Kinetik des starren Körpers

Größe: px
Ab Seite anzeigen:

Download "Kinetik des starren Körpers"

Transkript

1 Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010

2 Übersicht 1. Kinematik des Massenpunktes 2. Kinematik des starren Körpers 3. Kinetik des Massenpunktes 4. Kinetik des starren Körpers Bewegungsgleichungen - Schwerpunktsatz - Drehimpulssatz - Trägheitstensor Arbeit und Energie Analogie zwischen Translation und Rotation 5. Besondere Bewegungsvorgänge Prof. Dr. U. Zwiers BTM2 2/19

3 Bewegungsgleichungen 1/13 Modell des Mehrteilchensystems Starrer Körper System aus N Teilchen m i r 0 r i s i konstante Masse des i-ten Teilchens Ortsvektor des Schwerpunktes im Inertialsystem Ortsvektor des i-ten Teilchens im Inertialsystem Vektor vom Schwerpunkt zum i-ten Teilchen ( s i = const) Masse des Gesamtsystems: m = m i Position des Schwerpunkts: r 0 = 1 m m i r i Prof. Dr. U. Zwiers BTM2 3/19

4 Bewegungsgleichungen 2/13 Modell des Mehrteilchensystems (Forts.) m i F ij Fji m j m i r i = F i + F ij = F ji j=1 F ij z r i r 0 F i 0 Schwerpunktsatz x y Der Schwerpunkt eines Systems bewegt sich so, als ob die Gesamtmasse in ihm vereinigt wäre und alle äußeren Kräfte an ihm angriffen: m r 0 = F i Prof. Dr. U. Zwiers BTM2 4/19

5 Bewegungsgleichungen 3/13 Modell des Mehrteilchensystems (Forts.) r i = r 0 + s i m i s i = 0 m i ṡ i = 0 x z y r i r 0 m i s i 0 Die kinetische Energie eines N-Teilchensystems ist die Summe aus der kinetischen Energie der Schwerpunktbewegung und der kinetischen Energie der Relativbewegung der Teilchen um den Schwerpunkt: m i 2 v2 i = m 2 v2 0 + m i 2 ṡ2 i Prof. Dr. U. Zwiers BTM2 5/19

6 Bewegungsgleichungen 4/13 Modell des Mehrteilchensystems (Forts.) Drehimpuls Physikalische Größe zur Beschreibung der Richtung und Geschwindigkeit der Bewegung eines Massenpunktes um einen Referenzpunkt: L 0 = r mv Drehimpulssatz für den einzelnen Massenpunkt Die zeitliche Änderung des Drehimpulses entspricht dem Moment der an einem Massenpunkt angreifenden Kräfte bezüglich desselben Referenzpunktes: dl 0 = M = r F dt Prof. Dr. U. Zwiers BTM2 6/19

7 Bewegungsgleichungen 5/13 Modell des Mehrteilchensystems (Forts.) Drehimpulssatz für Mehrteilchensysteme Die zeitliche Änderung des Gesamtdrehimpulses eines Mehrteilchensystems entspricht dem Moment der von außen einwirkenden Kräfte bezüglich desselben Referenzpunktes: dl 0 ges = M 0 dt r i m i r i = r i F i Prof. Dr. U. Zwiers BTM2 7/19

8 Bewegungsgleichungen 6/13 Starrer Körper im Raum 0 Körperschwerpunkt v P P ω r P = r 0 + s P s P v 0 v P = v 0 + ω s P L 0 = s ṡ dm L 0 = m m s (ω s)dm x z y r P r 0 0 Drehimpuls des starren Körpers ( ) L 0 = s 2 ω (s T ω)s dm = Θ 0 ω m Prof. Dr. U. Zwiers BTM2 8/19

9 Bewegungsgleichungen 7/13 Trägheitstensor (y 2 + z 2 )dm xy dm xz dm Θ 0 = yx dm (x 2 + z 2 )dm yz dm zxdm zy dm (x 2 + y 2 )dm Massenträgheitssmomente: Θ xx, Θ yy, Θ zz (Maß für die Drehträgheit eines Körpers) Deviationsmomente: Θ xy = Θ yx, Θ xz = Θ zx, Θ yz = Θ zy (Maß für das Bestreben eines Körpers, seine Drehachse zu verändern) Prof. Dr. U. Zwiers BTM2 9/19

10 Bewegungsgleichungen 8/13 Trägheitstensor (Forts.) Trägheitsmatrix bzgl. der Hauptträgheitsachsen Θ Haupträgheitsmomente: Θ = 0 Θ 2 0 Θ 1, Θ 2, Θ Θ 3 Eigenschaften von Hauptträgheitsachsen In den Hauptträgheitsachsen ist eines der Trägheitsmomente Θ i, i = 1, 2, 3, maximal bzw. minimal gegenüber allen anderen Koordinatenrichtungen. In den Hauptträgheitsachsen verschwinden die Deviationsmomente Θ xy = Θ yx, Θ xz = Θ zx, Θ yz = Θ zy. Die Hauptträgheitsachsen e i, i = 1, 2, 3, sind normal zueinander. Prof. Dr. U. Zwiers BTM2 10/19

11 Bewegungsgleichungen 9/13 Trägheitstensor (Forts.) Regeln zum Auffinden von Hauptträgheitsachsen Besitzt ein Körper eine Symmetrieachse, so ist diese eine Hauptträgheitsachse. Besitzt ein Körper eine Symmetrieachse, so ist jede dazu senkrechte Achse eine Hauptträgheitsachse. Besitzt ein Körper zwei zueinander orthogonale Symmetrieebenen, so ist die Schnittgerade der beiden Symmetriebenen eine Hauptträgheitsachse. Dazu orthogonale Achsen in jeweils eine der beiden Symmetrieebenen sind ebenfalls Hauptträgheitsachsen. Prof. Dr. U. Zwiers BTM2 11/19

12 Bewegungsgleichungen 10/13 Trägheitstensor (Forts.) Parallelverschiebung der Koordinatenachsen Satz von Steiner Θ A xx Θ A yy Θ A zz = Θ 0 xx + m ( y0a 2 + ) z2 0A = Θ 0 yy + m ( x 2 0A + ) z2 0A = Θ 0 zz + m ( x 2 0A + ) y2 0A Θ A xy Θ A xz Θ A yz = Θ 0 xy mx 0A y 0A = Θ 0 xz mx 0A z 0A = Θ 0 yz my 0A z 0A Prof. Dr. U. Zwiers BTM2 12/19

13 Bewegungsgleichungen 11/13 Trägheitstensor (Forts.) Verdrehung der Koordinatenachsen Verdrehung um die z-achse Θ xx = Θ 0 xx cos 2 φ + 2Θ 0 xy sin φcos φ + Θ 0 yy sin 2 φ Θ yy = Θ 0 xx sin 2 φ 2Θ 0 xy sinφcos φ + Θ 0 yy cos 2 φ Θ zz = Θ 0 zz Θ xy = Θ 0 xx cos φsinφ + Θ 0 ( xy cos 2 φ sin 2 φ ) + Θ 0 yy cos φsinφ Θ xz = Θ 0 xz cos φ + Θ 0 yz sin φ Θ yz = Θ 0 yz cos φ Θ 0 xz sin φ Verdrehung um die x- bzw. y-achse erfolgt auf analoge Weise Prof. Dr. U. Zwiers BTM2 13/19

14 Bewegungsgleichungen 12/13 Starrer Körper in der Ebene Massenträgheitsmoment: Θ 0 = m s 2 dm Satz von Steiner Θ A = Θ 0 + ma 2 a Abstand zwischen dem Schwerpunkt 0 und dem Bezugspunkt A Drehimpuls: L = Θ ϕ Drehimpulssatz für die ebene Bewegung Θ ϕ = M Prof. Dr. U. Zwiers BTM2 14/19

15 Bewegungsgleichungen 13/13 Starrer Körper in der Ebene (Forts.) Trägheitsradius Entfernung eines als Punktmasse gedachten Ersatzkörpers von der Drehachse A, der das gleiche axiale Massenträgheitsmoment Θ A hat wie ein originales, ausgedehntes Bauteil mit der Gesamtmasse m: Θ A k = m Reduzierte Masse Masse eines im vorgegebenen Abstand r von der Drehachse A angebrachten punkt- oder ringförmigen Ersatzkörpers, der das gleiche axiale Massenträgheitsmoment Θ A hat wie das originale Bauteil: m red = ΘA r 2 Prof. Dr. U. Zwiers BTM2 15/19

16 Arbeit und Energie 1/3 Modell des Mehrteilchensystems Arbeitssatz für Mehrteilchensysteme Die Summe der Arbeiten aller äußeren und aller inneren Kräfte entspricht der Änderung der gesamten kinetischen Energie des Systems: W 01 = W a 01 + W i 01 = T 1 T 0 Arbeit der äußeren Kräfte: W a 01 = Arbeit der inneren Kräfte: W i 01 = r i1 r i0 r i0 F T i dr i r i1 j=1 F ij T dr i Prof. Dr. U. Zwiers BTM2 16/19

17 Arbeit und Energie 2/3 Modell des Mehrteilchensystems (Forts.) Starre Bindung: F T ijdr i = 0 j=1 W i 01 = 0 Arbeitssatz für Systeme mit starren Bindungen Die Summe der Arbeiten der äußeren Kräfte entspricht der Änderung der gesamten kinetischen Energie des Systems: W 01 = W a 01 = T 1 T 0 Prof. Dr. U. Zwiers BTM2 17/19

18 Arbeit und Energie 3/3 Starrer Körper im Raum 0 Körperschwerpunkt v P P ω r P = r 0 + s P s P v 0 v P = v 0 + ω s P T = 1 v 2 dm 2 m x z y r P r 0 0 Kinetische Energie des starren Körpers T = T trans + T rot = 1 2 mv ωt Θ 0 ω Prof. Dr. U. Zwiers BTM2 18/19

19 Analogie zwischen Translation und Rotation Gegenüberstellung Translation s Weg v = ṡ Geschwindigkeit a = v = s Beschleunigung m Masse F Kraft p = mv Impuls ma = F Kräftebilanz T = 1 2 mv2 Kinetische Energie W = Fds Arbeit P = Fv Leistung Rotation um raumfeste Achse ϕ Winkel ω = ϕ Winkelgeschwindigkeit α = ω = ϕ Winkelbeschleunigung Θ Massenträgheitsmoment M Moment L = Θω Drehimpuls Θω = M Momentenbilanz T = 1 2 Θω2 W = Mdϕ P = Mω Prof. Dr. U. Zwiers BTM2 19/19

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 16. 01. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Grundgesetze der Rotation

Grundgesetze der Rotation M10 Grundgesetze der Rotation Neben dem zweiten Newtonschen Axiom werden die Grundgesetze der Rotation untersucht: Abhängigkeit des Trägheitsmomentes von der Masse, Abhängigkeit des Trägheitsmomentes von

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 4. Dez. Kreisel + Reibung Alle Informationen zur orlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Statisches und dynamisches Ungleichgewicht Feste Drehachse

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

Ferienkurs Theoretische Mechanik. Mechanik des starren Körpers

Ferienkurs Theoretische Mechanik. Mechanik des starren Körpers Ferienkurs Theoretische Mechanik Mechanik des starren Körpers Sebastian Wild Freitag, 16.09.011 Inhaltsverzeichnis 1 Einführung und Definitionen Kinetische Energie und Trägheitstensor 4.1 Definition des

Mehr

+m 2. r 2. v 2. = p 1

+m 2. r 2. v 2. = p 1 Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften

Mehr

Trägheitsmomente aus Drehschwingungen

Trägheitsmomente aus Drehschwingungen M0 Name: Trägheitsmomente aus Drehschwingungen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Trägheitsmomente aus Drehschwingungen

Trägheitsmomente aus Drehschwingungen M0 Name: Trägheitsmomente aus Drehschwingungen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig

Mehr

5.2 Drehimpuls, Drehmoment und Trägheitstensor

5.2 Drehimpuls, Drehmoment und Trägheitstensor 186 KAPITEL 5. STARRE KÖRPER 5. Drehimpuls, Drehmoment und Trägheitstensor Wie wir im vorhergehenden Abschnitt gesehen haben, besitzt ein starrer Körper 3 Freiheitsgrade zur Beschreibung seiner Position

Mehr

Das Trägheitsmoment und der Satz von Steiner

Das Trägheitsmoment und der Satz von Steiner Übungen zu Theoretische Physik I - echanik im Sommersemester 3 Batt 9 vom 4.6.3 Abgabe:.7. Aufgabe 38 Punkte Das Trägheitsmoment und der Satz von Steiner Berechnen Sie das Trägheitsmoment eines Zyinders

Mehr

Kinetik des Massenpunktes

Kinetik des Massenpunktes Technische Mechanik II Kinetik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik

2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2.1. Trägheits- bzw. Scheinkräfte Die Bewegung in einem beschleunigen Bezugssystem lässt sich mit Hilfe von sogenannten Scheinkräften

Mehr

20. und 21. Vorlesung Sommersemester

20. und 21. Vorlesung Sommersemester 2. und 21. Vorlesung Sommersemester 1 Der Spezialfall fester Drehachse Aus dem Trägheitstensor sollte der früher behandelte Spezialfall fester Drehachse wieder hervorgehen. Wenn man ω = ω n mit einem Einheitsvektor

Mehr

6 Mechanik des Starren Körpers

6 Mechanik des Starren Körpers 6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=

Mehr

Vorlesung 4: Roter Faden:

Vorlesung 4: Roter Faden: Vorlesung 4: Roter Faden: Bisher: lineare Bewegungen Heute: Kreisbewegung Exp.: Märklin, Drehschemel, Präzession Rad Ausgewählte Kapitel der Physik, SS 06, Prof. W. de Boer 1 Kreisbewegung Kinematik, d.h.

Mehr

1 Trägheitstensor (Fortsetzung)

1 Trägheitstensor (Fortsetzung) 1 Trägheitstensor (Fortsetzung) Wir verallgemeinern den in der letzten Stunde gefundenen Trägheitstensor auf den Fall einer kontinuierlichen Massenverteilung durch die Einführung der Integration über das

Mehr

Lehrbuch der Technischen Mechanik - Dynamik

Lehrbuch der Technischen Mechanik - Dynamik RalfMahnken Lehrbuch der Technischen Mechanik - Dynamik Eine anschauliche Einfiihrung ~ Springer Inhaltsverzeichnis 1 Einleitung......................................................... 1 1.1 Aufgabenstellungen

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

9 Teilchensysteme. 9.1 Schwerpunkt

9 Teilchensysteme. 9.1 Schwerpunkt der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton

Mehr

Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei

Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei Inhalt 1 9 Dynamik der Drehbewegung 9.1 Rotation eines Massenpunktes um eine feste Achse 9. Arbeit und Leistung bei der Drehbewegung 9.3 Erhaltungssätze 9.4 Übergang vom Massenpunkt zum starren Körper

Mehr

Vorlesung Physik für Pharmazeuten PPh - 04

Vorlesung Physik für Pharmazeuten PPh - 04 Vorlesung Physik für Pharmazeuten PPh - 04 Starrer Körper: Hebelgesetz, Drehmoment, Schwerpunkt, Drehimpuls Deformierbarer Körper: Elastizitätsmodul Punktmassen-Systeme Abgeschlossenes System : * Keine

Mehr

Eigenschaften des Kreisels

Eigenschaften des Kreisels Version 1. Dezember 011 1. Trägheitstensor und Eulersche Kreisel-Gleichungen Auf Grund der formalen Ähnlichkeit von Impuls- und Drehimpulssatz, also von d p = F und d L = τ, könnte man vermuten, dass der

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht und Rotation Dr. Daniel Bick 16. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 16. November 2016 1 / 39 Impuls

Mehr

Allgemeine Mechanik. Via Hamilton-Gl.: Die Hamiltonfunktion ist (in Kugelkoordinaten mit Ursprung auf der Kegelspitze) p r. p r =

Allgemeine Mechanik. Via Hamilton-Gl.: Die Hamiltonfunktion ist (in Kugelkoordinaten mit Ursprung auf der Kegelspitze) p r. p r = Allgemeine Mechanik Musterl osung 11. Ubung 1. HS 13 Prof. R. Renner Hamilton Jacobi Gleichungen Betrachte die gleiche Aufstellung wie in 8.1 : eine Punktmasse m bewegt sich aufgrund der Schwerkraft auf

Mehr

2.3.5 Dynamik der Drehbewegung

2.3.5 Dynamik der Drehbewegung 2.3.5 Dynamik der Drehbewegung 2.3.5.1 Drehimpuls Drehimpuls Betrachte einen Massepunkt m mit Geschwindigkeit v auf irgendeiner Bahn (es muss keine Kreisbahn sein); dabei ist r der Ort der Massepunkts,

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

Zu 5. Kinetik: Ableitung der Gesetze aus den Axiomen ( Blatt 1 )

Zu 5. Kinetik: Ableitung der Gesetze aus den Axiomen ( Blatt 1 ) Zu 5. Kinetik: Ableitung der Gesetze aus den Axioen ( Blat ) Massenpunkt: Axio (Newtonsches Grundgesetz): Fres = a. () F res : Geäß de (bereits in der Statik eingeführten) Parallelograaxio gebildete resultierende

Mehr

3. Systeme von starren Körpern

3. Systeme von starren Körpern Systeme von starren Körpern lassen sich folgendermaßen berechnen: Die einzelnen starren Körper werden freigeschnitten. Für jeden einzelnen Körper werden die Bewegungsgleichungen aufgestellt. Die kinematischen

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

F = + L. Bahndrehimpuls des Massenmittelpunktes abhängig von Bezugssystem. Drehimpuls in Bezug auf Massenmittelpunkt, Spin. ω 2. +ω 1.

F = + L. Bahndrehimpuls des Massenmittelpunktes abhängig von Bezugssystem. Drehimpuls in Bezug auf Massenmittelpunkt, Spin. ω 2. +ω 1. Zusammenfassung: Drehimpuls: L = 0, wenn L = r x p p = 0, r = 0 oder r p für Zentralkräfte ist der Drehimpuls konstant: F G r L = const. Drehimpulssatz: Gesamtdrehimpuls: d L dt = r x F = T L = L M + L

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Übungsblatt 8 Name des Übungsgruppenleiters und Gruppenbuchstabe: Namen

Mehr

Repetitorium Theoretische Mechanik, SS 2008

Repetitorium Theoretische Mechanik, SS 2008 Physik Departement Technische Universität München Dominik Fauser Blatt Repetitorium Theoretische Mechanik, SS 8 Aufgaben zum selbständigen Lösen. Ring mit Kugel Ein Ring, auf dem eine Kugel angebracht

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B Sommersemester 6 Prof. Dr. Alexander Mirlin Musterlösung: Blatt. PD Dr. Igor

Mehr

Trägheitsmomente starrer Körper

Trägheitsmomente starrer Körper Trägheitsmomente starrer Körper Mit Hilfe von Drehschwingungen sollen für einen Würfel und einen Quader die Trägheitsmomente für verschiedene Drehachsen durch den Schwerpunkt gemessen werden. Das zugehörige

Mehr

Drehbewegungen (Rotation)

Drehbewegungen (Rotation) Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Vorlesung 7: Roter Faden:

Vorlesung 7: Roter Faden: Vorlesung 7: Roter Faden: Beispiele für Kräfte: Gewichtskraft, Reibungskraft, Federkraft, Windkraft, Gravitationskraft, elektromagnetische Kraft, Zentripetalkraft, Heute: weiter Zentripetalkraft Drehimpulserhaltung

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 09. 01. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 4 - Angabe Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

Musterlösung zur Probeklausur Theorie 1

Musterlösung zur Probeklausur Theorie 1 Institut für Physik WS 24/25 Friederike Schmid Musterlösung zur Probeklausur Theorie Aufgabe ) Potential In einem Dreiteilchensystem (eine Dimension) wirken folgende Kräfte: F = (x x 2 )x 2 3, F 2 = (x

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

Der Trägheitstensor J

Der Trägheitstensor J Der Trägheitstensor J Stellen wir uns einen Kreisel vor, der um eine beliebige Achse dreht. Gilt die Beziehung L = J ω in jedem Bezugssystem? Dazu betrachten wir nochmals die Bewegung eines starren Körpers.

Mehr

Experimentalphysik 1. Vorlesung 2

Experimentalphysik 1. Vorlesung 2 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2016/17 orlesung 2 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Inhaltsverzeichnis

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

1 Mechanik starrer Körper

1 Mechanik starrer Körper 1 Mechanik starrer Körper 1.1 Einführung Bisher war die Mechanik auf Massepunkte beschränkt. Nun gehen wir den Schritt zu starren Körpern. Ein starrer Körper ist ein System aus Massepunkten, welche nicht

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht, Rotation Dr. Daniel Bick 14. November 2012 Daniel Bick Physik für Biologen und Zahnmediziner 14. November 2012 1 / 38 Folien

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Starre Körper Übungen, die mit einem Stern markiert sind, werden als besonders wichtig erachtet. 3.1 Trägheitstensor eines homogenen Quaders Bestimmen Sie den

Mehr

Übungen zu Theoretischer Mechanik (T1)

Übungen zu Theoretischer Mechanik (T1) Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 8 Übungen zu Theoretischer Mechanik (T) Übungsblatt, Besprechung ab.7.8 Aufgabe. Trägheitstensor

Mehr

Vorlesung 18: Roter Faden:

Vorlesung 18: Roter Faden: Vorlesung 18: Roter Faden: Heute: Kreisel Präzession Nutation Versuche: Kreisel, Gyroscoop 11 Dezember 2003 Physik I, WS 03/04, Prof. W. de Boer 1 Kreisel Bisher Rotation um feste Achsen, d.h. ω. Kreisel:

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Grundlagen der Analytischen Mechanik

Grundlagen der Analytischen Mechanik Höhere Technische Mechanik Grundlagen der Analytischen Mechanik Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Grundlagen der Analytischen

Mehr

Inhaltsverzeichnis. 1 Fragestellungen der Dynamik... 1

Inhaltsverzeichnis. 1 Fragestellungen der Dynamik... 1 1 Fragestellungen der Dynamik... 1 2 Bewegungen ihre Ursachen und Folgen... 5 2.1 Vieles ist in Bewegung... 5 2.2 Ursachen für Bewegungen... 6 2.3 Folgen von Bewegungen... 7 2.4 Idealisierungen... 8 2.4.1

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel

Mehr

Zusammenfassung. 1. Starre Körper: Zwei Koordinatensysteme (L und K). Die Bewegung im K-system ist eine Rotation.

Zusammenfassung. 1. Starre Körper: Zwei Koordinatensysteme (L und K). Die Bewegung im K-system ist eine Rotation. Zusammenfassung 1. Starre Körper: Zwei Koordinatensysteme (L und K). Die Bewegung im K-system ist eine Rotation. Z P r x 3 K-System x 2 R O R c x 1 L-System Y 2. Die kinetische Energie des Körpers und

Mehr

Grundkurs Theoretische Physik 1

Grundkurs Theoretische Physik 1 Springer-Lehrbuch Grundkurs Theoretische Physik 1 Klassische Mechanik Bearbeitet von Wolfgang Nolting 1. Auflage 2012. Taschenbuch. xiv, 504 S. Paperback ISBN 978 3 642 29936 0 Format (B x L): 16,8 x 24

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Rotierender Starrer Körper/Kreisel

Rotierender Starrer Körper/Kreisel Rotierender Starrer Körper/Kreisel Ralf Metzler, Uni Potsdam, 2017-07-05 Typeset by FoilTEX 1 Kinetische Energie des Starren Körpers Translationsenergie: T trans = 1 2 v2 0 m α = m 2 v2 0, wobei m = α

Mehr

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018 Ludwig Maximilians Universität München Fakultät für Physik Lösungsblatt 8 Übungen E Mechanik WS 27/28 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

Inhaltsverzeichnis Einleitung Die Kinematik des Punktes Kinetik des Massenpunktes

Inhaltsverzeichnis Einleitung Die Kinematik des Punktes Kinetik des Massenpunktes Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgabenstellungen der Dynamik.... 1 1.2 Einige Meilensteine in der Geschichte der Dynamik... 3 1.3 EinteilungundInhaltedesBuches... 5 1.4 ZieledesBuches... 6 2

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Kreisel, Trägheitstensor, Präzession Statisches Gleichgewicht Harmonische Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv.

LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv. 7.5 Drehimpuls Translation Rotation Geschwindigkeit Masse v m Translationsenergie Kraft Impuls Ekin F 1 mv F ma p d p F dt p m v p E kin m R. Girwidz 1 7.5 Drehimpuls Drehscheml für Zentralkräfte: M 0

Mehr

1 Technische Mechanik 3 Dynamik

1 Technische Mechanik 3 Dynamik Russell C. Hibbeler 1 Technische Mechanik 3 Dynamik 10., überarbeitete und erweiterte Auflage Übersetzung aus dem Amerikanischen: Georgia Mais Fachliche Betreuung und Erweiterungen: Jörg Wauer, Wolfgang

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2014/2015 1 Seite 2 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpunktes 3 1.1 Gleichförmig beschleunigte Bewegungen................

Mehr

1d) Die z Komponente L z des Drehimpulses. 1e) f(x)g (x)δ(x z) = f(z)g (z) nach Definition der Delta-Distribution. heißt

1d) Die z Komponente L z des Drehimpulses. 1e) f(x)g (x)δ(x z) = f(z)g (z) nach Definition der Delta-Distribution. heißt Aufgabe 1 (10 Punkte) Fragen 1a) Jede Drehung im dreidimensionalen Raum lässt sich als Hintereinanderausführung dreier Drehungen um die ursprüngliche z-achse, die x-achse im Koordinatensystem nach der

Mehr

Praktikumsprotokoll: Kreisel

Praktikumsprotokoll: Kreisel Praktikumsprotokoll: Kreisel Robin Marzucca, Andreas Liehl 07. Dezember 2010 Protokoll zum Versuch Kreisel, durchgeführt am 02.12.2010 an der Universität Konstanz im Rahmen des physikalischen Anfängerpraktikums

Mehr

Ferienkurs Theoretische Mechanik 2009 Starre Körper und Rotation - Lösungen

Ferienkurs Theoretische Mechanik 2009 Starre Körper und Rotation - Lösungen Physik Department Technische Universität München Matthias Eibl Blatt 4 Ferienkurs Theoretische Mechanik 9 Starre Körper und Rotation - en Aufgaben für Donnerstag 1 Kinetische Energie eines rollenden Zylinders

Mehr

Repetitorium D: Starrer Körper

Repetitorium D: Starrer Körper Fakultät für Physik T: Klassische Mechanik, SoSe 206 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

1. Impuls- und Drallsatz

1. Impuls- und Drallsatz 1. Impuls- und Drallsatz Impulssatz Bewegung des Schwerpunkts des örpers aufgrund vorgegebener räfte Drallsatz Drehung des örpers aufgrund vorgegebener Momente Prof. Dr. Wandinger 3. inetik des starren

Mehr

Technische Mechanik Dynamik

Technische Mechanik Dynamik Hans Albert Richard Manuela Sander Technische Mechanik Dynamik Grundlagen - effektiv und anwendungsnah Mit 135 Abbildungen Viewegs Fachbiicher der Technik vieweg VII VII 1 Fragestellungen der Dynamik 1

Mehr

8 Kinetik der allgemeinen Starrkörperbewegung

8 Kinetik der allgemeinen Starrkörperbewegung 57 Die allgemeine Starrkörperbewegung ist eine Überlagerung von Translation und Rotation mit je 3 Freiheitsgraden. Dem entsprechen 6 Gleichungen, die aus Impuls- und Drallsat resultieren. Der Impuls eines

Mehr

Formelsammlung. Mechanik 2. made by professionals. May 24, c 2017 easymech

Formelsammlung. Mechanik 2. made by professionals. May 24, c 2017 easymech Formelsammlung Mechanik 2 made by professionals www.easymech.at office@easymech.at May 24, 2017 c 2017 easymech Kinematik 1. Relativkinematik 1.1. Absolutgeschwindigkeit: v P = v F + v R 1.1.1. Führungsgeschwindigkeit:

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr