Experimentalphysik E1
|
|
|
- Rudolf Maurer
- vor 6 Jahren
- Abrufe
Transkript
1 Experimentalphysik E1 4. Dez. Kreisel + Reibung Alle Informationen zur orlesung unter :
2 Statisches und dynamisches Ungleichgewicht Feste Drehachse außerhalb des Schwerpunktes Freie Drehachse Konstanter Drehimpuls, aber es wirken (Zentrifugal)-Kräfte auf die Achse:statisches Ungleichgewicht
3 Symmetrieachsen und freie Achsen Das System übt Drehmoment auf Lager aus: Drehimpulsvektor rotiert =>dynamisches Ungleichgewicht Die symmetrische Anordnung ist dynamisch ausbalanciert. L steht parallel zu ω.
4 Kreiselbewegungen Rotation um freie Achsen Drehimpuls eines Massenelements Δm i : v i = ω r i L i = Δm i r i v i ( ) ( ) = Δm i r i ( ω r ) i mit : A ( B C) = ( A C) B - ( A B ) C L i = Δm i r i 2 ω (( ) ( r i ω) r ) i L = (( r 2 ω) ( r ω) r) dm Bei freier Rotation ist L i. a. nicht ll zu ω
5 Kreiselbewegungen Rotation um freie Achsen in Einstein-Summenkonvention: 3 L i = r 2 δ ij - r i r j ω j = I i j ω j j=1 ( ) dm 3 j=1 mit I ij = ( r 2 δ ij - r i r ) j dm in Komponenten: L x = I xx ω x + I xy ω y + I xz ω z L y = I yx ω x + I yy ω y + I yz ω z L z = I zx ω x +I zy ω y +I zz ω z ( ) dm I xx = r 2 - x 2 = y 2 + z 2 ( ) dm ( ) dm I yy = r 2 - y 2 = x 2 + z 2 ( ) dm ( ) dm I zz = r 2 - z 2 = x 2 + y 2 ( ) dm I xy = I yx = - I yz = I zy = - I xz = I yz = - x y dm y z dm x z dm in Tensorschreibweise: L = ~ I ω (I verknüpft L mit ω durch Drehstreckung) L L L x y z = I I I xx yx zx I I I xy yy zy I I I xz yz zz Trägheitstensor ωx ωy ωz
6 L = I * ω L x = I xx ω x + I xy ω y + I yz ω z (r 2 x 2 )dm Eigenschaften des I Tensors: Im Allgemeinen Symmetrisch I xy = I yx etc. Diagonalisierbar, d.h. man kann KS Finden, so daß I = " $ $ # I a I b I c % ' ' & Dreht sich ein Körper um eine Hauptträgheitsachse, so ändert sich Betrag und Richtung von Winkelgeschwindigkeit und Drehimpuls nicht, solange kein äußeres Drehmoment wirkt.
7 Man kann für jeden Körper drei Orthogonale Achsen finden, um die der Körper frei rotiert. L ω Hauptachsen a,b,c + Hauptträgheitsmomente I a I b I c I a I b Ι c asymmetrische Kreisel (z.b. H 2 O) I a = I b I c symmetrischer Kreisel ( O C O ) Etc. I a = I b = I c spärischer Kreisel ( Kubus) Rotiert ein Körper um eine seiner freien Achsen, sind Drehachse und Drehimpuls parallel zueinander. Jeder starre Körper besitzt (mindestens) drei freie Achsen, und diese stehen senkrecht aufeinander.
8 Asymmetrische Kreisel: I a I b I c Sphärischer Kreisel I a = I b = I c Bsp: Kugel, Würfel
9 Symmetrische Kreisel: oblat: I a = I b < I c prolat: I a < I b = I c
10 Freie Achsen stabile Rotation um Achse mit größtem Trägheitsmoment instabile Rotation um Achse mit mittlerem Trägheitsmoment und Ausweichbewegung
11 Freie Achsen rotierende Kette maximiert ihr Trägheitsmoment Diskus rotiert stabil um Achse mit größtem Trägheitsmoment
12 Rotationsenergie: 1 2 Δm v 2 i i ( ) = 1 2 Δm ( ω r ) ( i i ω r ) i = 1 2 Δm i ω2 r 2 i ( ω r ) 2 i mit: ( A B) ( A B) = A 2 B 2 ( A B) 2 => E rot = ω2 2 = ω 2 x +ω 2 2 y +ω z 2 r 2 dm ( ω r) 2 dm ( x 2 + y 2 + z 2 ) dm ( ω x x +ω y y +ω z z) 2 dm = 1 ( 2 ω 2 x I xx +ω 2 y I yy +ω 2 z I ) zz +ω x ω y I xy +ω y ω z I yz +ω x ω z I xz
13 tensoriell: E rot = 1 ( 2 ω x ω y ω ) z # I xx I xy I xz & % ( I yx I yy I yz % $ I zx I zy I ( zz ' # % % $ ω x ω y ω z & ( ( ' E rot = 1 2 ωt I ~ ω = i,j=1 ω i I i j ω j Bei beliebiger Drehachse tragen alle Momente des Trägheitstensors zur Rotationsenergie bei
14 Kräftefreier symmetrischer Kreisel Momentane Drehachse ω L Drehmomentachse - Raumfest C Figurenachse - Körperfest Drehimpulserhaltung L 2 = L x 2 + L y 2 + L z 2 = const. Kugeloberfläche im Raumfesten Koordinatensystem Energieerhaltung L a2 /I a + L b2 /I b + L c2 /I c = const Ellipsoid im Körperfesten Koordinatensystem
15 Kreisel im Schwerefeld : Präzession von oben: ΔL ΔΦ L d L dt = M d L = L dφ Das Rad läuft um die Aufhängung mit Präzessionsfrequenz ω P = dφ dt = M L = r mg L Höhere Drehimpulse stabilisieren die Drehachse
16 Präzession des Kreisels d L dt = M = sinα r mg d L = Lsinα dφ ω P = = r mg L r mg sinα L sinα = r mg Iω Die Präzessionsfrequenz ist unabhängig vom Neigungswinkel der Kreiselachse
17 Präzession des symmetrischen Kreisels I 1 = I 2 Ι 3 + ausseres Drehmoment Rotation um Figurenachse keine Nutation D L ω c D = dl/dt L const r mg dφ C dl L,ω D = r x m*g D r L = const D = L * dϕ/dt D = L * ω p ω D L = = p D ω I Bsp: Präzession der Erde durch Asymmetrie + WW Mond/Sonne Drehmoment T D 26000A Platonisches Jahr
18 Tribologie: Die Lehre von der Reibung
19 Gleitreibung F R = µ* F N Coulombsches Reibungsgesetz
20 Trockene Reibung Reibungskräfte wirken entgegen der angelegten Kraft und der Geschwindigkeit. F ext F R = µ* F N F N =m*g Trockene Reibungskraft unabhängig von Geschwindigkeit und Auflagefäche! Typen der Reibung: - Haftreibung µ H - Gleitreibung µ G - Rollreibung µ R µ H µ G Stahl/Stahl 0,78 0,42 Stahl/Stahl (Öl) 0,05 0,03 Gummi-Asphalt 0,8-1,1 0,7-0,9
21 Gleitreibung auf atomarer Skala - der Kleben-Rutschen Prozess (stick-slip)
22 Drei Gleichgewichtsarten Stabiles GGW: Jede errückung x erhöht die Lage des Schwerpunktes d 2 E dx pot 2 > 0 Kleine Auslenkung x => Rückstellkräfte F rück ~ - x Labiles GGW: Jede errückung erniedrigt die Lage des Schwerpunktes Indifferentes GGW: Jede errückung läßt die Lage des Schwerpunkts unverändert
Experimentalphysik E1
Experimentalphysik E1 Kreisel, Trägheitstensor, Präzession Statisches Gleichgewicht Harmonische Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html
Der Trägheitstensor J
Der Trägheitstensor J Stellen wir uns einen Kreisel vor, der um eine beliebige Achse dreht. Gilt die Beziehung L = J ω in jedem Bezugssystem? Dazu betrachten wir nochmals die Bewegung eines starren Körpers.
Vorlesung 18: Roter Faden:
Vorlesung 18: Roter Faden: Heute: Kreisel Präzession Nutation Versuche: Kreisel, Gyroscoop 11 Dezember 2003 Physik I, WS 03/04, Prof. W. de Boer 1 Kreisel Bisher Rotation um feste Achsen, d.h. ω. Kreisel:
1 Trägheitstensor (Fortsetzung)
1 Trägheitstensor (Fortsetzung) Wir verallgemeinern den in der letzten Stunde gefundenen Trägheitstensor auf den Fall einer kontinuierlichen Massenverteilung durch die Einführung der Integration über das
Physik 1 für Ingenieure
Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm [email protected] Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#
F = + L. Bahndrehimpuls des Massenmittelpunktes abhängig von Bezugssystem. Drehimpuls in Bezug auf Massenmittelpunkt, Spin. ω 2. +ω 1.
Zusammenfassung: Drehimpuls: L = 0, wenn L = r x p p = 0, r = 0 oder r p für Zentralkräfte ist der Drehimpuls konstant: F G r L = const. Drehimpulssatz: Gesamtdrehimpuls: d L dt = r x F = T L = L M + L
Eigenschaften des Kreisels
Version 1. Dezember 011 1. Trägheitstensor und Eulersche Kreisel-Gleichungen Auf Grund der formalen Ähnlichkeit von Impuls- und Drehimpulssatz, also von d p = F und d L = τ, könnte man vermuten, dass der
Klassische Experimentalphysik I (Mechanik) (WS 16/17)
Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Übungsblatt 8 Name des Übungsgruppenleiters und Gruppenbuchstabe: Namen
Physikalisches Praktikum M 7 Kreisel
1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/
20. und 21. Vorlesung Sommersemester
2. und 21. Vorlesung Sommersemester 1 Der Spezialfall fester Drehachse Aus dem Trägheitstensor sollte der früher behandelte Spezialfall fester Drehachse wieder hervorgehen. Wenn man ω = ω n mit einem Einheitsvektor
LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv.
7.5 Drehimpuls Translation Rotation Geschwindigkeit Masse v m Translationsenergie Kraft Impuls Ekin F 1 mv F ma p d p F dt p m v p E kin m R. Girwidz 1 7.5 Drehimpuls Drehscheml für Zentralkräfte: M 0
Grundgesetze der Rotation
M10 Grundgesetze der Rotation Neben dem zweiten Newtonschen Axiom werden die Grundgesetze der Rotation untersucht: Abhängigkeit des Trägheitsmomentes von der Masse, Abhängigkeit des Trägheitsmomentes von
Kinetik des starren Körpers
Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.
Vorlesung Physik für Pharmazeuten PPh - 04
Vorlesung Physik für Pharmazeuten PPh - 04 Starrer Körper: Hebelgesetz, Drehmoment, Schwerpunkt, Drehimpuls Deformierbarer Körper: Elastizitätsmodul Punktmassen-Systeme Abgeschlossenes System : * Keine
Klassische und Relativistische Mechanik
Klassische und Relativistische Mechanik Othmar Marti 09. 01. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik
Trägheitsmomente aus Drehschwingungen
M0 Name: Trägheitsmomente aus Drehschwingungen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig
Repetitorium D: Starrer Körper
Fakultät für Physik T: Klassische Mechanik, SoSe 206 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/
Grundbegriffe: Drehimpulserhaltungssatz, Kreisel, Figuren-, Drehimpuls- und momentane Drehachse, Präzession und Nutation
M10 GYROSKOP PHYSIKALISCHE GRUNDLAGEN Grundbegriffe: Drehimpulserhaltungssatz, Kreisel, Figuren-, Drehimpuls- und momentane Drehachse, Präzession und Nutation 1. Begriff des Kreisels: Ein Kreisel ist ein
Trägheitsmomente aus Drehschwingungen
M0 Name: Trägheitsmomente aus Drehschwingungen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht und Rotation Dr. Daniel Bick 16. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 16. November 2016 1 / 39 Impuls
7.1 Kraftwirkung von Rotoren
49 Beim Massenpunkt haben der Impuls p mv und die Geschwindigkeit v aufgrund der skalaren Masse stets die gleiche Richtung. Äußere Kräfte führen daher auf Impuls- und gleichzeitig Geschwindigkeitsänderungen
Allgemeine Mechanik. Via Hamilton-Gl.: Die Hamiltonfunktion ist (in Kugelkoordinaten mit Ursprung auf der Kegelspitze) p r. p r =
Allgemeine Mechanik Musterl osung 11. Ubung 1. HS 13 Prof. R. Renner Hamilton Jacobi Gleichungen Betrachte die gleiche Aufstellung wie in 8.1 : eine Punktmasse m bewegt sich aufgrund der Schwerkraft auf
Physik I Mechanik und Thermodynamik
Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften
+m 2. r 2. v 2. = p 1
Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit
5.2 Drehimpuls, Drehmoment und Trägheitstensor
186 KAPITEL 5. STARRE KÖRPER 5. Drehimpuls, Drehmoment und Trägheitstensor Wie wir im vorhergehenden Abschnitt gesehen haben, besitzt ein starrer Körper 3 Freiheitsgrade zur Beschreibung seiner Position
Übungen zu Theoretischer Mechanik (T1)
Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 8 Übungen zu Theoretischer Mechanik (T) Übungsblatt, Besprechung ab.7.8 Aufgabe. Trägheitstensor
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene
AUSWERTUNG: KREISEL. In diesem Versuch haben wir die Drehimpulserhaltung experimentell überprüft.
AUSWERTUNG: KREISEL TOBIAS FREY, FREYA GNAM 1. DREHIMPULSERHALTUNG In diesem Versuch haben wir die Drehimpulserhaltung experimentell überprüft. 1.1. Drehschemel. Eine Versuchsperson setzte sich auf den
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel
Vorbereitung: Kreisel. Christine Dörflinger und Frederik Mayer, Gruppe Do Mai 2012
Vorbereitung: Kreisel Christine Dörflinger und Frederik Mayer, Gruppe Do-9 10. Mai 2012 1 Inhaltsverzeichnis 1 Drehimpulserhaltung 3 2 Freie Achsen 3 3 Kräftefreier Kreisel 4 4 Dämpfung des Kreisels 4
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht, Rotation Dr. Daniel Bick 14. November 2012 Daniel Bick Physik für Biologen und Zahnmediziner 14. November 2012 1 / 38 Folien
Versuch P2-71,74: Kreisel. Vorbereitung. Von Jan Oertlin und Ingo Medebach. 11. Mai Drehimpulserhaltung 2. 2 Freie Achse 2
Versuch P - 71,74: Kreisel Vorbereitung Von Jan Oertlin und Ingo Medebach 11. Mai 010 Inhaltsverzeichnis 1 Drehimpulserhaltung Freie Achse 3 Kräftefreie Kreisel 3 4 Dämpfung des Kreisels 3 5 Kreisel unter
Vorbereitung. Kreisel. Versuchsdatum: Drehimpulserhaltung 2. 2 Freie Achsen 2. 3 Kräftefreier Kreisel 3. 4 Dämpfung des Kreisels 4
Vorbereitung Kreisel Carsten Röttele Stefan Schierle Versuchsdatum: 26.06.2012 Inhaltsverzeichnis 1 Drehimpulserhaltung 2 2 Freie Achsen 2 3 Kräftefreier Kreisel 3 4 Dämpfung des Kreisels 4 5 Einfluss
Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 9
Prof. C. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 9 Aufgabe 34: Steinerscher Satz für den Trägheitstensor Der Schwerpunkt liege im Ursprung des Koordinatensystems.
115 - Kreiselgesetze
115 - Kreiselgesetze 1. Aufgaben 1.1 Bestimmen Sie die Nutationsfrequenz des kräftefreien Kreisels in Abhängigkeit von der Kreiselfrequenz. 1.2 Bestimmen Sie die Präzessionsperiode des schweren Kreisels
Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei
Inhalt 1 9 Dynamik der Drehbewegung 9.1 Rotation eines Massenpunktes um eine feste Achse 9. Arbeit und Leistung bei der Drehbewegung 9.3 Erhaltungssätze 9.4 Übergang vom Massenpunkt zum starren Körper
Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018
Ludwig Maximilians Universität München Fakultät für Physik Lösungsblatt 8 Übungen E Mechanik WS 27/28 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen
Trägheitsmomente starrer Körper / Kreisel
Trägheitsmomente starrer Körper / Kreisel Mit Hilfe von Drehschwingungen sollen im ersten Teil des Versuchs für einen Würfel und einen Quader die Trägheitsmomente für verschiedene Drehachsen durch den
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel
Das Trägheitsmoment und der Satz von Steiner
Übungen zu Theoretische Physik I - echanik im Sommersemester 3 Batt 9 vom 4.6.3 Abgabe:.7. Aufgabe 38 Punkte Das Trägheitsmoment und der Satz von Steiner Berechnen Sie das Trägheitsmoment eines Zyinders
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 5: Impuls und Drehungen Dr. Daniel Bick 22. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 22. November 2017 1 / 36 Hinweise zur Klausur Sa,
Übungen zum Ferienkurs Theoretische Mechanik
Übungen zum Ferienkurs Theoretische Mechanik Starre Körper Übungen, die mit einem Stern markiert sind, werden als besonders wichtig erachtet. 3.1 Trägheitstensor eines homogenen Quaders Bestimmen Sie den
Kreisel mit drei Achsen
M42 Name: Kreisel mit drei Achsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!)
Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )
b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt
Praktikumsprotokoll: Kreisel
Praktikumsprotokoll: Kreisel Robin Marzucca, Andreas Liehl 07. Dezember 2010 Protokoll zum Versuch Kreisel, durchgeführt am 02.12.2010 an der Universität Konstanz im Rahmen des physikalischen Anfängerpraktikums
Faszination Kreisel. Vom Spielzeug zur technischen Anwendung. Thomas Wilhelm
Vom Spielzeug zur technischen Anwendung Thomas Wilhelm 1. Spielzeug Kreisel Symmetrische Kreisel (zwei Hauptträgheitsmomente gleich groß), meist Rotationskörper Einfacher Kreisel Einfacher Kreisel Unterschiedliche
Rotierender Starrer Körper/Kreisel
Rotierender Starrer Körper/Kreisel Ralf Metzler, Uni Potsdam, 2017-07-05 Typeset by FoilTEX 1 Kinetische Energie des Starren Körpers Translationsenergie: T trans = 1 2 v2 0 m α = m 2 v2 0, wobei m = α
Starrer Körper: Drehimpuls und Drehmoment
Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und
Einführung in die Physik für Maschinenbauer
Einführung in die Physik für Maschinenbauer WS 011/01 Teil 5 7.10/3.11.011 Universität Rostock Heinrich Stolz [email protected] 6. Dynamik von Massenpunktsystemen Bis jetzt: Dynamik eines einzelnen
Repetitorium Theoretische Mechanik, SS 2008
Physik Departement Technische Universität München Dominik Fauser Blatt Repetitorium Theoretische Mechanik, SS 8 Aufgaben zum selbständigen Lösen. Ring mit Kugel Ein Ring, auf dem eine Kugel angebracht
Kreisel. Was ist ein symmetrischer-, was ein kräftefreier-, was ein schwerer Kreisel?
Rotation starrer Körper, Drehimpuls, Drehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier-, schwerer, Nutation, Präzession. Schriftliche VORbereitung: Beantworten Sie bitte die folgenden Fragen:
Kreiselversuche. Abb. 1: Vorführkreisel mit verstellbarem Aufpunkt.
Kreiselversuche Abb. 1: Vorführkreisel mit verstellbarem Aufpunkt. Geräteliste: Fahrradreifen mit Handgriffen, Fahrradreifen mit Verstellbarem Aufpunkt, Drehstuhl, kräftefreier Kreisel, Umkehrkreisel,
Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung:
Zur Erinnerung Stichworte aus der 11. Vorlesung: Zusammenfassung: Trägheitsmomente, Kreisel, etc. allgemeine Darstellung des Drehimpulses für Drehung von beliebig geformtem Körper um beliebige Drehachse
Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung:
Zur Erinnerung Stichworte aus der 11. Vorlesung: Zusammenfassung: Trägheitsmomente, Kreisel, etc. allgemeine Darstellung des Drehimpulses für Drehung von beliebig geformtem Körper um beliebige Drehachse
5.3 Drehimpuls und Drehmoment im Experiment
5.3. DREHIMPULS UND DREHMOMENT IM EXPERIMENT 197 5.3 Drehimpuls und Drehmoment im Experiment Wir besprechen nun einige Experimente zum Thema Drehimpuls und Drehmoment. Wir betrachten ein System von N Massenpunkten,
Physikalisches Grundpraktikum Abteilung Mechanik
M10 Physikalisches Grundpraktikum Abteilung Mechanik Kreisel 1 Vorbereitung Erhaltungssätze der Mechanik Analogien zwischen Rotation und Translation Trägheitsmomente und deren Berechnung Satz von Steiner
2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik
2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2.1. Trägheits- bzw. Scheinkräfte Die Bewegung in einem beschleunigen Bezugssystem lässt sich mit Hilfe von sogenannten Scheinkräften
Vektorrechnung in der Physik und Drehbewegungen
Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen
Kapitel 5. Der starre Körper. 5.1 Die Kinematik des starren Körpers
Kapitel 5 Der starre Körper Definition 5.1 Ein starrer Körper ist ein Sytem von N Massenpunkten m ν, deren Abstände r µν = r ν r µ = konst 0 (5.1) sind. Gleichung (5.1) ist dabei als skleronome Zwangsbedingung
Physikalisches Anfängerpraktikum an der Universität Konstanz: Kreisel
Physikalisches Anfängerpraktikum an der Universität Konstanz: Kreisel Experiment durchgeführt am 09.05.2005 Jan Korger, Studiengang Physik-Diplom Matthias Schork, Studiengang Physik, Mathematik (Lehramt)
25. Vorlesung Sommersemester
25. Vorlesung Sommersemester 1 Die Euler-Winkel Die Euler-Winkel geben die relative Orientierung zweier gegeneinander gedrehter Koordinatensysteme an, indem definiert wird, in welcher Reihenfolge welche
Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1
Naturwissenschaftliches Praktikum Rotation Versuch 1.1 Inhaltsverzeichnis 1 Versuchsziel 3 2 Grundlagen 3 2.1 Messprinzip............................. 3 2.2 Energiesatz............................. 3 2.3
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung
Klassische Experimentalphysik I (Mechanik) (WS 16/17)
Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Übungsblatt 8 Lösungen Name des Übungsgruppenleiters und Gruppenbuchstabe:
Vorlesung 4: Roter Faden:
Vorlesung 4: Roter Faden: Bisher: lineare Bewegungen Heute: Kreisbewegung Exp.: Märklin, Drehschemel, Präzession Rad Ausgewählte Kapitel der Physik, SS 06, Prof. W. de Boer 1 Kreisbewegung Kinematik, d.h.
Rotation starrer Körper, Drehimpuls, Drehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier -, schwerer Kreisel, Nutation, Präzession.
Kreisel 1. LITERATUR emtröder; Tipler, Hering/Martin/Stohrer; Gerthsen 2. STICHPUNKTE Rotation starrer Körper, rehimpuls, rehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier -, schwerer Kreisel,
Ferienkurs Theoretische Mechanik. Mechanik des starren Körpers
Ferienkurs Theoretische Mechanik Mechanik des starren Körpers Sebastian Wild Freitag, 16.09.011 Inhaltsverzeichnis 1 Einführung und Definitionen Kinetische Energie und Trägheitstensor 4.1 Definition des
Klassische Theoretische Physik II (Theorie B) Sommersemester 2016
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B Sommersemester 6 Prof. Dr. Alexander Mirlin Musterlösung: Blatt. PD Dr. Igor
Physikalisches Praktikum
Physikalisches Praktikum Versuch 03: Kreiselpräzession UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 2 Versuch 03 Kreiselpräzession
Physik 1 für Ingenieure
Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm [email protected] Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#
Trägheitsmomente starrer Körper
Trägheitsmomente starrer Körper Mit Hilfe von Drehschwingungen sollen für einen Würfel und einen Quader die Trägheitsmomente für verschiedene Drehachsen durch den Schwerpunkt gemessen werden. Das zugehörige
Massenträgheitsmomente homogener Körper
http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine
Kräftefreier symmetrischer Kreisel
Kräftefreier symmetrischer Kreisel Grannahmen: Symmetrieachse = "" Winkelgeschwindigkeit im körperfesten System: Euler-Gleichungen: [per Konvention wählen wir Richtung von so, dass mit für harm. Osz. Lösung:
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung
Klassische Theoretische Physik II (Theorie B) Sommersemester 2016
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD
3.3 Klassifikation quadratischer Formen auf R n
3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen
M10 PhysikalischesGrundpraktikum
M10 PhysikalischesGrundpraktikum Abteilung Mechanik Kreisel 1 Vorbereitung Erhaltungssätze der Mechanik Analogien zwischen Rotation und Translation Trägheitsmomente und deren Berechnung Satz von Steiner
Ferienkurs Theoretische Mechanik 2009 Starre Körper und Rotation - Lösungen
Physik Department Technische Universität München Matthias Eibl Blatt 4 Ferienkurs Theoretische Mechanik 9 Starre Körper und Rotation - en Aufgaben für Donnerstag 1 Kinetische Energie eines rollenden Zylinders
M6 Der Kreisel. Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch. Münster, den
M6 Der Kreisel Versuchsprotokoll von Thomas Bauer und Patrick Fritzsch Münster, den 23.10.2000 INHALTSVERZEICHNIS 1. Einleitung 2. Theoretische Grundlagen 2.1 Die Präzession eines schweren symmetrischen
6 Mechanik des Starren Körpers
6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=
Zusammenfassung. 1. Starre Körper: Zwei Koordinatensysteme (L und K). Die Bewegung im K-system ist eine Rotation.
Zusammenfassung 1. Starre Körper: Zwei Koordinatensysteme (L und K). Die Bewegung im K-system ist eine Rotation. Z P r x 3 K-System x 2 R O R c x 1 L-System Y 2. Die kinetische Energie des Körpers und
Ergänzungen zur Physik I
Ergänzungen zu Physik I Inhaltsverzeichnis Ergänzungen zur Physik I U. Straumann, 22. Oktober 2013 Physik - Institut Universität Zürich Inhaltsverzeichnis 1 Relativbewegungen 2 1.1 Relativitätsprinzip
Versuch M11 für Nebenfächler Kreisel
Versuch M11 für Nebenfächler Kreisel I. Physikalisches Institut, Raum 105 Stand: 17. Juli 2012 generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte Versuchspartner angeben bitte
9 Teilchensysteme. 9.1 Schwerpunkt
der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton
Vorlesung 7: Roter Faden:
Vorlesung 7: Roter Faden: Beispiele für Kräfte: Gewichtskraft, Reibungskraft, Federkraft, Windkraft, Gravitationskraft, elektromagnetische Kraft, Zentripetalkraft, Heute: weiter Zentripetalkraft Drehimpulserhaltung
Versuch 4 - Trägheitsmoment und Drehimpuls
UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 4 - Trägheitsmoment und Drehimpuls 23. überarbeitete Auflage 2009 Dr. Stephan Giglberger Prof.
M19. Kreisel. Ein Kreisel, bei dem die Summe aller Drehmomente M i bezüglich des Schwerpunktes verschwindet (1) heißt kräftefrei.
M19 Kreisel Bei symmetrischen Kreiseln sollen die räzession und die Nutation untersucht und damit die dynamischen Eigenschaften eines Kreisels veranschaulicht werden. 1. Theoretische Grundlagen 1.1 Begriffsbestimmungen
8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels
8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung
4.9 Der starre Körper
4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte
1 Mechanik starrer Körper
1 Mechanik starrer Körper 1.1 Einführung Bisher war die Mechanik auf Massepunkte beschränkt. Nun gehen wir den Schritt zu starren Körpern. Ein starrer Körper ist ein System aus Massepunkten, welche nicht
Pohlsches Pendel / Kreisel
Pohlsches Pendel / Kreisel Mit Hilfe des Pohlschen Pendels, eines schwingenden Systems mit einem Freiheitsgrad, sollen freie und erzwungene Schwingungen mit und ohne Dämpfung untersucht werden. Insbesondere
