Das mathematische Pendel

Größe: px
Ab Seite anzeigen:

Download "Das mathematische Pendel"

Transkript

1 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013

2 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung Das mathematische Pendel Polarkoordinaten Ableitung der Differentialgleichung 4 3 Integration mittels Energiesatz 5 4 Lineare Näherung 6 verzeichnis 7

3 3 1 EINFÜHRUNG 1 Einführung 1.1 Das mathematische Pendel Abbildung 1: Mathematische Pendel Das mathematische Pendel ist ein einfaches Modell zur Beschreibung von Pendelschwingungen. Charakterisiert wird es durch folgende Eigenschaften: - Reibung wird vernachlässigt (z. Bsp. am Aufhängepunkt) - Die gesamte Masse ist in einem Punkt konzentriert, wobei die Masse des Fadens (bzw. der Stange) vernachlässigt wird. Die mathematische Beschreibung erfolgt vorzugsweise in Polarkoordinaten, wobei die Länge l eine Konstante ist. 1.2 Polarkoordinaten r = l e ρ (hier: r = l = const.) r = l e ρ = l ϕ e ϕ r = d dt (l ϕ e ϕ) = l ϕ e ϕ l ϕ 2 e ρ (1)

4 4 2 ABLEITUNG DER DIFFERENTIALGLEICHUNG e ρ = cos ϕ sin ϕ e x (2) e ϕ sin ϕ cos ϕ e y }{{} e x = cos ϕ e y sin ϕ Det=1 Man erhält für die Zeitableitung der Einheitsvektoren: sin ϕ e ρ (3) cos ϕ e ϕ d dt e ρ = e ϕ ϕ ; d dt e ϕ = e ρ ϕ 2 Ableitung der Differentialgleichung Auf Grund der konstanten Pendellänge (ρ = l =const.) ist der Winkel ϕ(t) die einzige gesuchte Zeitfunktion, das Problem verfügt also nur über einen Freiheitsgrad. Folgende Differentialgleichung ist zu analysieren: m r = mg e x (4) In Polarkoordinaten ergibt sich mit r aus (1): F = mg e x = mg (cos ϕ e ρ sin ϕ e ϕ ) (5) ml( ϕ e ϕ ϕ 2 e ρ ) = mg (cos ϕ e ρ sin ϕ e ϕ ) Projektion in Richtung e ρ : ml ϕ 2 = mg cos ϕ ( Fadenspannung) Projektion in Richtung e ϕ : ml ϕ = mg sin ϕ ( Dgl. in der Bahn) (6) In Richtung der Bahn (Richtung e ϕ ) ergibt sich also die Differentialgleichung: ml ϕ = mg sin ϕ = ϕ + g l sin ϕ = 0 (7) Hinweis: Eine intuitive Ableitung führt schneller zum Ziel: Wenn ϕ der Winkel der Auslenkung aus der stabilen Gleichgewichtslage ist, so ist der Anteil der Schwerkraft in Richtung der Tangente an die Kreisbahn, die das Pendel macht, gegeben durch F = mg sin ϕ. Der Ort des Teilchens auf dem Kreisbogen ist lϕ, so dass man sofort die Bewegungsgleichung (7) erhält. Die Dgl (7) ist nichtlinear von 2. Ordnung, der Exponentialansatz kann also NICHT verwendet werden! Allerdings kann mit dem Energiesatz ein erstes Integral gewonnen werden

5 5 3 INTEGRATION MITTELS ENERGIESATZ (siehe Abschnitt 3). Eine oft verwendete Näherung für kleine Auslenkungen aus der Ruhelage erschließt sich aus der Taylorreihe für den Sinus (siehe Abschnitt 4 Lineare Näherung). sin ϕ ϕ ϕ3 3! + ϕ5 5! ml ϕ mgϕ (8) ϕ + w 2 0ϕ = 0 mit w 2 0 = g l = Gleichung der harm. Oszillators (9) 3 Integration mittels Energiesatz ml ϕ = mg sin ϕ d ( m dt 2 l2 ϕ ) 2 = d (mgl cos ϕ) dt E 0 = m 2 l2 ϕ 2 mgl cos ϕ }{{}}{{} U=E P ot T =E kin ϕl (10) U(ϕ) = mgl }{{} U 0 (1 cos ϕ) ( Normierung: U(0) = 0) m 2 l2 ϕ 2 + mgl(1 cos ϕ) = E 0 (11) (10) ist eine nichtlineare Dgl. 1. Ordnung, die durch Trennung der Variablen gelöst werden kann: dϕ g dt = = 2E o + 2g ml 2 l cos ϕ l dt = dϕ (12) 2Eo mgl + 2 cos ϕ Für Anfangsbedingungen ϕ(0) = ϕ o und ϕ(0) = 0 liefert der Energiesatz (10) E o = mgl cos ϕ o = cos ϕ o = E o mgl Durch weitere Umformungen mit Hilfe der goniometrischen Relation cos ϕ = 1 2 sin 2 (ϕ/2) kann die Lösung für t(x) auf ein elliptisches Integral zurückgeführt werden: ϕ g o 1 l dt = 2 dϕ sin 2 ϕo 2 sin2 ϕ 2 Wir formen das Integral mit folgenden Substitutionen weiter um: 0 sin ϕ 2 = k sin ψ sin 2 ϕ o 2 ϕ sin2 2 = sin ϕ o 2 k = sin ϕ o 2 = k cos ψ 1 sin 2 ψ 1 2 cos ϕ dϕ = k cos ψdψ 2 1 k cos ψdψ dϕ = 2 1 sin 2 ϕ 2 k cos ψdψ = 1 k 2 sin 2 ψ (13) (14)

6 6 4 LINEARE NÄHERUNG g l t = ϕ o 0 dψ F (k, ψ) (15) 1 k 2 sin 2 ψ Die Funktion F (k, ψ) wird als Legendresche Normalform des elliptischen Integrals erster Gattung bezeichnet und ist in Tabellen aufgeführt. Eine Alternative bietet z.b. Mathematica. 4 Lineare Näherung Für kleine Auslenkungen gilt sin ϕ ϕ, und man erhält die linearisierte Dgl. ml ϕ = mg ϕ bzw. ϕ + ω 2 ϕ = 0 mit der Frequenz ω o = g l. Diese ist von der Masse unabhängig. Die Lösung für die Differentialgleichung des harmonischen Oszillator ist bereits bekannt; man erhält also: ϕ(t) = c 1 cos(ω o t) + c 2 sin(ω o t) oder ϕ(t) = a cos(w o t ϕ o ) Der Fehler durch die Linearisierung ist bis zu einer Auslenkungen von ca. 5 Grad vernachlässigbar klein. In Abb.2 sind die Potentiale U(ϕ) für beide Fälle gezeichnet. Hier wird der Unterschied zwischen linearer Näherung und exakter Lösung besonders deutlich. Man beachte, dass das umlaufende (rotierende) Pendel ebenfalls Lösung der nichtlinearen Dgl. ist. Dazu ist nur eine ausreichende Energie oberhalb der roten Kurve erforderlich! Abbildung 2: U(ϕ) für die lineare Näherung (blau) sowie die exakte Lösung (rot).

7 7 [1] Rompe, R. und Schmutzer, E., Theoretische Mechanik von A.Budó, 5. berichtigte Aufl., Hochschulbücher für Physik, Berlin, 1969, Leibniz-Universität Hannover. [2] Math. Pendel, Pendel, Wir ergänzen hier noch 2 interessante Übungsaufgaben. Aufgabe 1 : In welche Höhe über der Erdoberfläche muß ein mathematisches Pendel gebracht werden, damit sich seine Schwingungsdauer T um 1 % erhöht? Lösung ϕ + g l ϕ = 0 hat die Lösung ( siehe z.b. Budo Theoretische Mechanik S. 110 ) ( ) g ϕ(t) = ϕ o sin l t + c o ; T = 2π l = 2π ω o g. In einer Höhe h über der Erdoberfläche ist die Umlaufzeit T l = 2π g (h) mit der dort geltenden Erdbeschleunigung g (h) = g R 2 E (R E + h) 2 R E ist der Erdradius. Setzt man g (h) in T ein, erhält man T = T R E + h R E bzw. T T = 1 + h. R E Mit T /T = 1.01 erhält man die gesuchte Höhe h = 0.01 R E 64 km. Aufgabe 2 Gegeben sind 2 mathematische Pendel. Das erste Pendel hat eine Periode von T 1 = 3 s, das zweite eine Periode von T 2 = 4 s. Man berechne die Periode T für ein mathematisches Pendel, dessen Länge l gleich der Summe der Längen l 1 + l 2 vorgegebenen Pendel ist. der beiden

8 8 Lösung Für die Perioden der beiden vorgeg. math. Pendel gilt wegen ω 2 o = g/l : T 1 = 2π l 1 /g ; T 2 = 2π l 2 /g. Die Periode eines math. Pendel der Länge l 1 + l 2 ist T = 2π (l 1 + l 2 )/g. Mit den umgestellten Relationen l 1 = g (T 1 /2π) 2 ; l 2 = g (T 2 /2π) 2 erhält man T = T T 2 2 = T = 5 s.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester 2017 Physik-Institut der Universität Zürich Inhaltsverzeichnis 1 Einführungsversuch (EV) 11 11 Einleitung

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder

F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder 6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 213 Übung 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Schräger Wurf Ein Massepunkt der Masse m werde mit der Anfangsgeschwindigkeit

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - harmonische Schwingungen - Prof. Dr. Ulrich Hahn WS 216/17 kinematische Beschreibung Auslenkungs Zeit Verlauf: ( t) ˆ cost Projektion einer gleichförmigen Kreisbewegung

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 30. 11. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

Differentialgleichungen 2. Ordnung

Differentialgleichungen 2. Ordnung Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 005 Übungsblatt 7 Lösungsvorschlag 4 Aufgaben,

Mehr

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

Dynamik I: Axiome und Erhaltungssätze

Dynamik I: Axiome und Erhaltungssätze Auszug aus Kap. 3: Dynamik I: Axiome und Erhaltungssätze 3.1.2 Träge und schwere Massen Zur Präzisierung des Massenbegriffes kann man den folgenden Gedankenversuch durchführen: Beschleunige zwei Massen

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Aufgabe 1: Doppelpendel a) [2 Pkte.] Zwangsbedingungen: Massenpunkte auf Kreisen, also A 1 : x y 2 1 l 2 = 0,

Aufgabe 1: Doppelpendel a) [2 Pkte.] Zwangsbedingungen: Massenpunkte auf Kreisen, also A 1 : x y 2 1 l 2 = 0, Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 : PD. Dr. M. Eschrig Ü: Dr. habil. W. Lang Lösungen der Nachklausur vom 28. Oktober 2009 Aufgabe : Doppelpendel

Mehr

Ferienkurs Theoretische Mechanik Sommer 2010 Newton/Koordinaten/Dgl s

Ferienkurs Theoretische Mechanik Sommer 2010 Newton/Koordinaten/Dgl s Fakultät für Physik Friedrich Wulschner Technische Universität München Vorlesung Montag Ferienkurs Theoretische Mechanik Sommer 2010 Newton/Koordinaten/Dgl s Inhaltsverzeichnis 1 Newtons 3 Axiome 2 2 Lösungsverfahren

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

7 Die Hamilton-Jacobi-Theorie

7 Die Hamilton-Jacobi-Theorie 7 Die Hamilton-Jacobi-Theorie Ausgearbeitet von Rolf Horn und Bernhard Schmitz 7.1 Einleitung Um die Hamilton schen Bewegungsgleichungen q k = H(q, p) p k ṗ k = H(p, q) q k zu vereinfachen, führten wir

Mehr

Blatt 03.1: Scheinkräfte

Blatt 03.1: Scheinkräfte Fakultät für Physik T1: Klassische Mechanik, SoSe 2016 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik/

Mehr

Theoretische Physik I Mechanik Blatt 1

Theoretische Physik I Mechanik Blatt 1 PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 1 WS 27/28 8. 1. 27 1. Parabelbahn. Ein Punkt bewege sich auf der Kurve, die durch die Gleichung y 2 = 4ax + 4a 2 a > beschrieben

Mehr

2 Die Schritte zum Ziel

2 Die Schritte zum Ziel 2 Die Schritte zum Ziel 2.1 Ein einfaches Modell aufstellen Um zu verstehen, wie ein Segway die Balance hält, betrachten wir ein etwas einfacheres Problem: Wir wollen herausfinden, wie sich ein inverses

Mehr

Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche

Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche R. Mahnke (Univ. Rostock), J. Kaupužs (Lettische Univ. Riga) 3. Mai 24 Zusammenfassung Ziel dieses Kommentars ist es, die Newtonschen

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

1 Kurven und Kurvenintegrale

1 Kurven und Kurvenintegrale Fabian Kohler Karolina Stoiber Ferienkurs Analysis für Physiker SS 14 A 1 Kurven und Kurvenintegrale 1.1 Einschub: Koordinatentransformation Gegeben sei eine Funktion f : R n R. Dann ist die totale Ableitung

Mehr

Themengebiet: Mechanik

Themengebiet: Mechanik Stand: 15. Januar 018 Seite 1 Themengebiet: Mechanik Der Versuch besteht aus zwei Teilversuchen. Im ersten Teil wird mit einem Reversionspendel die Erdbeschleunigung im Praktikumsraum bestimmt. Im zweiten

Mehr

4.3 Schwingende Systeme

4.3 Schwingende Systeme Dieter Suter - 217 - Physik B3 4.3 Schwingende Systeme Schwingungen erhält man immer dann, wenn die Kraft der Auslenkung entgegengerichtet ist. Ist sie außerdem proportional zur Kraft, so erhält man eine

Mehr

2ml2 folgt die Form der Phasenraumtrajektorien zu

2ml2 folgt die Form der Phasenraumtrajektorien zu PDDr.S.Mertens Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt WS 8/9 3..9. Phasenraumportrait eines Fadenpendels. Eine Masse m sei an einer masselosen Stange der Länge l aufgehängt,

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

Ferienkurs Theoretische Mechanik. Lagrangeformalismus

Ferienkurs Theoretische Mechanik. Lagrangeformalismus Ferienkurs Theoretische Mechanik Lagrangeformalismus Sebastian Wild Mittwoch, 14.09.2011 Inhaltsverzeichnis 1 Zwangskräfte und Lagrangegleichungen 1. Art 2 1.1 Motivation, Definition von Zwangsbedingungen..........

Mehr

Lösung zu Übungsblatt 3

Lösung zu Übungsblatt 3 Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik. Ebenes Pendel (*) Lösung zu Übungsblatt 3 Lagrange-Formalismus, Systeme von Schwingungen Man betrachte ein ebenes Doppelpendel

Mehr

(c) Bestimmen Sie die raumfesten Komponenten der Winkelgeschwindigkeit ω.

(c) Bestimmen Sie die raumfesten Komponenten der Winkelgeschwindigkeit ω. PDDr.S.Mertens Theoretische Physik I Mechanik J. Unterhinninghofen, M. Hummel Blatt 9 WS 8/9 16.1.8 1. Transformation Körperachsen auf Raumachsen. In der Vorlesung wurde diskutiert, das (4Pkt. die Nutationsbewegung

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe

Mehr

2.6 Allgemeine Lösung der Bewegungsgleichung

2.6 Allgemeine Lösung der Bewegungsgleichung 60 KAPITEL 2. DYNAMIK EINES MASSENPUNKTES Feder, deren Energie um 1 2 C (z z)2 anwächst. Am unteren Umkehrpunkt ist die kinetische Energie der Masse gleich null, so dass gilt: oder z 0 z = 2 mg C, was

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Allgemeine Mechanik Musterlo sung 5.

Allgemeine Mechanik Musterlo sung 5. Allgemeine Mechanik Musterlo sung 5 U bung HS 203 Prof R Renner Gekoppelte Pendel Wir betrachten ein System aus zwei gleichen mathematischen Pendeln der La nge l = l2 = l mit Massen m = m2 = m im Schwerefeld

Mehr

D = Lösung der Aufgabe 1

D = Lösung der Aufgabe 1 Klassische Theoretische Physik I, WiSe 7/8 Aufgabe : Verständnisfragen und kleine Aufgaben 3P Beantworten Sie die Fragen kurz, aber vollständig. (a) 4P Formulieren Sie zwei der drei Kepler schen Gesetze

Mehr

1.1 Bestimmung der Erdbeschleunigung mit dem Pendel

1.1 Bestimmung der Erdbeschleunigung mit dem Pendel Kapitel 1 Mechanik 1.1 Bestimmung der Erdbeschleunigung mit dem Pendel Aufgaben In diesem Experiment werden die Schwingungen eines physikalischen Pendels untersucht. Aus den Messungen der Schwingungsdauern

Mehr

Computer und Software 1

Computer und Software 1 omputer und oftware 1. Köhler 6. aple Differentialgleichungen Folien: alint Aradi Differentialgleichungen Gewöhnliche Differentialgleichungen: f t, x t, x 1 t, x 2 t,..., x n t =0 x i t = d i x t dt i

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Bestimmung der Erdbeschleunigung mit dem Reversionspendel und dem Fadenpendel

Bestimmung der Erdbeschleunigung mit dem Reversionspendel und dem Fadenpendel Bestimmung der Erdbeschleunigung mit dem Reversionspendel und dem Fadenpendel Denis Nordmann http://physik.co-i60.com 9. Mai 2013 dn (physik.co-i60.com) Bestimmung der Erdbeschleunigung 9. Mai 2013 1 /

Mehr

M13. Gekoppeltes Pendel

M13. Gekoppeltes Pendel M3 Gekoppeltes Pendel In diesem Versuch werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken werden die Schwingungsdauern

Mehr

NUMERISCHE METHODEN IN DER PHYSIK Vierte Übung WS 2012/2013 [MATLAB]

NUMERISCHE METHODEN IN DER PHYSIK Vierte Übung WS 2012/2013 [MATLAB] NUMERISCHE METHODEN IN DER PHYSIK Vierte Übung WS 01/013 [MATLAB] Numerische Auswertung von Anfangswertproblemen mittels MATLAB-Funktionen Konkrete Anwendung: Pendel - Pendel - Pendel In dieser Übung sollen

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.

Mehr

Blatt 6. Schwingungen- Lösungsvorschlag

Blatt 6. Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

Aufgabe 1: Elektro-mechanischer Oszillator

Aufgabe 1: Elektro-mechanischer Oszillator 37. Internationale Physik-Olympiade Singapur 6 Lösungen zur zweiten Runde R. Reindl Aufgabe : Elektro-mechanischer Oszillator Formeln zum Plattenkondensator mit der Plattenfläche S, dem Plattenabstand

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) =

Lösung 05 Klassische Theoretische Physik I WS 15/16. y a 2 + r 2. A(r) = Karlsruher Institut für Technologie Institut für theoretische Festkörperphsik www.tfp.kit.edu Lösung Klassische Theoretische Phsik I WS / Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler Besprechung...

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M1) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

Praktikumsprotokoll: Gekoppelte Pendel

Praktikumsprotokoll: Gekoppelte Pendel Praktikumsprotokoll: Gekoppelte Pendel Robin Marzucca, Andreas Liehl 19. Januar 011 Protokoll zum Versuch Gekoppelte Pendel, durchgeführt am 13.01.011 an der Universität Konstanz im Rahmen des physikalischen

Mehr

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60

Aufgabe Max.Pkt. Punkte Visum 1 Visum Total 60 D-MATH/D-PHYS Prof. W. Fetscher Studienjahr HS07 - FS08 ETH Zürich Testklausur, Frühjahr 2008, Physik I+II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus. Beachten Sie: Nicht

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

Lineare Systeme mit einem Freiheitsgrad

Lineare Systeme mit einem Freiheitsgrad Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200 Übersicht. Grundlagen der Analytischen

Mehr

Lineare Differentialgleichungen 1. Ordnung

Lineare Differentialgleichungen 1. Ordnung Lineare Differentialgleichungen 1. Ordnung Eine lineare Differentialgleichung 1. Ordnung hat folgende Gestalt: +f() = r(). Dabei sind f() und r() gewisse, nur von abhängige Funktionen. Wichtig: sowohl

Mehr

Übungsblatt 13 Physik für Ingenieure 1

Übungsblatt 13 Physik für Ingenieure 1 Übungsblatt 13 Physik für Ingenieure 1 Othmar Marti, (othmarmarti@physikuni-ulmde 1 00 1 Aufgaben für die Übungsstunden Schwingungen 1 Zuerst nachdenken, dann in Ihrer Vorlesungsmitschrift nachschauen

Mehr

J. Neunte Übungseinheit

J. Neunte Übungseinheit J. Neunte Übungseinheit Inhalt der neunten Übungseinheit: Aufgaben dieser Art kommen zum zweiten Kenntnisnachweis. Umformen von Differentialgleichungen 2. und höherer Ordnung auf Systeme 1. Ordnung J.1.

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten

Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten http://farm2.static.flickr.com/1126/1106887574_afb6b55b4e.jpg?v=0 Inhomogene lineare Differentialgleichung 1. Ordnung Variation der Konstanten 1-E Joseph Louis Lagrange (1736-1813), ein italienischer Mathematiker

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Jens Küchenmeister ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Jens Küchenmeister ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Jens Küchenmeister (153810) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Da die Schwingung sowohl in der Natur als auch in der

Mehr

Funktionen mehrerer Variablen: Integralrechnung. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Funktionen mehrerer Variablen: Integralrechnung. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Funktionen mehrerer Variablen: Integralrechnung ufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya Inhaltsverzeichnis ii Doppelintegrale. Doppelintegrale.. Doppelintegrale mit konstanten Integrationsgrenzen

Mehr

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner

Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt, Punkte Dr. P. P. Orth Abgabe und Besprechung 24..24. Nicht so schnell

Mehr

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den M1 Pendel Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 15.01.000 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das mathematische Pendel. Das Federpendel.3 Parallel- und

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

Übungsaufgaben zur Hamilton-Mechanik

Übungsaufgaben zur Hamilton-Mechanik Übungsaufgaben zur Hamilton-Mechanik Simon Filser 24.9.09 1 Parabelförmiger Draht Auf einem parabelförmig gebogenen Draht (z = ar² = a(x² + y²), a = const), der mit konstanter Winkelgeschwindigkeit ω 0

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr