Kreisel mit drei Achsen
|
|
|
- Dennis Abel
- vor 8 Jahren
- Abrufe
Transkript
1 M42 Name: Kreisel mit drei Achsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!) handschriftlich beantwortet und vor Beginn des Versuchs abgegeben werden. Die Vorbereitung wird zusätzlich durch einen Test bzw. eine mündliche Prüfung über die physikalischen Grundlagen des Versuchs kontrolliert. (Version: 13. September 2017) Versuchsziel und Versuchsmethode: 1.) Stellen Sie die physikalisch relevanten Größen für die Beschreibung einer linearen Bewegung und einer Drehbewegung einander gegenüber. 2.) Wie ist der Bahndrehimpuls, wie der Eigendrehimpuls definiert? 3.) Worin unterscheiden sich Nutation und Präzession?
2 4.) Berechnen Sie das Trägheitsmoment für die im Versuch verwendete dicke Scheibe (Masse m = 1330 g, Durchmesser d = 245 mm, Dicke h = 28 mm) bezüglich der gewählten Drehachse (siehe Foto des Versuchsaufbaus)! 5.) Wie steuert man ein Fahrrad beim freihändigen Fahren? 6.) Wie reagiert ein Kreisel auf einen Kraftstoß auf die Drehachse?
3 Version: 13. September 2017 M Mechanik M42 Kreisel mit drei Achsen Literatur [1] Demtröder, W.: Experimentalphysik 1: Mechanik und Wärme. Springer (2015). E-Book [2] Hering, E.: Physik für Ingenieure. Springer (2016). E-Book [3] Lüders, K. ; Oppen, G. v.: Bergmann-Schäfer Klassische Physik - Mechanik und Wärme. de Gruyter (2012). E-Book [4] Meschede, D.: Gerthsen Physik. Springer (2006). E-Book [5] Paus, H. J.: Physik in Experimenten und Beispielen. Hanser (2007) Stichworte Rotation, Drehimpuls, Drehmoment, Trägheitsmoment, Trägheitsellipsoid, Kreisel, Präzession, Nutation. Grundlagen Drehbewegungen lassen sich formal analog zu Translationsbewegungen beschreiben, wenn man deren Größen durch die entsprechenden Größen für Drehbewegungen ersetzt. So wird z. B. aus der Strecke s der Winkel ϕ, aus der Geschwindigkeit v die Winkelgeschwindigkeit ω, aus der Masse m der Trägheitstensor J und aus dem Impuls p der Drehimpuls L. Bei der Drehbewegung eines starren Körpers bewegen sich alle Punkte in einer Ebene senkrecht zur Drehachse um den gleichen Winkel ϕ, wobei eine Drehung entgegen dem Uhrzeigersinn als positiv definiert ist. Zur Beschreibung werden vor allem folgende Größen benötigt: Das Trägheitsmoment J eines Körpers bezüglich einer Achse A ist definiert als J = r 2 dm, (M42-1) wobei r der (senkrechte) Abstand des Massenelements dm von der Drehachse A ist. Der Drehimpuls L ergibt sich zu: L = Jω (M42-2)
4 Mechanik Version: 13. September 2017 Wirkt ein äußeres Drehmoment M so ändert sich der Drehimpuls: M = r F = L (M42-3) Daraus folgt sofort, dass der Drehimpuls beim Verschwinden von äußeren Drehmomenten erhalten bleibt, was technisch beim Gyroskop (Kreiselkompass) ausgenutzt wird. Ein Kreisel ist ein starrer Körper, der eine Drehbewegung ausführt und wird symmetrisch genannt, wenn zwei der Hauptträgheitsmomente gleich sind. Verschwinden die äußeren Drehmomente (oder heben sich auf), so ist der Kreisel kräftefrei. Wirkt auf den symmetrischen Kreisel ein konstantes Drehmoment parallel zur Drehimpulsrichtung, so kann man aus der Messung der Winkelbeschleunigung α das Trägheitsmoment des Kreisels bestimmen: J = M α (M42-4) Wirkt auf den Kreisel ein resultierendes Drehmoment mit einer Komponente senkrecht zum Drehimpuls, so kommt es entweder zur Nutation (kurze Einwirkung) oder zur Präzession (konstantes Drehmoment). Unter Präzession versteht man das senkrechte Ausweichen eines Kreisels bezüglich einer auf ihn wirkenden Kraft. Dies wird durch das Vektorprodukt Drehmoment M verursacht, denn natürlich ändert sich der Drehimpuls nach dem Newtonschen Aktionsprinzip in Richtung des auf ihn einwirkenden Drehmoments, das jedoch senktrecht auf der wirkenden Kraft steht! Greift die Kraft immer senkrecht zum Drehimpuls an, so ändert der Drehimpuls nur seine Richtung aber nicht seinen Betrag. Dadurch beschreibt die Spitze des Drehimpulsvektors eine Kreisbewegung, der die Präzessionsfrequenz ω p zugeordnet wird: ω p = M L = r F Jω J = Trägheitsmoment, ω = Drehfrequenz des Kreisels (M42-5) Wie man sieht, kann im Fall des hier behandelten symmetrischen Kreisels auch aus der Präzessionsfrequenz das Trägheitsmoment J bestimmt werden. Die Nutation wird durch einen kurzen seitlichen Stoß auf die Drehachse des Kreisels ausgelöst. In dessen Folge kommt es zu einer Taumel- und Nickbewegung, bei der Figurenachse, momentane Drehachse und Drehimpulsvektor L nicht mehr zusammenfallen. Da der Drehimpulsvektor nach Ende des Kraftstoßes seine Richtung nicht mehr ändert, führen Figurenachse und momentane Drehachse eine Rotation um die Richtung des Drehimpulses durch. Anschaulich machen kann man sich die Bewegung mit dem Abrollen von zwei im Kreiselschwerpunkt befestigten Kegeln aufeinander. Der mit dem Kreisel fest verbundene Gangpolkegel wälzt sich auf dem raumfesten Rastpolkegel ab und die Kreiselachse als Achse des Gangpolkegels läuft auf dem Nutationskegel um die Drehimpulsrichtung. 2
5 Version: 13. September 2017 M42 Gangpolkegel Drehachse ω Rastpolkegel Drehimpuls L Figurenachse Abb. M42-1: Erklärung der Nutationsbewegung. Die Figurenachse beschreibt den im Experiment beobachtbaren Nutationskegel Messprogramm Hinweis: Wir verwenden die Bezeichnung Gewicht für ein Massestück m, das im Schwerefeld der Erde eine Gewichtskraft F ausübt. 1. Direkte Messung des Trägheitsmoments der Kreiselscheibe aus der Winkelbeschleunigung bei bekanntem Drehmoment. Die Kreiselachse wird horizontal ausgerichtet und mit Hilfe der Arretierstange fest eingespannt. An den aufgewickelten Faden wird bei festgehaltener Scheibe das Gewicht angehängt, so dass dessen Unterkante auf dem Niveau der Tischplatte ist. Nach der Freigabe der Scheibe wird die Zeit zwischen dem Loslassen und dem Auftreffen des Gewichts auf dem Boden gestoppt und direkt die Drehzahl der Scheibe gemessen. Diese Messung wird je 5 mal mit Gewichten von 110 g und 160 g (2 und 3 Schlitzgewichte) durchgeführt und der Mittelwert gebildet. Der Radius der Fadentrommel beträgt 22,5 mm. Aus den gemessenen Werten wird das Trägheitsmoment berechnet und der Fehler abgeschätzt. 2. Messung der Abbremsung des Kreisels durch die Reibung. Zur Vorbereitung der folgenden Messungen bestimmen Sie, wie die Drehzahl des Kreisels mit der Zeit abnimmt. Dazu wird der eingespannte Kreisel aufgezogen und auf etwa 400 bis 500 U/min gebracht. Anschließend wird für 60 s alle 5 s die Drehzahl 3
6 Mechanik Version: 13. September 2017 gemessen und protokolliert. Diese Messung ist 3 mal zu wiederholen. Tragen Sie die Drehzahl über der Zeit auf halb-logarithmischen Papier auf. Bestimmen Sie die Dämpfungskonstante. 3. Messung der Präzessionsfrequenz in Abhängigkeit von der Rotationsfrequenz für zwei unterschiedliche Drehmomente. Die Arretierung wird entfernt und die Kreiselachse mit Hilfe des Gegengewichts ins Gleichgewicht gebracht. Prüfen Sie, dass die Kreiselachse bei beliebiger Neigung stabil ist. Der freie Kreisel wird bei horizontaler Kreiselachse aufgezogen. Dann wird in die Nut hinter dem Gegengewicht das Gewicht eingehängt und der Kreisel freigegeben. Die Zeit für eine halbe Präzession wird gestoppt und am Anfang und Ende jeweils die Rotationsfrequenz gemessen und gemittelt. Dieser Wert wird für 10 verschiedene Rotationsfrequenzen im Bereich von 300 bis 800 U/min und Gewichte von 10 g und 60 g gegen die Präzessionsdauer aufgetragen. Aus den Steigungen der beiden Geraden wird das Trägheitsmoment berechnet und der Fehler abgeschätzt. Der Abstand der Nut vom Lagerpunkt der Kreiselachse beträgt 270 mm. 4. Messung der Nutationsfrequenz in Abhängigkeit von der Rotationsfrequenz. Der freie Kreisel wird aufgezogen. Dann wird durch einen leichten seitlichen Schlag gegen die Kreiselachse die Nutation erzeugt. Die Zeit für 5 Nutationsumläufe wird gestoppt und am Anfang und Ende jeweils die Rotationsfrequenz gemessen und gemittelt. Diese Messung wird für 10 verschiedene Rotationsfrequenzen im Bereich von 150 bis 500 U/min durchgeführt und die Nutationsfrequenz als Funktion der Rotationsfrequenz des Kreisels aufgetragen. Achtung: Das Drehzahlmessgerät ist mit einem Laser der Laserklasse 2 nach EN : 1994 ausgerüstet. Die Laseraustrittsöffnung ist mit dem dreieckigen Laserwarnschild gekennzeichnet. Blicken Sie nie in den Laserstrahl und richten Sie ihn niemals auf Personen oder Tiere. Laserstrahlung kann zu Augen- oder Hautverletzungen führen. Richten Sie den Laserstrahl niemals auf Spiegel oder andere stark reflektierende Flächen. Der unkontrolliert abgelenkte Strahl könnte Personen oder Tiere treffen. Zur Messung sind bereits Reflektionsmarken am Kreisel angebracht. 4
Versuch P2-71,74: Kreisel. Vorbereitung. Von Jan Oertlin und Ingo Medebach. 11. Mai Drehimpulserhaltung 2. 2 Freie Achse 2
Versuch P - 71,74: Kreisel Vorbereitung Von Jan Oertlin und Ingo Medebach 11. Mai 010 Inhaltsverzeichnis 1 Drehimpulserhaltung Freie Achse 3 Kräftefreie Kreisel 3 4 Dämpfung des Kreisels 3 5 Kreisel unter
Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum
Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1
Faszination Kreisel. Vom Spielzeug zur technischen Anwendung. Thomas Wilhelm
Vom Spielzeug zur technischen Anwendung Thomas Wilhelm 1. Spielzeug Kreisel Symmetrische Kreisel (zwei Hauptträgheitsmomente gleich groß), meist Rotationskörper Einfacher Kreisel Einfacher Kreisel Unterschiedliche
M1 Maxwellsches Rad. 1. Grundlagen
M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten
M19. Kreisel. Ein Kreisel, bei dem die Summe aller Drehmomente M i bezüglich des Schwerpunktes verschwindet (1) heißt kräftefrei.
M19 Kreisel Bei symmetrischen Kreiseln sollen die räzession und die Nutation untersucht und damit die dynamischen Eigenschaften eines Kreisels veranschaulicht werden. 1. Theoretische Grundlagen 1.1 Begriffsbestimmungen
Versuch 4 - Trägheitsmoment und Drehimpuls
UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 4 - Trägheitsmoment und Drehimpuls 23. überarbeitete Auflage 2009 Dr. Stephan Giglberger Prof.
Physikalisches Grundpraktikum Abteilung Mechanik
M10 Physikalisches Grundpraktikum Abteilung Mechanik Kreisel 1 Vorbereitung Erhaltungssätze der Mechanik Analogien zwischen Rotation und Translation Trägheitsmomente und deren Berechnung Satz von Steiner
Versuch 3 Das Trägheitsmoment
Physikalisches A-Praktikum Versuch 3 Das Trägheitsmoment Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 10.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung
Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1
Naturwissenschaftliches Praktikum Rotation Versuch 1.1 Inhaltsverzeichnis 1 Versuchsziel 3 2 Grundlagen 3 2.1 Messprinzip............................. 3 2.2 Energiesatz............................. 3 2.3
Massenträgheitsmomente homogener Körper
http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine
LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv.
7.5 Drehimpuls Translation Rotation Geschwindigkeit Masse v m Translationsenergie Kraft Impuls Ekin F 1 mv F ma p d p F dt p m v p E kin m R. Girwidz 1 7.5 Drehimpuls Drehscheml für Zentralkräfte: M 0
Rotation starrer Körper, Drehimpuls, Drehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier -, schwerer Kreisel, Nutation, Präzession.
Kreisel 1. LITERATUR emtröder; Tipler, Hering/Martin/Stohrer; Gerthsen 2. STICHPUNKTE Rotation starrer Körper, rehimpuls, rehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier -, schwerer Kreisel,
Einführung in die Physik für Maschinenbauer
Einführung in die Physik für Maschinenbauer WS 011/01 Teil 5 7.10/3.11.011 Universität Rostock Heinrich Stolz [email protected] 6. Dynamik von Massenpunktsystemen Bis jetzt: Dynamik eines einzelnen
8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels
8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung
2.3.5 Dynamik der Drehbewegung
2.3.5 Dynamik der Drehbewegung 2.3.5.1 Drehimpuls Drehimpuls Betrachte einen Massepunkt m mit Geschwindigkeit v auf irgendeiner Bahn (es muss keine Kreisbahn sein); dabei ist r der Ort der Massepunkts,
Drehbewegungen (Rotation)
Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen
Physikalisches Praktikum I
Fachbereich Physik Physikalisches Praktikum I Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von
Hochschule Düsseldorf University of Applied Sciences. 24. November 2016 HSD. Physik. Rotation
Physik Rotation Schwerpunkt Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen. Bei einem Körper mit homogener
+m 2. r 2. v 2. = p 1
Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit
9 Teilchensysteme. 9.1 Schwerpunkt
der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton
2.5 Dynamik der Drehbewegung
- 58-2.5 Dynamik der Drehbewegung 2.5.1 Drehimpuls Genau so wie ein Körper sich ohne die Einwirkung äußerer Kräfte geradlinig mit konstanter Geschwindigkeit bewegt, so behält er seine Orientierung gegenüber
Physik 1 für Ingenieure
Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm [email protected] Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#
Versuch 4 Kreiselpräzession
Physikalisches A-Praktikum Versuch 4 Kreiselpräzession Protokollant: Julius Strake Mitpraktikant Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 17.07.2012 Unterschrift: Inhaltsverzeichnis
Der Trägheitstensor J
Der Trägheitstensor J Stellen wir uns einen Kreisel vor, der um eine beliebige Achse dreht. Gilt die Beziehung L = J ω in jedem Bezugssystem? Dazu betrachten wir nochmals die Bewegung eines starren Körpers.
1 Theoretischer Teil. 1.1 Das Trägheitsellipsoid. cos, cos, cos. Drehachse. l dm. Versuche P2-71, 74: Hilfe zum Versuch Kreisel Raum F1-11
Versuche P2-71, 74: Hilfe zum Versuch Kreisel Raum F1-11 Definition: Ein Kreisel ist ein starrer Körper, dessen Bewegung durch einen Fixpunkt festgelegt ist. Im Folgenden wird die Theorie des rotierenden
Versuch dp : Drehpendel
U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung
FAKULTÄT FÜR PHYSIK Praktikum Klassische Physik. Prak.: P1 Semester: WS15/16. Fehlerrech.: Nein. Versuch: Kreisel (P1-71,74)
FAKULTÄT FÜR PHYSIK Praktikum Klassische Physik Prak.: P1 Semester: WS15/16 Versuch: Kreisel (P1-71,74) Fehlerrech.: Nein Durchgeführt am: 01.12.201 Wird vom Betreuer ausgefüllt. 1. Abgabe am: Rückgabe
Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls
Physik Impuls Impuls Träge Masse in Bewegung Nach dem 1. Newton schen Gesetz fliegt ein kräftefreier Körper immer weiter gradeaus. Je größer die träge Masse desto größer setzt sie einer Beschleunigung
Kinetik des starren Körpers
Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.
Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung
Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik
Tutorium Physik 2. Rotation
1 Tutorium Physik 2. Rotation SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 8. ROTATION 8.1 Rotation: Lösungen a
Vektorrechnung in der Physik und Drehbewegungen
Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen
Aus der Schwingungsdauer eines physikalischen Pendels.
2.4 Trägheitsmoment aus Winkelbeschleunigung 69 2.4. Trägheitsmoment aus Winkelbeschleunigung Ziel Bestimmung des Trägheitsmomentes eines Rades nach zwei Methoden: Aus der Winkelbeschleunigung, die es
0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel
0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die
4 Die Rotation starrer Körper
4 Die Rotation starrer Körper Die Bewegung eines realen Körpers ist erst dann vollständig beschrieben, wenn nicht nur seine als Translation bezeichnete geradlinige Bewegung, sondern auch seine als Rotation
Eigenschaften des Kreisels
Version 1. Dezember 011 1. Trägheitstensor und Eulersche Kreisel-Gleichungen Auf Grund der formalen Ähnlichkeit von Impuls- und Drehimpulssatz, also von d p = F und d L = τ, könnte man vermuten, dass der
Physikalisches Praktikum I
Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen
Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08)
sblatt Mechanik Physik, Wirtschaftsphysik, Physik Lehramt WS07/08 Wolfgang v. Soden [email protected]. 0. 008 74 Rolle und Gewichte P Zwei Gewichte mit Massen m = kg bzw. m = 3kg sind durch einen
Versuch M11 für Physiker Kreisel
Versuch M11 für Physiker Kreisel I. Physikalisches Institut, Raum 105 Stand: 17. Juli 2012 generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte Versuchspartner angeben bitte
Formelsammlung: Physik I für Naturwissenschaftler
Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]
Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw
Institut für Physik und Physikalische Technologien 23.02.2005 der TU Clausthal Prof. Dr. W. Daum Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, 09.00-11:00 Uhr für den Studiengang: Mb, Inft, Geol,
2. Vorlesung Wintersemester
2. Vorlesung Wintersemester 1 Mechanik von Punktteilchen Ein Punktteilchen ist eine Abstraktion. In der Natur gibt es zwar Elementarteilchen (Elektronen, Neutrinos, usw.), von denen bisher keine Ausdehnung
Rotationsmechanik öffentliche Sonntagsvorlesung, 13. Januar Lesender: PD Dr. Frank Stallmach
Fakultät für Phsik und Geowissenschaften Rotationsmechanik 130. öffentliche Sonntagsvorlesung, 13. Januar 2013 Lesender: PD Dr. Frank Stallmach Assistenz: Ael Märcker WOG Landesseminar zur Vorbereitung
Trägheitsmomente starrer Körper
Trägheitsmomente starrer Körper Mit Hilfe von Drehschwingungen sollen für einen Würfel und einen Quader die Trägheitsmomente für verschiedene Drehachsen durch den Schwerpunkt gemessen werden. Das zugehörige
Klassische Theoretische Physik II (Theorie B) Sommersemester 2016
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD
Experimentalphysik für ET. Aufgabensammlung
Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe
Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen
Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit
Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06
Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 16. November 25 Übungsblatt Lösungsvorschlag 3 Aufgaben,
Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung:
Zur Erinnerung Stichworte aus der 11. Vorlesung: Zusammenfassung: Trägheitsmomente, Kreisel, etc. allgemeine Darstellung des Drehimpulses für Drehung von beliebig geformtem Körper um beliebige Drehachse
Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.
Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert M04 Energieumwandlung am Maxwellrad (Pr_PhI_M04_Maxwellrad_6, 14.7.014)
Proseminar Biomechanik
Universität Konstanz, FB Sportwissenschaft Proseminar Biomechanik Thema: Dynamik der menschlichen Bewegung II Trägheitsmoment, Drehmoment, Drehimpuls Die folgende Präsentation ist mit geringfügigen Änderungen
3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor
3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf
Bedienungsanleitung für den Kreisel DM354-1K
Bedienungsanleitung für den Kreisel DM354-1K einfach, schnell, sicher Einleitung Mit dem gelieferten Kreisel und dem dazugehörigen Zubehör lassen sich auf einfache, aber beeindruckende Weise alle Eigenschaften
5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)
5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem
Trägheitsmoment (TRÄ)
Physikalisches Praktikum Versuch: TRÄ 8.1.000 Trägheitsmoment (TRÄ) Manuel Staebel 3663 / Michael Wack 34088 1 Versuchsbeschreibung Auf Drehtellern, die mit Drillfedern ausgestattet sind, werden die zu
IM3. Modul Mechanik. Maxwell sches Rad
IM3 Modul Mechanik Maxwell sches Rad In dem vorliegenden Versuch soll die Energieerhaltung anhand des Maxwell schen Rades untersucht werden. Das Maxwell sche Rad ist ein Metallrad mit grossem Trägheitsmoment,
Versuch M7 für Nebenfächler Rotations- und Translationsbewegung
Versuch M7 für Nebenfächler Rotations- und Translationsbewegung I. Physikalisches Institut, Raum HS126 Stand: 21. Oktober 2015 generelle Bemerkungen bitte Versuchsaufbau (Nummer) angeben bitte Versuchspartner
TECHNISCHE MECHANIK III (DYNAMIK)
Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
Physik I Übung 10 - Lösungshinweise
Physik I Übung - Lösungshinweise Stefan Reutter WS / Moritz Kütt Stand: 7. Februar Franz Fujara Aufgabe War die Weihnachtspause vielleicht doch zu lang? Bei der Translation eines Massenpunktes und der
Spezialfall m 1 = m 2 und v 2 = 0
Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +
Experiment: Inelastischer Stoß
Experiment: Inelastischer Stoß Langer Gleiter auf der Luftkissenbahn stößt inelastisch auf einen ruhenden von gleicher Masse. Gleiter kleben nach dem Stoß zusammen (Klebwachs). Messung der Geschwindigkeiten
Universität Regensburg Naturwissenschaftliche Fakultät II Universitätsstraße 31
Universität Regensburg Naturwissenschaftliche Fakultät II Universitätsstraße 31 Bitte Rückseite beachten! D-93053 Regensburg Physik Postfach: D-93040 Regensburg Prof. Dr. A. Penzkofer Telefon (0941) 943-2107
Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann,
Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann, 09.09. 2004 Bearbeitungszeit: 90 min Umfang: 7 Aufgaben Gesamtpunktzahl: 45 Erklärung: Ich erkläre mich damit einverstanden,
1. Probe - Klausur zur Vorlesung E1: Mechanik
Fakultät für Physik der LMU 27.12.2011 1. Probe - Klausur zur Vorlesung E1: Mechanik Wintersemester 2011/2012 Prof. Dr. Joachim O. Rädler, PD Dr. Bert Nickel und Dr. Frank Jäckel Name:... Vorname:... Matrikelnummer:...
Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!! Alle Lösungen immer erst allgemein bestimmen, dann einsetzen!
ÜBUNGEN ZUR KLASSISCHEN / EINFÜHRUNG IN DIE PHYSIK I WS 2010/11 PROBEKLAUSUR 22.01.2011 Kennwort... Kennzahl Übungsgruppe (Tag/Uhrzeit) nur für die Korrektoren: Studienfach (bitte ankreuzen): Aufgabe Punkte
Physikalisches Praktikum I
Fachbereich Physik Physikalisches Praktikum I K20 Name: Halbwertszeit von Rn Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss
Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze
Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der
Versuch M6 für Nebenfächler Trägheitsmoment und Drehschwingungen
Versuch M6 für Nebenfächler Trägheitsmoment und Drehschwingungen I. Physikalisches Institut, Raum HS126 Stand: 21. Oktober 2015 Generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben
M,dM &,r 2 dm bzw. M &,r 2!dV (3)
- A8.1 - ersuch A 8: Trägheitsmoment und Steinerscher Satz 1. Literatur: Walcher, Praktikum der Physik Bergmann-Schaefer, Lehrbuch der Physik, Bd.I Gerthsen-Kneser-ogel, Physik Stichworte: 2. Grundlagen
Physik I Musterlösung 2
Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung
Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung:
Zur Erinnerung Stichworte aus der 11. Vorlesung: Zusammenfassung: Trägheitsmomente, Kreisel, etc. allgemeine Darstellung des Drehimpulses für Drehung von beliebig geformtem Körper um beliebige Drehachse
Starrer Körper: Drehimpuls und Drehmoment
Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und
Versuch 3 Das Trägheitsmoment
Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen ersuch 3 Das Trägheitsmoment Praktikant: Joscha Knolle Ole Schumann E-Mail: [email protected] Durchgeführt am: 8.6.22 Abgabe: 25.6.22
Elastizität und Torsion
INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den
Pohlsches Pendel / Kreisel
Pohlsches Pendel / Kreisel Mit Hilfe des Pohlschen Pendels, eines schwingenden Systems mit einem Freiheitsgrad, sollen freie und erzwungene Schwingungen mit und ohne Dämpfung untersucht werden. Insbesondere
Die Entwicklung des Erde-Mond-Systems
THEORETISCHE AUFGABE Nr. 1 Die Entwicklung des Erde-Mond-Systems Wissenschaftler können den Abstand Erde-Mond mit großer Genauigkeit bestimmen. Sie erreichen dies, indem sie einen Laserstrahl an einem
Musterlösung 2. Klausur Physik für Maschinenbauer
Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit
Experimentalphysik E1
Experimentalphysik E1 6. Nov. Gravitation + Planetenbewegung Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Kraft = Impulsstrom F = d p dt = dm dt v = dn
Trägheitsmoment - Steinerscher Satz
Trägheitsmoment - Steinerscher Satz Gruppe 4: Daniela Poppinga, Jan Christoph Bernack Betreuerin: Natalia Podlaszewski 13. Januar 2009 1 Inhaltsverzeichnis 1 Theorieteil 3 1.1 Frage 2................................
Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte
Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,
Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )
b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt
5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009
5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken
PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert
PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 015/16 Übungsblatt 6 Übungsblatt 6 Lösung Aufgabe 1 Gravitation. a) Berechnen Sie die Beschleunigung g auf der Sonnenoberfläche. Gegeben
120 Gekoppelte Pendel
120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei
Physik 1 Zusammenfassung
Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................
Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer:
Fachbereich Physik Physikalisches Praktikum I Name: PTC und NTC Widerstände Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von
V12 Beschleunigte Bewegungen
Aufgabenstellung: 1. Ermitteln Sie die Fallbeschleunigung g aus Rollexperimenten auf der Rollbahn. 2. Zeigen Sie, dass für die Bewegung eines Wagens auf der geneigten Ebene der Energieerhaltungssatz gilt.
2. Exzentrischer Stoß
2. Exzentrischer Stoß 2.1 Ebener Stoß zwischen freien Körpern 2.2 Ebener Stoß auf gelagerten Körper 3.2-1 2.1 Ebener Stoß zwischen freien Körpern Aufgabenstellung: Zwei glatte Körper stoßen aufeinander.
3.3 Klassifikation quadratischer Formen auf R n
3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen
Exzentrischer Stoß. Der genaue zeitliche Verlauf der Kraft ist nicht bekannt. Prof. Dr. Wandinger 4. Exzentrischer Stoß Dynamik 2 4-1
Exzentrischer Stoß Allgemeine Stoßvorgänge zwischen zwei Körpern in der Ebene können mit Hilfe des integrierten Impulssatzes und des integrierten Drallsatzes behandelt werden. Während des Stoßes treten
1 Drehimpuls und Drehmoment
1 Drehimpuls und Drehmoment Die Rotationsbewegung spielt in der Natur von der Ebene der Elementarteilchen bis zu den Strukturen des Universums eine eine bedeutende Rolle. Einige Beispiele sind 1. Spin
Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.
Physik: Mechanik Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Grundlagen Zeit & Raum Zeit t R Länge x R als Koordinate Zeit & Raum Zeit t R Länge x R als Koordinate Raum
Messung der Lichtgeschwindigkeit mit dem Foucault schen Drehspiegelversuch
PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 3: Messung der Lichtgeschwindigkeit Messung der Lichtgeschwindigkeit mit dem Foucault schen Drehspiegelversuch Theoretische Grundlagen: Drehbewegungen
Blatt 10. Hamilton-Formalismus- Lösungsvorschlag
Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus
