Lineare Systeme mit einem Freiheitsgrad
|
|
|
- Karola Berg
- vor 9 Jahren
- Abrufe
Transkript
1 Höhere Technische Mechanik Lineare Systeme mit einem Freiheitsgrad Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/200
2 Übersicht. Grundlagen der Analytischen Mechanik 2. Lineare Systeme mit einem Freiheitsgrad Freie Schwingungen - Ungedämpfte Schwingungen - Gedämpfte Schwingungen Erzwungene Schwingungen - Federerregung - Dämpfererregung - Gehäuseerregung 3. Lineare Systeme mit mehreren Freiheitsgraden 4. Lineare Modelle kontinuierlicher Systeme Prof. Dr. U. Zwiers STME 2/20
3 Freie Schwingungen /9 Begriffe & Definitionen Zustandsgröße Schwingungsdauer Frequenz Kreisfrequenz (t) T f = T ω = 2πf Schwingungsamplitude ˆ = 2 ( ma min ) Mittellage = 2 ( ma + min ) Prof. Dr. U. Zwiers STME 3/20
4 Freie Schwingungen 2/9 Begriffe & Definitionen (Forts.) Schwingung Periodischer Bewegungsvorgang (t) = (t + T) Lineares System System, das durch eine lineare Differentialgleichung beschrieben werden kann Superpositionsprinzip f( + 2 ) = f( ) + f( 2 ) Homogenitätsprinzip f(k) = kf() Prof. Dr. U. Zwiers STME 4/20
5 Freie Schwingungen 3/9 Ungedämpfte Eigenschwingungen k m Bewegungsgleichung mẍ + k = 0 k mg mẍ DGL in Standardform ẍ + ω 2 0 = 0, ω2 0 = k m Allgemeine Lösung (t) = A cos ω 0 t + B sinω 0 t (t) = ˆcos(ω 0 t φ) (t) = C e iω 0t + C 2 e iω 0t Prof. Dr. U. Zwiers STME 5/20
6 Freie Schwingungen 4/9 Ungedämpfte Eigenschwingungen (Forts.) Anpassung der allg. Lösung auf spezifische Anfangsbedingungen Anfangsbedingungen (0) = 0, ẋ(0) = ẋ 0 Integrationskonstanten A = 0, B = ẋ0 ω 0 ˆ = A 2 + B 2 = ẋ2 0 ω 2 0 tan φ = B A = ẋ0 ω 0 0 A = C + C 2, B = i (C C 2 ) Prof. Dr. U. Zwiers STME 6/20
7 Lineare Systeme mit einem Freiheitsgrad Freie Schwingungen 5/9 Ungedämpfte Eigenschwingungen (Forts.) 0 ẋ 0 +ˆ = ˆ cos(ω 0t φ) T ˆ φ ω 0 t ẋ ω 0ˆ 2 ˆ 2 + ẋ2 (ω 0ˆ) 2 = 0 ˆ ẋ 0 Prof. Dr. U. Zwiers STME 7/20
8 Freie Schwingungen 6/9 Gedämpfte Eigenschwingungen k d m k dẋ mẍ mg Bewegungsgleichung mẍ + dẋ + k = 0 DGL in Standardform ẍ + 2δẋ + ω 2 0 = 0, δ = d 2m Anfangsbedingungen (0) = 0, ẋ(0) = ẋ 0 ω 2 0 = k m Prof. Dr. U. Zwiers STME 8/20
9 Freie Schwingungen 7/9 Gedämpfte Eigenschwingungen (Forts.) Fallunterscheidung Schwache Dämpfung: δ < ω 0 = e [ δt 0 cos ωt + ] ω (ẋ 0 + δ 0 )sin ωt, ω = ω 2 0 δ2 Starke Dämpfung: δ > ω 0 = e [ δt 0 coshpt + ] p (ẋ 0 + δ 0 )sinhpt, p = δ 2 ω 2 0 Aperiodischer Grenzfall: δ = ω 0 = e δt [ 0 + (ẋ 0 + δ 0 )t] Prof. Dr. U. Zwiers STME 9/20
10 Lineare Systeme mit einem Freiheitsgrad Freie Schwingungen 8/9 Gedämpfte Eigenschwingungen (Forts.) +ˆ ẋ 0 0 = ˆe δt cos(ωt φ) ˆ φ ω T t ẋ ẋ 0 Schwache Dämpfung 0 Prof. Dr. U. Zwiers STME 0/20
11 Lineare Systeme mit einem Freiheitsgrad Freie Schwingungen 9/9 Gedämpfte Eigenschwingungen (Forts.) ẋ0 0 t ẋ ẋ 0 Starke Dämpfung 0 Prof. Dr. U. Zwiers STME /20
12 Erzwungene Schwingungen /9 Lösung für harmonische Erregerfunktionen Erzwungene Schwingung Vorgang, bei dem ein System einer dauernden Anregung von außen ausgesetzt ist DGL in Standardform: ẍ + 2δẋ + ω 2 0 = p(t) Harmonische Anregung: p(t) = ω 2 0 p 0 cos Ωt Allgemeine Lösung: (t) = h (t) + p (t) h (t) homogene (transiente) Lösung p (t) partikuläre (stationäre) Lösung Prof. Dr. U. Zwiers STME 2/20
13 Erzwungene Schwingungen 2/9 Lösung für harmonische Erregerfunktionen (Forts.) Lösungsansatz: (t) = Ce δt cos(ωt ϕ) + ˆcos(Ωt ψ) }{{}}{{} h p Dämpfungsgrad: D = δ ω 0 Frequenzverhältnis: η = Ω ω 0 Phasenwinkel: tanψ = 2Dη η 2 Antwortamplitude: ˆ = p 0 ( η 2 ) 2 + 4D 2 η 2 Prof. Dr. U. Zwiers STME 3/20
14 Erzwungene Schwingungen 3/9 Lösung für harmonische Erregerfunktionen (Forts.) Der homogene Lösungsanteil h (t) wird mit der Zeit herausgedämpft. Der stationäre Lösungsanteil p (t) ist eine harmonische Schwingung, deren Kreisfrequenz mit der Erregerkreisfrequenz Ω übereinstimmt. Die Zeitspanne, während der der homogene Lösungsanteil noch einen wesentlichen Einfluss auf das Systemverhalten hat, wird als Einschwingvorgang bezeichnet. Vergrößerungsfunktion: V = ˆ p 0 Prof. Dr. U. Zwiers STME 4/20
15 Erzwungene Schwingungen 4/9 Federerregung Bewegungsgleichung u mẍ + dẋ + k = ku k m d Erregerfunktion u = u 0 cos Ωt Phasenwinkel tan ψ = 2Dη η 2 Vergrößerungsfunktion V = ( η 2 ) 2 + 4D 2 η 2 Prof. Dr. U. Zwiers STME 5/20
16 Erzwungene Schwingungen 5/9 Federerregung (Forts.) V D = 0 ψ π π 2 0 / 2 2 D / 4 / 2 η 2 η Prof. Dr. U. Zwiers STME 6/20
17 Erzwungene Schwingungen 6/9 Dämpfererregung k m d u Bewegungsgleichung mẍ + dẋ + k = d u Erregerfunktion u = u 0 cos Ωt Phasenwinkel tan ψ = η2 2Dη Vergrößerungsfunktion V = 2Dη ( η 2 ) 2 + 4D 2 η 2 Prof. Dr. U. Zwiers STME 7/20
18 Lineare Systeme mit einem Freiheitsgrad Erzwungene Schwingungen 7/9 Dämpfererregung (Forts.) ψ + π 2 0 η V π 2 2 / 2 0 D 2 / 2 / 4 0 η Prof. Dr. U. Zwiers STME 8/20
19 Erzwungene Schwingungen 8/9 Gehäuseerregung Bewegungsgleichung u mẍ + dẋ + k = mü Erregerfunktion k m d u = u 0 cos Ωt Phasenwinkel tan ψ = 2Dη η 2 Vergrößerungsfunktion V = η 2 ( η 2 ) 2 + 4D 2 η 2 Prof. Dr. U. Zwiers STME 9/20
20 Erzwungene Schwingungen 9/9 Gehäuseerregung (Forts.) V ψ π π 2 0 / 2 2 D D = 0 / 4 η / 2 2 η Prof. Dr. U. Zwiers STME 20/20
F R. = Dx. M a = Dx. Ungedämpfte freie Schwingungen Beispiel Federpendel (a) in Ruhe (b) gespannt: Auslenkung x Rückstellkraft der Feder
6. Schwingungen Schwingungen Schwingung: räumlich und zeitlich wiederkehrender (=periodischer) Vorgang Zu besprechen: ungedämpfte freie Schwingung gedämpfte freie Schwingung erzwungene gedämpfte Schwingung
Fakultät Grundlagen. Februar 2016
Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen
Musterlösungen (ohne Gewähr)
Seite /9 Frage ( Punkte) Eine Waschmaschine hat einen mit Feder und Dämpfer gelagerten Motor (Masse m), an dem ohne Unwucht die Trommel befestigt ist. Wieviel Wäsche m u kann geschleudert werden, wenn
2. Schwingungen eines Einmassenschwingers
Baudynamik (Master) SS 2017 2. Schwingungen eines Einmassenschwingers 2.1 Freie Schwingungen 2.1.1 Freie ungedämpfte Schwingungen 2.1.2 Federzahlen und Federschaltungen 2.1.3 Freie gedämpfte Schwingungen
Experimentalphysik E1
Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung
Formelzusammenstellung
Übung zu Mechanik 4 - ormelsammlung Seite 4 ormelzusammenstellung. Grundbegriffe Harmonische Schwingung Sinusschwingung: (t) sin ( t + ϕ) Schwingungsamplitude: Kreisfrequenz: Phasenwinkel: requenz: f Schwingungsdauer,
Inhalt der Vorlesung A1
PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung
4. Einführung in die Baudynamik
Baustatik III SS 2017 4. Einführung in die Baudynamik 4.1 Allgemeine Vorbemerkungen 4.1.1 Bedeutungen der Baudynamik 4.1.2 Grundbegriffe und Klassifizierung 4.1.3 Modellierung der Bauwerksschwingungen
Baudynamik. Jan Höffgen 18. Februar Koordinatensysteme 2
Baudynamik Jan Höffgen 8. Februar 204 Inhaltsverzeichnis Koordinatensysteme 2 2 Bewegungsgleichungen 2 2. Allgemeines................................................ 2 2.2 Synthetische Methode nach d Alembert................................
Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss. Aufgabensammlung mit Kurzlösungen
Prof. Dr.-Ing. Prof. E.h. P. Eberhard / Prof. Dr.-Ing. M. Hanss SS 17 Ü1 Technische Schwingungslehre Prof. Dr.-Ing. habil. Michael Hanss Aufgabensammlung mit Kurzlösungen Sommersemester 017 Prof. Dr.-Ing.
Experimentalphysik E1
Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +
3. Erzwungene Schwingungen
3. Erzwungene Schwingungen Bei erzwungenen Schwingungen greift am schwingenden System eine zeitlich veränderliche äußere Anregung an. Kraftanregung: Am schwingenden System greift eine zeitlich veränderliche
MR Mechanische Resonanz
MR Mechanische Resonanz Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis Grundlagen 2. Freie, ungedämpfte Schwingung....................... 2.2 Freie, gedämpfte Schwingung........................
3. Übertragungsfunktionen
Definitionen: Die Fourier-Transformierte der Impulsantwortfunktion heißt Übertragungsfunktion: H ( f )= h(t )e 2 π i f t dt Mithilfe der Übertragungsfunktion kann die Fourier-Transformierte der Antwort
2. Einmassenschwinger. Inhalt:
. Einmassenschwinger Inhalt:.1 Bewegungsdifferentialgleichung. Eigenschwingung.3 Harmonische Anregung.4 Schwingungsisolation.5 Stossartige Belastung.6 Allgemeine Belastung.7 Nichtlineare Systeme.8 Dämpfungsarten
3. Erzwungene gedämpfte Schwingungen
3. Erzwungene gedämpfte Schwingungen 3.1 Schwingungsgleichung 3.2 Unwuchtanregung 3.3 Weganregung 3.4 Komplexe Darstellung 2.3-1 3.1 Schwingungsgleichung F(t) m Bei einer erzwungenen gedämpften Schwingung
5. Vorlesung Wintersemester
5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode
Schwingungen. Inhaltsverzeichnis. TU München Experimentalphysik 1 DVP Vorbereitungskurs. Andreas Brenneis; Rebecca Saive; Felicitas Thorne
TU München Experimentalphysik 1 DVP Vorbereitungskurs Andreas Brenneis; Rebecca Saive; Felicitas Thorne Schwingungen Donnerstag, der 31.07.008 Inhaltsverzeichnis 1 Einleitung: Schwingungen und Wellen 1
Harmonische Schwingung
Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung
Resonanzverhalten eines Masse-Feder Systems (M10)
Resonanzverhalten eines Masse-Feder Systems M0) Ziel des Versuches In diesem Versuch werden freie, freie gedämpfte und erzwungene Schwingungen an einem Masse-Feder System untersucht Die Resonanzkurven
9. Periodische Bewegungen
Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen
5 Schwingungen und Wellen
5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung
Grundlagen der Physik 2 Schwingungen und Wärmelehre
(c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti [email protected] Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel
Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1
Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit
Mathematik 2 für Ingenieure
Skriptum zur Vorlesung Mathematik für Ingenieure Differentialgleichungen Prof. Dr.-Ing. Norbert Höptner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner) Fachhochschule Pforzheim FB-Ingenieurwissenschaften,
POHLsches 1 Drehpendel
POHLsches 1 Drehpendel Aufgabenstellung: Charakterisieren Sie das Schwingungsverhalten eines freien sowie eines periodisch angeregten Drehpendels. Stichworte zur Vorbereitung: Schwingungen, harmonische
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags
Grundlagen der Analytischen Mechanik
Höhere Technische Mechanik Grundlagen der Analytischen Mechanik Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Grundlagen der Analytischen
Erzwungene Schwingungen
Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen
DIFFERENTIALGLEICHUNGEN (DGL)
DIFFERENTIALGLEICHUNGEN (DGL) Definition und Klassifikation und Beispiele Definition und Klassifikation Definition Gleichung, deren Unbekannte eine Funktion ist und die Ableitungen der gesuchten Funktion
Gedämpfte harmonische Schwingung
Gedämpfte harmonische Schwingung Die Differentialgleichung u + 2ru + ω 2 0u = c cos(ωt) mit r > 0 modelliert sowohl eine elastische Feder als auch einen elektrischen Schwingkreis. Gedämpfte harmonische
Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907
Anhang A1 Schwingungen Am Beispiel eines Drehschwingers werden im Folgenden die allgemeinen Eigenschaften schwingfähiger Systeme zusammengestellt und diskutiert. A1.1 Freie Schwingung ohne Dämpfung Idealisierter
M 10 Resonanz und Phasenverschiebung bei der mechanischen Schwingung
Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M 1 esonanz und Phasenverschiebung bei der mechanischen Schwingung Aufgaben 1. Bestimmen Sie die Frequenz der freien gedämpften Schwingung
4. Schwingungen und Wellen
Bei manchen Systemen (z.b. Fadenpendel) führt die Krafteinwirkung zu sich wiederholenden Vorgängen. Sind diese periodisch, so spricht man von Schwingungsvorgängen (um ortsfeste Ruhelage). Breiten sich
Experimentalphysik II Elektromagnetische Schwingungen und Wellen
Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung
Vorlesung Physik für Pharmazeuten und Biologen
Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung
Differentialgleichungen 2. Ordnung
Differentialgleichungen 2. Ordnung 1-E1 1-E2 Einführendes Beispiel Freier Fall Viele Geschichten ranken sich um den schiefen Turm von Pisa: Der Legende nach hat der aus Pisa stammende Galileo Galilei bei
Physik III im Studiengang Elektrotechnik
Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................
