1 und δ r 2 eingeführt. Mit den auf beide wirkenden äußeren Kräften lautet dann das d alembertsche Prinzip 0 = [m n rn ] F n δ r n n z 0 = F 1 δ r 1 + F 2 δ r 2. m 1 m 2 Man beachte: Es wird hier das statische Gleichgewicht betrachtet, deshalb verschwinden die Beschleunigungen. Zur Erinnerung: Das d alembertsche Prinzip verlangt, daß die gesamte Arbeit der Zwangskräfte bei virtuellen Verrückungen verschwindet, nicht, daß die Zwangskräfte senkrecht auf den virtuellen Verrückungen stehen. Letzteres gilt nur bei einem Teilchen und einer Zwangsbedingung. Unter Berücksichtigung der Zwangsbedingung wird m 1 nach oben verschoben und m 2 entsprechend nach unten verschoben werden. Wird das Seil als undehnbar angenommen und werden Pendelbewegungen der Massen ausgeschlossen, ist dann im Gleichgewicht m 1 g δz 1 + m 2 g δz 2 = 0 woraus mit δz 2 = 6δz 1 m 1 m 2 = 6 folgt. 9.2 d alembertsches Prinzip: Hebelgesetz Zwei Kugeln im Schwerefeld (als Massenpunkte betrachten; Massen m 1,m 2 ) sind durch eine (masselose) feste Stange der Länge l 1 + l 2 miteinander verbunden, die um eine horizontale raumfeste Achse A drehbar gelagert ist. a) Gewinnen Sie aus dem d alembertschen Prinzip die Bewegungsgleichung für den Drehwinkel φ.
2 Das d alembertsche Prinzip besagt, dass die gesamte Arbeit der Zwangskräfte bei virtuellen Verrückungen δ r n in einem System mit Zwangsbedingungen verschwindet. Aufgeschrieben für n Massenpunkte heißt das (m n r Fn )δ r n = 0. (1) n Dabei sind virtuelle Verrückungen bei festgehaltener Zeit gedachte Verschiebungen der rtsvektoren r n, die in Übereinstimmung mit den Zwangsbedingungen sind, diese also nicht verletzen. Zweckmäßig ist die Beschreibung des hier betrachteten Systems unter Verwendung ebener Polarkoordinaten (vom Inertialsystem aus). Die Zwangsbedingungen lauten l 1 l 2 = constant = constant φ 1 = φ 2 + π. Für die Beschleunigung, ausgedrückt in ebenen Polarkoordinaten, gilt allgemein (siehe Aufgabe 1.3) r = e ρ ( ρ ρ φ 2 ) + e φ (ρ φ + 2 ρ φ). Indem die Gewichtskraft in Komponenten zerlegt wird F g,n = m n g sin φ n e ρ m n g cos φ n e φ, und die virtuellen Verschiebungen der beiden Massenpunkte mit Hilfe der Polarkoordinaten ausgedrückt werden δ r n = l n δφ n e φ, ergibt sich für die virtuelle Arbeit der Zwangskräfte n m n [l n φ ] [ ] n + g cos φ n l n δφ n = m 1 l 1 φn + g cos φ 1 l 1 δφ 1 (2) Aus der Zwangsbedingung folgt +m 2 [ l 2 φ2 + g cos φ 2 ] l 2 δφ 2 = 0. δφ 1! = δφ 2 δφ φ1 = φ 2 φ cos φ 1 = cos φ 2 cos φ. Einsetzen in die obige Gleichung liefert dann {m 1 l 1 [l 1 φ + g cos φ ] + m 2 l 2 [l 2 φ g cos φ ]} δφ = 0,
3 woraus, wegen der Beliebigkeit von δφ die Bewegungsgleichung für den Winkel φ folgt: φ + g m 1l 1 m 2 l 2 m 1 l m 2l 2 2 cos φ = 0. b) Leiten Sie daraus die Gleichgewichtsbedingung (Hebelgesetz) her. Im Gleichgewicht verschwindet die Winkelbeschleunigung φ. Damit erhält man sofort das Hebelgesetz Diskussion: m 1 l 1 = m 2 l 2. Das Vorzeichen für φ kommt richtig heraus, wie man z.b. für gleiche Massen und l 2 > l 1 sieht. Setzt man statt φ den Winkel = φ π/2 (Winkel gegen die y - Achse) ein, erkennt man, dass die Bewegungsgleichung die eines mathematischen Pendels ist. + g m 2l 2 m 1 l 1 m 1 l m 2l 2 2 sin = 0 Für kleine Auslenkungen ergibt sich dafür die Schwingungsdauer T = 1 2π l g mit l m 1 l m 2l 2 2 m 2 l 2 m 1 l 1 (reduzierte Pendellänge). Man erhält selbstverständlich dieselbe Bewegungsgleichung, wenn man das d alembertsche Prinzip in kartesischen Koordinaten auswertet. Die Zwangskräfte, die den Abstand der beiden Körper konstant halten, können nun im Prinzip aus Gleichung (1) ermittelt werden, wenn man von der Beschleunigung r und der Gewichtskraft nur die Komponenten in Richtung e ρ betrachtet: Z n Z n = m n l 2 n φ 2 + m n g sinφ n. Weil hier aber φ bekannt sein muss, sieht man, dass zur Berechnung der Zwangskräfte zunächst die Bewegungsgleichung für φ gelöst werden muss. 9.3 Zwangskräfte a) Ein Massenpunkt bewegt sich unter Einfluss der Gewichtskraft F = mg e z in einer gekrümmten Schiene, deren Form durch die Gleichungen z = f(), y = 0 vorgegeben ist. Bestimmen Sie die Zwangskraft Z, die von der Schiene ausgeübt wird, um den Körper auf der vorgegebenen Bahn zu halten speziell für z = a, a > 0! Unter Zwangskraft Z versteht man die Kraft, die man beim Entfernen der materiellen Schiene einführen muss, um das Teilchen auf der vorgegeben Bahnkurve zu halten. Die newtonsche Bewegungsgleichung hat dann die Form m d2 r dt 2 = F g + Z.
4 Dabei ist aber Z zunächst nicht vorgegeben, da sie erst durch den Ablauf der Bewegung bestimmt wird. Das Problem besteht also darin, eine Form der Bewegungsgleichung zu finden, in der Z zunächst nicht vorkommt, sondern erst nach Lösung des Bewegungsproblems bestimmt wird. In einfachen Fällen kann Z allerdings bestimmt werden, ohne die Bewegungsgleichung eplizit zu lösen. Da sich der Massenpunkt geradlinig bewegt, darf senkrecht zur Bahn keine resultierende Kraft wirken. Die von der Schiene ausgeübte Zwangskraft und die zur Bahn senkrechte Komponente der Gewichtskraft müssen daher entgegengesetzt gleich sein Z = mg cos α. b) Zwei Massen sind durch ein masseloses, undehnbares Seil, das über eine ebenfalls als masselos betrachtete feste Rolle geführt wird, miteinander verbunden. Sie bewegen sich im Schwerefeld. Bestimmen Sie die auftretenden Zwangskräfte und lösen Sie die Bewegungsgleichung! Für die 6 kartesischen Koordinaten gelten 5 Zwangsbedingungen: 1 = R, z 1 = 0, 2 = R, z 2 = 0 und g(y 1,y 2 ) = y 1 + y 2 + πr l = 0. Dabei ist l die Seillänge. Die ersten 4 Bedingungen ergeben verschwindende Zwangskräfte und triviale Lösungen der Bewegungsgleichungen. Es bleibt m 1 ÿ 1 = m 1 g Z 1 m 2 ÿ 2 = m 2 g Z 2. Damit die Zwangsbedingung nicht verletzt wird, müssen die Zwangskräfte (Seilkräfte) vom Betrag gleich groß sein. Zweimaliges Differenzieren der letzten Zwangsbedingung ergibt ÿ 1 + ÿ 2 = 0. Subtrahieren der Bewegungsgleichung liefert dann (m 1 + m 2 ) ÿ 1 = g (m 1 m 2 ). Damit ergibt sich die Beschleunigung der beiden Körper (gleichförmig beschleunigte Bewegung). Mit dieser kann nun der Betrag der Zwangskraft aus einer der beiden Bewegungsgleichungen ermittelt werden Z = 2g m 1 m 2 m 1 + m 2. Die Achse des Rades muss die Summe beider Zwangskräfte aufnehmen: Z 1 + Z 2 = 2Z = 4g m 1 m 2 m 1 + m 2 g (m 1 + m 2 ).
5 9.4 d alembertsches Prinzip: Kurbelmechanismus Diskutieren Sie den abgebildeten Kurbelmechanismus, indem Sie die virtuelle Arbeit der auftretenden Kräfte berechnen. Bestimmen Sie aus dem d Alembertschen Prinzip, die Kraft U als Funktion von als Gegenkraft zu der Kraft, die das Gleichgewicht zur Schubkraft des Kolbens herstellt, sowie die Kraft, die vom Lager aufgenommen werden muß1 U 2 r Z ψ l K p Wir wählen zur Beschreibung des Systems die beiden Punkte Z und K aus. Den Ursprung des Koordinatensystems legen wir in den Punkt und die -Achse in Richtung derkolbenstange. y Z 1 r Z r Z r K r l r K K Schreibt man die Bewegungsgleichungen für die beiden betrachteten Punkte auf findet man m Z rz = F Z + Z Z m K rk = F K + Z K. Die Zwangsbedingungen für dieses System sind bzw. r K e y = 0, r K e z = 0, r Z e Z = 0 r 2 Z = r 2 und ( r Z r K ) 2 = l 2. Die ersten beiden Zwangsbedingungen beschränken die Bewegung auf die -y-ebene. Die dritte erzwingt eine Bewegung des Punktes K auf der -Achse. Die vierte Zwangsbedingung sagt uns, daß die Bewegung des Punkte Z auf einem Kreis stattfindet, was die Einführung von Polarkoordinaten mit ρ = r nahelegt. Da wir 6 Freiheitsgrade und fünf Zwangsbedingungen haben ist die Bewegung eindimensional Aus der Variation den ersten drei Zwangsbedingungen findet man δy K = 0 ; δz K = 0 und δz Z = 0. Aus der vierten Zwangsbedingung folgt δ( r 2 Z) = δ(r 2 ) = r Z δ r Z = 0,
6 und aus der fünften schließlich ( δ ( r Z r K ) 2) = δ(l 2 ) = r K δ r Z ( r Z r K )δ r K = 0, wobe die vierte bereits eingesetzt wurde. Bezeichnet man die -Komponente con r K mit und die - bzw. y- Komponente von r Z mit r cos bzw. r sin so ergibt sich δ r K = δ e und δ r Z = rδ e, womit sich aus der fünften Zwangsbedingung der Zusammenhang zwischen δ und δ ergibt r sin r sin δ (r cos )δ = 0 = δ = r cos δ. Den Zusammenhang zwischen und gewinnt man mit Hilfe des Satzes des Phytagoras = r cos + l 2 r 2 sin 2. Was mit der Abkürzung k = r/l zu δ = (r cos + l 1 k 2 sin 2 )r sin l 1 k 2 sin 2 δ = sin ( 1 + ) k cos rδ 1 k 2 sin 2 führt. Indem man jetzt berücksichtigt, daß die Kräfte im Gleichgewicht gesucht sind (das heißt, die Kräfte, die auftreten, wenn die Bremse am Schwungrad voll angezogen ist, oder wenn die Dampfmaschine so langsam läuft, daß Beschleunigungen vernachlässigt werden können) und damit alle Beschleunigungen Null setzt, bzw. vernachlässigt, ergibt sich Z Z = F Z und ZK = F K. Das d alembertsche Prinzip liefert dann Z K δ r K + Z Z δ r Z = F K δ r K F Z δ r Z = F K e }{{ δ r F } Z e δ = 0. }{{} = F K =: F Für die Kraft ergibt sich damit ( ) F = δ rδ F r cos K = sin 1 + F l 2 r 2 sin 2 K. Die Kraft auf das Lager findet man über den Satz des Phytagoras y F F Z F Z Z l F B ψ F K Z K F Z
7 F = = FZ 2 F 2 = FK 2 ( δ cos 2 ψ rδ 1 1 k 2 sin 2 sin2 1 + ) 2 F 2 K k cos 1 k 2 sin 2 2 pa.
1. Prinzip von d'alembert
1. Prinzip von d'alembert 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung Prof. Dr. Wandinger 5. Prinzipien der Mechanik Dynamik 2 5.1-1 1.1
1. Prinzip der virtuellen Leistung
1. Prinzip der virtuellen Leistung 1.1 Freiheitsgrade 1.2 Zwangsbedingungen 1.3 Virtuelle Geschwindigkeiten 1.4 Prinzip der virtuellen Leistung 4.1-1 1.1 Freiheitsgrade Definition: Die unabhängigen Bewegungsmöglichkeiten
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
Theoretische Mechanik
Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 008 Theoretische Mechanik 4. Übung Lösungen 4. Spezielle Kraftgesetze Lösen Sie die
Blatt 10. Hamilton-Formalismus- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus
M1 Maxwellsches Rad. 1. Grundlagen
M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten
Ferienkurs Theoretische Mechanik. Lagrangeformalismus
Ferienkurs Theoretische Mechanik Lagrangeformalismus Sebastian Wild Mittwoch, 14.09.2011 Inhaltsverzeichnis 1 Zwangskräfte und Lagrangegleichungen 1. Art 2 1.1 Motivation, Definition von Zwangsbedingungen..........
Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13
Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten
Experimentalphysik 1
Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg ([email protected]) Katharina Scheidt ([email protected]) Aufgabe 1: Superposition
Übungen zu Lagrange-Formalismus und kleinen Schwingungen
Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf
1. Bewegungsgleichung
1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik
Theoretische Physik: Mechanik
Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe
3.2 Das physikalische Pendel (Körperpendel)
18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild
Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]
Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.
Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )
Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 3 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zweiteilchenproblem im Lagrange-Formalismus Betrachten Sie ein System aus zwei
Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W.
Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W. Lang Lösungen der Klausur vom 4. September 009 Aufgabe : Pendelnde Hantel
Das mathematische Pendel
1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2
Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr
KIT SS 05 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 7. Juli 05, 6-8 Uhr Aufgabe : Kurzfragen (+4++3=0 Punkte) (a) Zwangsbedingungen beschreiben Einschränkungen
1 Lagrange sche Gleichung 1. Art
1 Lagrange sche Gleichung 1. Art 1.1 Einführung und Beispiel Bewege sich ein Massepunkt auf einer Geraden (G) im Raum, so hat dieser einen Freiheitsgrad, d.h. es müssen 2 Zwangsbedingungen für ihn gelten.
5.3 Drehimpuls und Drehmoment im Experiment
5.3. DREHIMPULS UND DREHMOMENT IM EXPERIMENT 197 5.3 Drehimpuls und Drehmoment im Experiment Wir besprechen nun einige Experimente zum Thema Drehimpuls und Drehmoment. Wir betrachten ein System von N Massenpunkten,
INSTITUT FÜR THEORETISCHE PHYSIK. Prof. Dr. U. Motschmann Dr. M. Feyerabend. Theoretische Mechanik SS 2017
INSTITUT FÜR THEORETISCHE PHYSIK Prof. Dr. U. Motschmann Dr. M. Feyerabend Theoretische Mechanik SS 2017 Klausurvorbereitung Bearbeitungszeit: 180 Minuten 1. Wissensfragen (20 Punkte) Benennen Sie alle
Experimentalphysik I: Mechanik
Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Stein fällt in Brunnen Ein Stein fällt in einen Brunnen. Seine Anfangsgeschwindigkeit
Theoretische Physik B - Lösungen SS Pendel mit bewegter Aufhängung (6 Punkte) (a) Die Zwangsbedingung lautet
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - ösungen SS 10 Prof. Dr. Alexander Shnirman Blatt Dr. Boris Narozhny, Dr. Holger Schmidt 0.04.010
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 4 - Angabe Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit
(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010
Grundlagen der Lagrange-Mechanik
Grundlagen der Lagrange-Mechanik Ahmed Omran 1 Abriss der Newton schen Mechanik 1.1 Newton sche Axiome 1. Axiom: Im Inertialsystem verharrt ein Körper in seinem momentanen Bewegungszustand (in Ruhe, oder
5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009
5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken
4.3 Schwingende Systeme
Dieter Suter - 217 - Physik B3 4.3 Schwingende Systeme Schwingungen erhält man immer dann, wenn die Kraft der Auslenkung entgegengerichtet ist. Ist sie außerdem proportional zur Kraft, so erhält man eine
Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche
Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche R. Mahnke (Univ. Rostock), J. Kaupužs (Lettische Univ. Riga) 3. Mai 24 Zusammenfassung Ziel dieses Kommentars ist es, die Newtonschen
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort
Übungen zu Theoretischer Mechanik (T1)
Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 08 Übungen zu Theoretischer Mechanik T Übungsblatt 8, Besprechung ab 04.06.08 Aufgabe 8. Lineare
Physikalisches Praktikum M 7 Kreisel
1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/
Theoretische Physik I bei Prof. A. Rosch
Vorlesungsmitschrift Theoretische Physik I bei Prof. A. Rosch von M. & O. Filla 08. Dezember 2016 Wiederholung der Lagrange Gleichungen Wir wissen, dass für unsere Funktionale S gilt: S = δs = 0 t 0 Lx,
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 3 - Lösung Technische Universität München 1 Fakultät für Physik 1 Gleiten und Zwangsbedingungen Wir betrachten einen Block der Masse m 1 auf einem Keil der
1 Lagrange-Formalismus
Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz
3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor
3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf
3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1
3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe
1. Grundlagen der ebenen Kinematik
Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes
2. Klausur zur Theoretischen Physik I (Mechanik)
2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie
Probeklausur Modul P1a: Einführung in die Klassische Mechanik und Wärmelehre 8. Januar 2010
WS 2009/2010 Probeklausur Modul P1a: Einführung in die Klassische Mechanik und Wärmelehre 8. Januar 2010 Nachname, Vorname... Matrikel-Nr.:... Studiengang:... Aufgabe 1 2 3 4 5 6 7 8 9 Summe maximale 5
6 Mechanik des Starren Körpers
6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=
4.9 Der starre Körper
4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte
E1 Mechanik Lösungen zu Übungsblatt 2
Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der
Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus
Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Mechanik 2010 Lagrange Formalismus Inhaltsverzeichnis 1 Motivation 2 2 Generalisierte Koordinaten und
Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06
Übungen zu: Theoretische Physik I klassische Mechanik W 223 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 25. Janua6 Übungsblatt Lösungsvorschlag 3 Aufgaben,
Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse
Kapitel 1 PUNKTMECHANIK LERNZIELE Definition der physikalischen Begriffe Körper, Masse, Ort, Geschwindigkeit, Beschleunigung, Kraft. Newtons Axiome Die Benutzung eines Bezugssystems / Koordinatensystems.
Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur September 2015, Uhr. Aufgabe Punkte Zeichen
KIT SS 205 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur 2 22. September 205, 2-4 Uhr Name Matrikelnummer Code für Ergebnisse Aufgabe Punkte Zeichen / 0 2 / 5 3
Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme
Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General
Analytische Mechanik in a Nutshell. Karsten Kirchgessner Dezember Januar 2008
Analytische Mechanik in a Nutshell Karsten Kirchgessner Dezember 2007 - Januar 2008 Inhaltsverzeichnis 1 Definitionen und Basisüberlegungen 1 2 Schlussfolgerungen aus dem d Alembert schen Prinzip 2 2.1
3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor
3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem
3. Allgemeine Kraftsysteme
3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene
Blatt 03.1: Scheinkräfte
Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/
Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die
1. Bewegungsgleichung
1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunktes TM 3
Mathematischer Vorkurs für Physiker WS 2009/10
TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann
Rotierende Bezugssysteme
Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.
Fallender Stein auf rotierender Erde
Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen
Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06
Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 005 Übungsblatt 7 Lösungsvorschlag 4 Aufgaben,
Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06
Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html 9. Januar 006 Übungsblatt 8 Lösungsvorschlag 3 Aufgaben,
1. Geradlinige Bewegung
1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester 2017 Physik-Institut der Universität Zürich Inhaltsverzeichnis 1 Einführungsversuch (EV) 11 11 Einleitung
Probeklausur zur T1 (Klassische Mechanik)
Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte
Gleichgewicht am Punkt
Gleichgewicht am Punkt 3.1 Gleichgewichtsbedingung für einen Massenpunkt.. 52 3.2 Freikörperbild................................... 52 3.3 Ebene Kräftesysteme............................ 55 3.4 Räumliche
2. Räumliche Bewegung
2. Räumliche Bewegung Wenn die Bahn des Massenpunkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort im Raum zu bestimmen. Es muss ein Ortsvektor angegeben werden. Prof.
Kinematik des Massenpunktes
Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale
M. 59 Perle auf rotierendem Draht (F 2018)
M. 59 Perle auf rotierendem Draht (F 8) Eine Perle der Masse m bewegt sich reibungslos auf einem mit konstanter Winkelgeschwindigkeit ω um die z-achse rotierenden Draht. Für die Belange dieser Aufgabe
VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme
V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot
Theoretische Physik I: Lösungen Blatt Michael Czopnik
Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
Vorbereitung: Pendel. Marcel Köpke Gruppe
Vorbereitung: Pendel Marcel Köpke Gruppe 7 10.1.011 Inhaltsverzeichnis 1 Augabe 1 3 1.1 Physikalisches Pendel.............................. 3 1. Reversionspendel................................ 6 Aufgabe
Aufgabe 1: (18 Punkte)
MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei
Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 28. Juli 2014, Uhr
KIT SS 4 Klassische Theoretische Physik II V: Prof Dr M Mühlleitner, Ü: Dr M auch Klausur Lösung 8 Juli 4, 7-9 Uhr Aufgabe : Kurzfragen (+++=8 Punkte (a Verallgemeinerte Koordinaten sind Koordinaten, die
Übungen zu Lagrange-Formalismus und kleinen Schwingungen
Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der
Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn
Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu
Rollender Zylinder in Zylinder
Übungen zu Theoretische Physik I - echnik im Sommersemester 013 Bltt 10 vom 1.07.13 Abgbe: 08.07. Aufgbe 43 Rollender Zylinder in Zylinder Ein homogener Zylinder (Gesmtmsse, Rdius, Trägheitsmoment bzgl.
Experimentalphysik E1
Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html
Theoretische Physik 2 (Theoretische Mechanik)
Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)
Theorie B: Klassische Mechanik
Theorie B: Klassische Mechanik Kirill Melnikov TTP KIT Einführung Alle Informationen zu dieser Veranstaltung finden Sie auf http://www.ttp.kit.edu/courses/ss018/theob/start Vorlesungen: Freitags, 9.45-11.15
Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 2
Prof. C. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 2 Aufgabe 5: otierendes Bezugssystem : das nertialsystem, : das rotierende System. d r = d r +
2 Mechanik des Massenpunktes
2 Mechanik des Massenpunktes Wir beginnen deshalb in Kapitel 2 mit der Beschreibung der Bewegung von Massenpunkten, kommen dann in Kapitel 4 zum starren Körper und schließlich in Kapitel 5 zur Mechanik
Übungen zur Vorlesung Fahrdynamik
Seite 1 Aufgabe 1 : Der skizzierte Manipulator mit den Hebeln r 1,2 und r 2,3 besitzt zwei Drehgelenke (Drehachsen u 1, u 2 u 1 ). Gegeben seien die Drehwinkel Θ 1 und Θ 2 sowie die Winkelgeschwindigkeiten
Allgemeine Mechanik. Via Hamilton-Gl.: Die Hamiltonfunktion ist (in Kugelkoordinaten mit Ursprung auf der Kegelspitze) p r. p r =
Allgemeine Mechanik Musterl osung 11. Ubung 1. HS 13 Prof. R. Renner Hamilton Jacobi Gleichungen Betrachte die gleiche Aufstellung wie in 8.1 : eine Punktmasse m bewegt sich aufgrund der Schwerkraft auf
Formelsammlung: Physik I für Naturwissenschaftler
Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]
Kräftepaar und Drehmoment
Kräftepaar und Drehmoment Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Kräftepaar
1.4 Krummlinige Koordinaten I
15 1.4 Krummlinige Koordinaten I (A) Motivation zur Definition verschiedener Koordinatensysteme Oft ist es sinnvoll und zweckmäßig Koordinatensysteme zu verwenden, die sich an der Geometrie und/oder Symmetrie
Klausur zur T1 (Klassische Mechanik)
Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte
3. Erhaltungsgrößen und die Newton schen Axiome
Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray [email protected] 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:
Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung
Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik
Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie
Theoretische Physik II: Analytische Mechanik und Spezielle Relativitätstheorie Dirk H. Rischke Sommersemester 2010 Inhaltsverzeichnis 1 Lagrange-Mechanik 1 1.1 Zwangskräfte, Zwangsbedingungen und generalisierte
5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation
Inhalt 1 4 Kinematik der Translation 4.1 Koordinatensysteme 4. Elementare Bewegungen 5 Kinematik der Rotation (Drehbewegungen) 6 Dynamik der Translation 6.1 Die Newton sche Aiome 6.1.1 Erstes Newton sches
0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel
0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die
TECHNISCHE MECHANIK III (DYNAMIK)
Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:
Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik
Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition
Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: , Abgabe am )
Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: 7.9.11, Abgabe am 14.9.11) Beispiel 1: Stoß in der Ebene [3 Punkte] Betrachten Sie den elastischen Stoß dreier Billiardkugeln A, B und C
Lösung Serie 3 (Modellieren (SIMULINK + MATLAB))
Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Serie 3 (Modellieren (SIMULINK + MATLAB Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:
