4.3 Schwingende Systeme
|
|
|
- Hannelore Scholz
- vor 8 Jahren
- Abrufe
Transkript
1 Dieter Suter Physik B3 4.3 Schwingende Systeme Schwingungen erhält man immer dann, wenn die Kraft der Auslenkung entgegengerichtet ist. Ist sie außerdem proportional zur Kraft, so erhält man eine harmonische Schwingung. Schwingungen treten auf sehr unterschiedlichen Zeitund Größenskalen auf, wie hier z.b. die Bewegung unseres Sonnensystems in der Galaxis. Wir diskutieren hier einige einfache Beispiele, welche auch analytisch lösbar sind Das mathematische Pendel Das System besteht aus einer punktförmigen Masse, die an einer masselosen, unelastischen Schnur der Länge l aufgehängt ist. Die Masse sei um einen Winkel β aus der Vertikalen ausgelenkt. Dieser Winkel ist die relevante Variable für die Beschreibung der Schwingung. Da die Masse an einer gespannten Schnur hängt kann sie sich nur senkrecht dazu bewegen. Wir erhalten eine Bewegungsgleichung indem wir das Newton'sche Gesetz mit der Schwerkraft kombinieren: F = - m g sin β = m a = m l!. Das Symbol deutet darauf hin, dass hier nur die Komponente senkrecht zur Schnur relevant ist. Für kleine Auslenkungen kann man den Sinus durch den Winkel annähern und erhält eine Bewegungsgleichung für einen harmonischen Oszillator! = - β g l. Durch Vergleich mit der allgemeinen Bewegungsgleichung des harmonischen Oszillators, d 2 x dt 2 = - ω 0 2 x sehen wir dass dieser Oszillator mit der Kreisfrequenz
2 Dieter Suter Physik B3 g l, schwingt, welche nicht von der Masse des Pendels abhängt. Dieses einfache Fadenpendel hat eine Länge von 1 m und müsste demnach eine Schwingungsdauer von Exp. 4: Ebenes Pendel, Schwingungsdauer T = 2π(1/9.81) 1/2 sec = 2.0 sec haben in guter Übereinstimmung mit dem Experiment. Wird die Länge des Fadens auf 0.25 m verkürzt, so halbiert sich die Periode auf 1 sec. Dieser einfache Zusammenhang, und die Tatsache, dass nur die Länge des Pendels für seine Schwingungsdauer verantwortlich ist, waren einer der größten Erfolge der frühen physikalischen Forschung. Die Schwingungsdauer ist in dieser Näherung unabhängig von der Auslenkung. Verwendet man die Näherung sinβ ~ β nicht, findet man eine Periode, die man als Reihenentwicklung in β schreiben kann. Bei einer Auslenkung von 30 o ist der Fehler etwa 2%; bei 10 o beträgt der Fehler etwa 1% Torsionsschwinger Ein Torsionsschwinger oder Drehpendel kann sich um eine Achse drehen, wobei eine Rückstellkraft wirkt, die proportional zur Auslenkung β ist. Für die Drehbewegung gilt: M = I! = - c β. I ist das Trägheitsmoment für diese Achse und c die Winkelrichtgröße (Federkonstante). Somit erhält man eine Schwingung mit der Kreisfrequenz c I. Diese Beziehung kann man u. a. verwenden, um Trägheitsmomente zu messen: I = c/ω 0 2. Die Winkelrichtgröße c wird zunächst mit Hilfe eines Körpers mit bekanntem Massenträgheitsmoment bestimmt, danach wird der unbekannte Körper eingesetzt Das physikalische Pendel
3 Dieter Suter Physik B3 Ein physikalisches Pendel ist ein starrer Körper, der um einen Punkt A drehbar gelagert ist. Wie beim Drehpendel ist das Produkt aus Winkelbeschleunigung! und Trägheitsmoment I gegeben durch die Rückstellkraft. Diese ist hier gegeben durch das Drehmoment als Produkt aus Schwerkraft F G = m g und Auslenkung des Schwerpunktes, d sinφ M = I! = - m g d sin φ. Wir können wiederum die Näherung sinφ ~ φ für kleine Auslenkungen machen. Damit wird die Kreisfrequenz m g d I. Dies entspricht der Schwingungsdauer eines mathematischen Pendels mit der Pendellänge l red = I m d. Exp. 49a: Reifenpendel Wir betrachten als Beispiel ein Rad mit Radius R, welches sich um einen Aufhängepunkt am Rand dreht. Der Abstand vom Drehpunkt beträgt somit d = R. Gemäß dem Steiner'schen Satz beträgt das Trägheitsmoment Somit ist die Kreisfrequenz I A = I 0 + m R 2 = 2 m R 2. g 2R = 4.34 s-1. Dies entspricht einer Periode T = 2π/ 1.47 s, in vernünftiger Übereinstimmung mit dem experimentellen Wert (T = 1.38 s).
4 Dieter Suter Physik B Flüssigkeitspendel im URohr Wir betrachten eine Flüssigkeitssäule in einem U-Rohr. Sind beide Enden auf gleicher Höhe so ist das System im Gleichgewicht. Ist die Säule um y verschoben, so entsteht eine rücktreibende Gewichtskraft. Die Bewegungsgleichung enthält die Gesamtmasse m der Flüssigkeit m = l A ρ, wobei l die Länge der Flüssigkeitssäule darstellt, A die Querschnittsfläche und ρ die Dichte. Die resultierende Gewichtskraft ist proportional zur Massendifferenz zwischen den beiden Armen, Damit ist die Bewegungsgleichung oder Somit beträgt hier die Kreisfrequenz = Δm g = 2 y A ρ g. F = m a = l A ρ y = 2 y A ρ g y = 2 y g / l. 2g l, unabhängig vom Querschnitt der Flüssigkeit oder ihrer Dichte. Sie entspricht einem mathematischen Pendel mit der Länge l math = l/2. Ein interessantes Beispiel eines solchen Flüssigkeitspendels befindet sich an der kanadischen Ostküste: der nördliche Teil der Bay of Fundy zwischen New Brunswick (Neu Braunschweig) und Nova Scotia (Neu Schottland) bildet ein Flüssigkeitspendel mit einer natürlichen Periode von 12 Stunden. Damit wird es von Mond resonant angeregt und man findet Gezeitenunterschiede bis zu 16 m.
5 Dieter Suter Physik B Elektromagnetische Schwingkreise Das einfachste elektronische System, das Schwingungen ausführen kann, besteht aus einem Kondensator C und einer Spule L. Eine Bewegungsgleichung für die Schwingung erhält man aus der Maschenregel: Die Spannung über der Spule muss entgegengesetzt gleich der Spannung über dem Kondensator sein: Mit I = dq/dt erhält man Die Kreisfrequenz beträgt somit U L + U C = 0 = L di/dt + Q/C. d 2 Q dt 2 = - Q L C 1 L C. Wir können die Oszillation verfolgen indem wir z.b. bei einem geladenen Kondensator anfangen, wobei der Strom verschwinden soll. Das System entwickelt sich somit wie Q(t) = Q 0 cos(ωt). Die Spannung über dem Kondensator führt zu einem Stromfluss durch die Spule, wobei deren Induktivität den Anstieg des Stromes beschränkt. Nach einer Viertelperiode ist der Kondensator entladen und der Strom durch die Spule auf ein Maximum angestiegen. Der Strom lädt jetzt den Kondensator umgekehrt auf. Dadurch entsteht eine Spannung, welche dem Stromfluss entgegenwirkt. Nach einer weiteren Viertelperiode ist der Stromfluss auf Null abgesunken, während der Kondensator umgekehrt geladen ist. In diesem System erhält man einen Austausch von Energie zwischen der elektrostatischen Energie im Kondensator und der magnetischen Energie in der Spule. Bei t = 0, T/2, T, ist die Energie im Kondensator gespeichert, bei t = T/4, 3T/4, in der magnetischen Energie der Spule Zusammenfassung Hier werden die behandelten schwingenden Systeme zusammengefasst. Die Bewegungsgleichung hat immer die Form
6 Dieter Suter Physik B3 x = - ω 0 2 x. Die Unterscheidung ist jeweils die Variable x und die Form von ω 0 2.
Weitere Beispiele zu harmonischen Schwingungen
Weitere Beispiele zu harmonischen Schwingungen 1. Schwingung eines Wagens zwischen zwei horizontal gespannten, gleichartigen Federn Beide Federn besitzen die Federhärte D * und werden nur auf Zug belastet;
Schwingungen
- 238-4.1. Allgemeines 4. Schwingungen 4.1.1. Beispiele und Definition Das klassische Beispiel eines schwingenden Systems ist das Pendel. Exp1: Ebenes Pendel Allgemein ist eine Schwingung definiert als
M1 Maxwellsches Rad. 1. Grundlagen
M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten
Physik III im Studiengang Elektrotechnik
Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische
0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel
0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die
Physik III im Studiengang Elektrotechnik
Physik III im Studiengang Elektrotechnik - harmonische Schwingungen - Prof. Dr. Ulrich Hahn WS 216/17 kinematische Beschreibung Auslenkungs Zeit Verlauf: ( t) ˆ cost Projektion einer gleichförmigen Kreisbewegung
Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )
Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,
Vorbereitung: Pendel. Marcel Köpke Gruppe
Vorbereitung: Pendel Marcel Köpke Gruppe 7 10.1.011 Inhaltsverzeichnis 1 Augabe 1 3 1.1 Physikalisches Pendel.............................. 3 1. Reversionspendel................................ 6 Aufgabe
Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr
Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments
3.2 Das physikalische Pendel (Körperpendel)
18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild
Resonanz Versuchsvorbereitung
Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie
Feder-, Faden- und Drillpendel
Dr Angela Fösel & Dipl Phys Tom Michler Revision: 30092018 Eine Schwingung (auch Oszillation) bezeichnet den Verlauf einer Zustandsänderung, wenn ein System auf Grund einer Störung aus dem Gleichgewicht
4.2 Der Harmonische Oszillator
Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische
Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition
Physik Schwingungen Definition Fachlehrer : W.Zimmer Eine Schwingung ist eine Zustandsänderung eines Masseteilchens bzw. eines Systems von Masseteilchen bei der das System durch eine rücktreibende Kraft
8. Periodische Bewegungen
8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt
Theoretische Mechanik
Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten
2. Physikalisches Pendel
2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung
Protokoll. zum Physikpraktikum. Versuch Nr.: 3 Gekoppelte Schwingungen. Gruppe Nr.: 1
Protokoll zum Physikpraktikum Versuch Nr.: 3 Gekoppelte Schwingungen Gruppe Nr.: 1 Theoretische Grundlagen Mathematisches Pendel: Bei einem mathematischen Pendel ist ein Massepunkt an einem Ende eines
Mechanische Schwingungen Aufgaben 1
Mechanische Schwingungen Aufgaben 1 1. Experiment mit Fadenpendel Zum Bestimmen der Fallbeschleunigung wurde ein Fadenpendel verwendet. Mit der Fadenlänge l 1 wurde eine Periodendauer von T 1 =4,0 s und
Versuch P1-20 Pendel Vorbereitung
Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung
9. Periodische Bewegungen
Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen
Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Jens Küchenmeister ( )
Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Jens Küchenmeister (153810) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Da die Schwingung sowohl in der Natur als auch in der
Bestimmung der Erdbeschleunigung mit dem Reversionspendel und dem Fadenpendel
Bestimmung der Erdbeschleunigung mit dem Reversionspendel und dem Fadenpendel Denis Nordmann http://physik.co-i60.com 9. Mai 2013 dn (physik.co-i60.com) Bestimmung der Erdbeschleunigung 9. Mai 2013 1 /
Experimentalphysik E1
Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung
F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder
6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung
1.2 Schwingungen von gekoppelten Pendeln
0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken
Harmonische Schwingungen
Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung
Physik 1 für Ingenieure
Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm [email protected] Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#
120 Gekoppelte Pendel
120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei
Formelsammlung: Physik I für Naturwissenschaftler
Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]
Übungen zu Physik 1 für Maschinenwesen
Physikdepartent E13 WS 011/1 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbau, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung
Theoretische Physik: Mechanik
Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 4 - Angabe Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit
Das Physikalische am Pendel
Das Physikalische am Pendel Johannes Barton, Wien 3 Fragt man einen Schüler, was denn ein physikalisches Pendel sei, dann erhält man öfters Antworten wie: Eine Schaukel, die weit ausschwingt aber wegen
5 Schwingungen. 5.1 Allgemeines Phänomenologie Beispiele und Definition
Viele natürlichen Phänomene zeigen eine periodische abhängigkeit: der Zustand ändert sich, kehrt aber nach einer festen in den Anfangszustand zurück. Dieser Vorgang kann sich beliebig häufig wiederholen.
Übungen zu Lagrange-Formalismus und kleinen Schwingungen
Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf
Pendel, starre Körper und Drehmoment
Pendel, starre Körper und Drehmoment Pendel, starre Körper, Dremoment (Ruhr-Universität Bochum) 20. November 2013 1/ 27 Lernziele Ein rotierendes System ist immer auch ein beschleunigtes System Die Schwingungsdauer
(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010
Schriftliche Vordiplomprüfung Physik Wiederholungsprüfung
Schriftliche Vordiplomprüfung Physik Wiederholungsprüfung Prof. T. Esslinger (Dated: Mittwoch, 5. Februar 4, 9: Uhr) Aufgaben I. IONEN IN EINER FALLE Eine Falle für elektrisch geladene Ionen wird durch
Gekoppelte Schwingung
Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009
10. Schwingungen Grundbedingungen Harmonische Schwingung
Schwingungen 1 10. Schwingungen 10.1. Grundbedingungen Jedes System, das Schwingungen ausführt, besitzt zwei dafür notwendige Bedingungen. 1. Es besitzt eine Gleichgewichtslage. 2. Wenn das System aus
Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.
Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition
1.1 Bestimmung der Erdbeschleunigung mit dem Pendel
Kapitel 1 Mechanik 1.1 Bestimmung der Erdbeschleunigung mit dem Pendel Aufgaben In diesem Experiment werden die Schwingungen eines physikalischen Pendels untersucht. Aus den Messungen der Schwingungsdauern
Lenken wir die Kugel aus und lassen sie los, dann führt sie eine sich ständig wiederholende Hin und Herbewegung aus.
Versuch Beschreibung von Schwingungen Wir beobachten die Bewegung eines Fadenpendels Lenken wir die Kugel aus und lassen sie los, dann führt sie eine sich ständig wiederholende Hin und Herbewegung aus.
6 Elektromagnetische Schwingungen und Wellen
6 Elektromagnetische Schwingungen und Wellen Gegen Ende des 19.Jahrhunterts gelang dem berühmten deutschen Physiker Heinrich Rudolph Hertz (1857-1894) zum ersten Mal in der Geschichte der Menschheit der
Physik 1 für Ingenieure
Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm [email protected] Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#
Übungsaufgaben Physik II
Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen
Versuch dp : Drehpendel
U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung
Schriftliche Vordiplomprüfung Physik
Schriftliche Vordiplomprüfung Physik Prof. T. Esslinger / Prof. R. Monnier Dated: Mittwoch, 17. September 2003, 9:00 12:00 Uhr) Aufgaben I. ELEKTRON IM MAGNETFELD Ein Elektron Ladung e, Masse m) bewegt
6 Mechanik des Starren Körpers
6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=
gp : Gekoppelte Pendel
U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch gp : Gekoppelte Pendel Dr. Stephan Giglberger Dr. Tobias Korn Manuel
Inhalt der Vorlesung A1
PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung
LS5. Trägheitsmoment und Steiner scher Satz Version vom 23. Februar 2016
Trägheitsmoment und Steiner scher Satz Version vom 23. Februar 2016 Inhaltsverzeichnis 2 1.1 Grundlagen................................... 2 1.1.1 Begriffe................................. 2 1.1.2 Trägheitsmoment............................
Schwingwagen ******
5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz
Name: Gruppe: Matrikel-Nummer:
Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober
ÜBUNGSAUFGABEN PHYSIK SCHWINGUNGEN KAPITEL S ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl UND WELLEN.
ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL S SCHWINGUNGEN UND WELLEN Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl 1. Schwingungen 10/2005-koh 1. Welche Auslenkung hat ein schwingender
Massenträgheitsmomente homogener Körper
http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine
Das mathematische Pendel
1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester 2017 Physik-Institut der Universität Zürich Inhaltsverzeichnis 1 Einführungsversuch (EV) 11 11 Einleitung
F = m g sin. = sin dt l l = Pendellänge ( vom Aufhängepunkt bis zum Mittelpunkt der Kugel)
S1 Mathematisches und physikaisches Pende Stoffgebiet: Versuchszie: Literatur: Schwingungen agemein, mathematisches Pende, physikaisches Pende, Steinerscher Satz Mathematische Behandung von Schwingungsvorgängen
Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.
1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der
Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab
Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250
M 7 - Trägheitsmoment
18..8 PHYSIKALISCHES PAKTIKU FÜ ANFÄNGE LGyGe ersuch: 7 - Trägheitsmoment Das Trägheitsmoment regelmäßiger Körper sollen gemessen werden. Literatur Gerthsen-Kneser-ogel: Physik; Kap.: Dynamik des starren
Physikalisches Pendel
Physikalisches Pendel Nach einer kurzen Einführung in die Theorie des physikalisch korrekten Pendels (ausgedehnte Masse) wurden die aus der Theorie gewonnenen Formeln in praktischen Messungen überprüft.
Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund
Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu
Protokoll zum Grundversuch Mechanik
Protokoll zum Grundversuch Mechanik Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 006/007 Grundpraktikum I Tutor: Sarah Dierk 09.01.007 Inhaltsverzeichnis 1 Ziel Theorie 3 Versuch
Schwingungen und Wellen Teil I
Schwingungen und Wellen Teil I 1.. 3. 4. 5. 6. 7. 8. 9. 10. Einleitung Arten von Schwingungen Lösung der Differentialgleichung Wichtige Größen Das freie ungedämpfte und gedämpfte Feder-Masse-System Ausbreitung
Elektrotechnik. Schwingkreise. Andreas Zbinden. Gewerblich-Industrielle Berufsschule Bern, GIBB
6. Semester Elektrotechnik Schwingkreise Andreas Zbinden Gewerblich-Industrielle Berufsschule Bern, GIBB Zusammenfassung In diesem Dokument werden die Strom- und die Spannungsverhältnisse im Parallelbzw.
9 Periodische Bewegungen
Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum
1. Klausur in K2 am
Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 0.0. Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: Schallgeschwindigkeit
Klassische Experimentalphysik I (Mechanik) (WS 16/17)
Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Klausur 2 Anmerkung: Diese Klausur enthält 9 Aufgaben, davon eine Multiple
4.9 Der starre Körper
4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte
(a) In welcher Zeit nach einem Nulldurchgang ist der Betrag der Auslenkung
Schwingungen SW1: 2 Ein Körper bewegt sich harmonisch. Bei einer Auslenkung aus der Ruhelage um x = 7,5 mm erfährt er eine Beschleunigung von a = 1,85 m s 2. Wie viele Schwingungen pro Sekunde führt er
Klausur Physik für Chemiker
Universität Siegen Naturwissenschaftlich-Technische Fakultät Department Physik Winter Semester 2018 Prof. Dr. Mario Agio Klausur Physik für Chemiker Datum: 14.2.2019-10 Uhr Name: Matrikelnummer: Einleitung
Klassische und relativistische Mechanik
Klassische und relativistische Mechanik Othmar Marti 13. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik
Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw
Institut für Physik und Physikalische Technologien 23.02.2005 der TU Clausthal Prof. Dr. W. Daum Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, 09.00-11:00 Uhr für den Studiengang: Mb, Inft, Geol,
Musterlösung Probeklausur Physik I, FS 2008
Musterlösung Probeklausur Physik I, FS 8 May 7, 8 Schaukel Es soll betont werden, dass wir nur Rotationen der Unterschenkel am Knie betrachten. Vereinfacht kann man ansetzen, dass es sich um ein gekoppeltes
Versuch 3 Das Trägheitsmoment
Physikalisches A-Praktikum Versuch 3 Das Trägheitsmoment Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 10.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung
Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13
Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten
Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel
Aufgaben 17 Schwingungen Schwingungen, Impuls und Energie, Harmonische Schwingung, Pendel Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse erarbeiten können. - verstehen,
Labor zur Vorlesung Physik
Labor zur Vorlesung Physik 1. Zur Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Gravitationsgesetz, Gravitationswaage, gedämpfte Torsionsschwingung, Torsionsmoment, Drehmoment,
Versuch M1: Feder- und Torsionsschwingungen
Versuch M1: Feder- und Torsionsschwingungen Aufgaben: Federschwingungen: 1 Bestimmen Sie durch Messung der Dehnung in Abhängigkeit von der Belastung die Richtgröße D (Federkonstante k) von zwei Schraubenfedern
Fachhochschule Hannover
Fachhochschule Hannover 9..7 Fachbereich Maschinenbau Zeit: 9 min Fach: Physik II im WS67 Hilfsmittel: Formelsammlung zur Vorlesung. Betrachten Sie die rechts dartellte Hydraulikpresse zum Pressen von
Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund
Fadenpendel M1) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
Aufgaben zu Teil F, Kapitel 2
Aufgaben zu Teil F, Kapitel 2 1. Fragen und Verständnisaufgaben a) Was verstehen Sie unter einem harmonischen Oszillator? b) Was ist Resonanz? Was ist ein Resonator (Gummiseil, Schall, Licht)? c) Studieren
Aus der Schwingungsdauer eines physikalischen Pendels.
2.4 Trägheitsmoment aus Winkelbeschleunigung 69 2.4. Trägheitsmoment aus Winkelbeschleunigung Ziel Bestimmung des Trägheitsmomentes eines Rades nach zwei Methoden: Aus der Winkelbeschleunigung, die es
Versuch 2 Gekoppelte Pendel. 20. Oktober 2006 durchgefuhrt am 09. Oktober 2006 Betreuer: Tobias Roder
1 Versuch Gekoppelte Pendel Sascha Hankele [email protected] Kathrin Alpert [email protected] 0. Oktober 006 durchgefuhrt am 09. Oktober 006 Betreuer: Tobias Roder INHALTSVERZEICHNIS Inhaltsverzeichnis
4.6 Schwingungen mit mehreren Freiheitsgraden
Dieter Suter - 36 - Physik B3 4.6 Schwingungen mit mehreren Freiheitsgraden 4.6. Das Doppelpendel Wir betrachten nun nicht mehr einzelne, unabhängige harmonische Oszillatoren, sondern mehrere, die aneinander
A03 Gekoppelte Pendel
A3 Gekoppelte Pendel Beispiele für gekoppelte Oszillatoren Ziele Zahlreiche Phänomene der Physik lassen sich im Rahmen eines Modells gekoppelter Oszillatoren beschreiben: ie Anregung molekularer Schwingungs-
Lösung zu Übungsblatt 11
PN1 - Physik 1 für Cheiker und Biologen Prof. J. Lipfert WS 2016/17 Übungsblatt 11 Lösung zu Übungsblatt 11 Aufgabe 1 Torsionspendel. Henry Cavendish nutzte zur Bestiung der Gravitationskonstante den unten
Physikalisches Grundlagenpraktikum Versuch Massenträgheitsmoment
Physikalisches Grundlagenpraktikum Versuch Name:... Matrikelnummer:... Gruppe:... Antestat Datum bestanden nicht Unterschrift Prüfer bestanden Termin Nachholtermin 1. Protokollabgabe Datum Unterschrift
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