Einführung in die Physik I. Schwingungen und Wellen 1
Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten
Schwingungen und Wellen Teil I
Schwingungen und Wellen Teil I 1.. 3. 4. 5. 6. 7. 8. 9. 10. Einleitung Arten von Schwingungen Lösung der Differentialgleichung Wichtige Größen Das freie ungedämpfte und gedämpfte Feder-Masse-System Ausbreitung
Experimentalphysik 1
Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 016/17 Übung 4 Ronja Berg ([email protected]) Katharina Scheidt ([email protected]) A. Übungen A.1. Schwingung
Schwingungen. Antonia Blachnik und Jörg Laubersheimer. Wintersemester 2008/2009,
Universität Heidelberg Proseminar Analysis Leitung: PD Dr. Gudrun Thäter Wintersemester 2008/2009, 09.12.2008 Inhaltsverzeichnis 1 Einführung 2 ohne Reibung mit Reibung 3 4 Einführung Denition Eine Schwingung
Klausur Schwingungstechnik 20. September Name Vorname Matr. - Nr. Punkte
1 Aufgaben FB Maschinenbau Institut für Mechanik FG Maschinendynamik Prof. Dr.-Ing. H. Irretier Dipl.-Ing. A. Stein Klausur Schwingungstechnik 0. September 011 Name Vorname Matr. - Nr. Punkte =50 Aufgabe
6. Erzwungene Schwingungen
6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen
Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4
anu [email protected] www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne
Pohlsches Pendel / Kreisel
Pohlsches Pendel / Kreisel Mit Hilfe des Pohlschen Pendels, eines schwingenden Systems mit einem Freiheitsgrad, sollen freie und erzwungene Schwingungen mit und ohne Dämpfung untersucht werden. Insbesondere
Pohlsches Pendel / Kreisel
Pohlsches Pendel / Kreisel Mit Hilfe des Pohlschen Pendels, eines schwingenden Systems mit einem Freiheitsgrad, sollen freie und erzwungene Schwingungen mit und ohne Dämpfung untersucht werden. Insbesondere
Drehprüfung. Biophysikalische Grundlagen. Stefan Langenberg
Drehprüfung Biophysikalische Grundlagen Stefan Langenberg Optokinetik Ermittlung der GLP (Geschwindigkeit der langsamen Phase) Projektion eines Streifenmusters auf einen Schirm, videonystagmographische
1. Einführung. Baudynamik (Master) SS 2017
Baudynamik (Master) SS 2017 1. Einführung 1.1 Bedeutungen der Baudynamik 1.2 Grundbegriffe und Klassifizierung 1.3 Modellierung der Bauwerksschwingungen LEHRSTUHL FÜR BAUSTATIK 1 Baudynamik (Master) SS
Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06
Übungen zu: Theoretische Physik I klassische Mechanik W 3 Tobias Spranger - Prof. Tom Kirchner WS 5/6 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 5 Übungsblatt 6 Lösungsvorschlag 3 ufgaben,
Formelsammlung: Physik I für Naturwissenschaftler
Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]
Praktikum I PP Physikalisches Pendel
Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische
Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III
Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung
Physikalisches Praktikum I. Erzwungene Schwingung und Resonanz
Fachbereich Physik Physikalisches Praktikum I Name: Erzwungene Schwingung und Resonanz Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen
Versuch M3a für Nebenfächler Gedämpfter harmonischer Oszillator
Versuch M3a für Nebenfächler Gedämpfter harmonischer Oszillator I. Physikalisches Institut, Raum HS102 Stand: 23. Juni 2014 generelle Bemerkungen bitte Versuchsaufbau (Nummer) angeben bitte Versuchspartner
Erzwungene Schwingung und Resonanz
M30 Name: Erzwungene Schwingung und Resonanz Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 213 Übung 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Schräger Wurf Ein Massepunkt der Masse m werde mit der Anfangsgeschwindigkeit
Ferienkurs Experimentalphysik Übung 4 - Musterlösung
Ferienkurs Experimentalphysik 1 1 Übung 4 - Musterlösung 1. Feder auf schiefer Ebene (**) Auf einer schiefen Ebene mit Neigungswinkel α = befindet sich ein Körper der Masse m = 1 kg. An dem Körper ist
Übungen zur Physik II PHY 121, FS 2017
Übungen zur Physik II PHY, FS 07 Serie Abgabe: Dienstag, 3. Mai 00 Impedanz = impedance Phasenlage = phasing Wirkleistung = active power Blindleistung = reactive power Scheinleistung = apparent power Schaltung
Resonanz Versuchsvorbereitung
Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie
6 Der Harmonische Oszillator
6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse
PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN
1 PHYSIK FÜR MASCHINENBAU SCHWINUNEN UND WELLEN Vorstellung: Professor Kilian Singer und Dr. Sam Dawkins (Kursmaterie teilweise von Dr. Saskia Kraft-Bermuth) EINFÜHRUN Diese Vorlesung behandelt ein in
Physik III im Studiengang Elektrotechnik
Physik III im Studiengang Elektrotechnik - harmonische Schwingungen - Prof. Dr. Ulrich Hahn WS 216/17 kinematische Beschreibung Auslenkungs Zeit Verlauf: ( t) ˆ cost Projektion einer gleichförmigen Kreisbewegung
Kinematik des starren Körpers
Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes
2. Freie gedämpfte Schwingungen
2. Freie gedämpfte Schwingungen Bei realen Systemen werden die Schwingungsausschläge mit der Zeit kleiner, und die Schwingung kommt zum Stillstand. Ursache sind Energieverluste durch Reibungs- und Dämpfungskräfte:
Übungen zu Physik 1 für Maschinenwesen
Physikdepartent E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbau, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung
Beispiel: Erzwungene gedämpfte Schwingungen
Lineare Dgln. mit konstanten Koeffizienten Zur Startseite TM-Mathe Gewöhnliche Dgln. (Grundlagen) Differenzialgleichungen 1. Ordnung Lineare Dgln. mit konstanten Koeffizienten Lineare Differenzialgleichungen
5 Gewöhnliche Differentialgleichungen
5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und
10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)
10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω
Schwingungen. Lena Flecken. Ausarbeitung zum Vortrag im Seminar Modellierungen (Wintersemester 2008/09, Leitung PD Dr.
Schwingungen Lena Flecken Ausarbeitung zum Vortrag im Seminar Modellierungen (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Eine Schwingung (auch Oszillation) bezeichnet den Verlauf
11.4. Lineare Differentialgleichungen höherer Ordnung
4 Lineare Differentialgleichungen höherer Ordnung Bei vielen geometrischen, physikalischen und technischen Problemen hat man nicht nur eine Funktion (in einer Variablen) und ihre Ableitung zueinander in
Das mathematische Pendel
1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2
PS1. Grundlagen-Vertiefung Version
PS1 Grundlagen-Vertiefung Version 14.03.01 Inhaltsverzeichnis 1 1.1 Freie Schwingung................................ 1 1.1.1 Gedämpfte Schwingung......................... 1 1.1. Erzwungene Schwingung........................
Lineare Differenzen- und Differenzialgleichungen
Lineare Differenzen- und Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Lineare Differenzen- und Differenzialgleichungen Übersicht 1 Beispiele Anwendung auf Fragen der dynamischen
Versuch M3b für Physiker Erzwungene Schwingung / Resonanz
Versuch M3b für Physiker Erzwungene Schwingung / Resonanz I. Physikalisches Institut, Raum HS0 Stand: 3. April 04 generelle Bemerkungen bitte Versuchsaufbau (Nummer) angeben bitte Versuchspartner angeben
Vorbereitung. Resonanz. Carsten Röttele. 17. Januar Drehpendel, freie Schwingungen 3. 2 Drehpendel, freie gedämpfte Schwingungen 3
Vorbereitung Resonanz Carsten Röttele 17. Januar 01 Inhaltsverzeichnis 1 Drehpendel, freie Schwingungen 3 Drehpendel, freie gedämpfte Schwingungen 3 3 Messung der Winkelrichtgröße D 4 4 Drehpendel, erzwungene
Blatt 05.2: Green sche Funktionen
Fakultät für Physik T: Klassische Mechanik, SoSe 05 Dozent: Jan von Delft Übungen: Katharina Stadler, Frauke Schwarz, Dennis Schimmel, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5t/
Blatt 6. Schwingungen- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator
3. Erzwungene Schwingungen
3. Erzwungene Schwingungen 3.1 Grundlagen 3.2 Tilger 3.3 Kragbalken 3.4 Fahrbahnanregung 3.3-1 3.1 Grundlagen Untersucht wird die Antwort des Systems auf eine Anregung mit harmonischem Zeitverlauf. Bewegungsgleichung:
1 Differentialrechnung
BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(
Differentialgleichungen für Ingenieure WS 06/07
Differentialgleichungen für Ingenieure WS 06/07 5. Vorlesung, korrigierte Fassung Michael Karow Themen heute:. Gewöhnliche Lineare Differentialgleichungen. Ordnung mit konstanten Koeffizienten (a) Die
Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel
Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte
Probestudium der Physik 2011/12
Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.
1.4. Stehwellenresonatoren. LEMMA: Resonanz und Güte
1.4 LEMMA: Resonanz un Güte Stehwellenresonatoren Definition: Koppelt man zwei schwingungsfähige Systeme, inem as eine System (Erreger) as anere System (Resonator) zum Mitschwingen zwingt, kann Resonanz
5. Fourier-Transformation
Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und
TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS
4., aktualisierte Auflage thomas GÖRNE TONTECHNIK HÖREN // SCHALLWANDLER // IMPULSANTWORT UND FALTUNG // DIGITALE SIGNALE // MEHRKANALTECHNIK // TONTECHNISCHE PRAXIS 18 1 Schall und Schwingungen 1.1 Mechanische
Klassische Theoretische Physik I WS 2013/ Nicht so schnell (10 Punkte) Ein kleiner
Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt, Punkte Dr. P. P. Orth Abgabe und Besprechung 24..24. Nicht so schnell
Kinetik des starren Körpers
Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester 2017 Physik-Institut der Universität Zürich Inhaltsverzeichnis 1 Einführungsversuch (EV) 11 11 Einleitung
Differentialgleichung.
Kapitel 9 Differentialgleichungen 9. Einteilung der Differentialgleichungen In einer Differentialgleichung (DGl) treten Differentialquotienten von einer oder ehreren Funtionen von einer oder ehreren Veränderlichen
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 3. Übungsblatt - 8.November 2010 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (2 Punkte) Berechnen
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
