Experimentalphysik E1

Größe: px
Ab Seite anzeigen:

Download "Experimentalphysik E1"

Transkript

1 Experimentalphysik E1 6. Nov. Gravitation + Planetenbewegung Alle Informationen zur Vorlesung unter :

2 Kraft = Impulsstrom F = d p dt = dm dt v = dn dt m 0 v Impulsstrom I. dn/dt: Teilchenstrom ΔF = dn dt m 0v = Δm t F gt F = Δmg F G = mg

3 Kraft = Impulsstrom F = d p dt = dm dt v = dn dt m 0 v dn/dt: Teilchenstrom Impulsstrom II. v=gt ΔF = dn dt m 0v = Δm t F gt F = Δmg F G < mg

4 Kraft = Impulsstrom F = d p dt = dm dt v = dn dt m 0 v dn/dt: Teilchenstrom Impulsstrom v=gt III. ΔF = dn dt m 0v = Δm t F gt F = Δmg F G = mg

5 Kraft = Impulsstrom F = d p dt = dm dt v = dn dt m 0 v dn/dt: Teilchenstrom Impulsstrom v=gt IV. ΔF = dn dt m 0v = Δm t F gt F = Δmg F G > mg

6 Kraft = Impulsstrom F = d p dt = dm dt v = dn dt m 0 v dn/dt: Teilchenstrom Impulsstrom V. v=gt ΔF = dn dt m 0v = Δm t F gt F = Δmg F G = mg

7 Karikatur über Newtons Lehre der Gravitation! Newtonsches Gravitationsgesetz

8 Bestimmung der Gravitationskonstante! Cavendish 1798! (Drehwaage/! Torsionspendel)! aus Demtröder al.!

9 1,8 m Nahaufnahme des Gehänges Cavendishs Instrument. Der Waagebalken hatte eine Länge von 1,8 m. Von außen konnte das Gehänge mit den großen Bleikugeln gedreht werden. Die Bewegung des Gehänges mit den kleinen Massen wurde mit einem Fernrohr beobachtet.

10 Bestimmung von G, Bsp: Gravitationswaage! = 2 L F G! Drehmoment des verdrillten Fades!!! Schema Gravitationswaage!

11 Mechanisches Gleichgewicht l 1 l 2 F 1 l 1 = F 2 l 2 F 1 D F 2 (Hebelgesetz) Kraft mal Kraftarm= Last mal Lastarm Ein Körper ist dann im Gleichgewicht, wenn die Summe aller äußerer Kräfte und die Summe aller Drehmomente Null ist. Anwendungen des Hebelgesetzes: Brechstange, Schere, Schubkarre, Getriebe, Gliedmaßen, Baukran...

12 Drehimpuls! Ebene beliebig gekrümmte Bahn! L ω r(t), v(t) v ϕ v r r(t O! 2 ) ϕ v r (t) m! p = m v Def.:! Drehimpuls! In Polarkoordinaten:! L = m( r ( v r + v ϕ )) = L = ( r p) = m ( r v) L = r, v m( r v r )+ m( r v ϕ ) Ebene von! r und! v 0 weil! r v r weil! r v ϕ = r 2 ϕ L = m r 2 ϕ Kreisbewegung:! ϕ = ω ;! v = v ϕ L = m r 2 ω

13 Drehmoment:! dl dt = " d r dt p % # $ & ' + " r d p% # $ dt & ' = ( v p)+ ( r p) = 0 weil! v p Newton! ( r F ) D Def:! Drehmoment! d L dt = D = ( r F).! r.! F Für zentrale Kraftfelder! F = f (r) ê r ist! D = 0 L = const. bzgl. Kraftzentrum! Drehimpulserhaltung! Zeitliche Veränderung des Drehimpulses ist gleich dem wirkenden Drehmoment!

14 Konkurrenz der Weltbilder (16.Jhd)

15 Zur Bewegung der Planeten Kopernikanisches heliozentrisches Planeten-Modell Ptolemäisches Planeten-Modell

16 Tycho Brahe! Johannes Kepler!

17 Tycho Brahe ( )

18 Keplergesetze! (Basierend auf Beobachtung Tycho Brahes))! I. Planeten bewegen sich auf Ellipsen mit Sonne im Brennpunkt! II. Fahrstrahl von Sonne zu Planet überschreitet " in gleichen Zeiten gleiche Flächen! P(t 1 ) A 1 P(t 1 + Δt) S A 2 P(t2 ) P(t 2 + Δt) III. Die Quadrate der Umlaufzeiten der Planeten verhalten " sich wie die 3. Potenzen ihrer großen Halbachsen! T 1 2 T 2 2 = a 1 3 a 2 3 oder! T 2 i a = const 3 i für alle Planeten!

19 Zum 2. Keplerschen Gesetz! S r(t + dt) da v r (t) h α ds! p d s = v dt Bogen Sehne! da = 1 2 r v dt sinα 1 da 2 m L dt = 1 2 r v sinα = 1 2 m r p = + 1. Gesetz (planare Bahn) => Richtung L konst! L = const

20 Newtons Analyse:! Planetenbahnen!!!!!!!! Gravitation!! Fallender Apfel! Selbe Axiomatik! aus! v L = const. v F G (r) = f (r) ˆ e r (Zentralkraft)! aus Actio = Reactio! F G ~ m 1 m 2 v F G (r) = G m 1 m 2 f (r) ˆ e r Mit Ellipse ~ Kreis =>! m p w p 2 r p = G m p m s f (r i ) 3. Kepler! w 2 ~ T 2 ~ r 3 $ % f (r) ~ r 2 & F = G m M p S r 2 ˆ e r Newtonsches Gravitationsgesetz!

21 Messung der Dichte der Erde und der Gravitations-konstante durch Jolly Philipp von Jolly! ( )! 25 m hohen Aulaturm der Universität Physik Neubau (1894)!

22 Messung der Dichte der Erde und der Gravitationskonstante durch Jolly Doppelwaage zum Vergleich des Gewichts in verschiedenen Höhen Jolly verbesserte die Doppelwaage, mit der er die Gewichte von Massen in verschiedenen Höhen (a und b) miteinander vergleichen konnte. Er konnte damit noch Gewichtsdifferenzen von 1 Mikrogramm (10-6 Gramm) messen. Nach dem Newtonschen Gravitationsgesetz ist die Schwerkraft g an der Erdoberfläche mit guter Näherung gegeben durch: g = G M/R² Dabei ist M die Masse der Erde und R ihr Radius. Das Gewicht Q 1 eines Körpers der Masse m beträgt: Q 1 = m g 1 = m G M/R² In einer Höhe h über der Erde ist das Gewicht Q 2 der Masse m ein wenig geringer, weil die Schwerkraft mit der Höhe abnimmt. Soffel 2011

23 In der Höhe h beträgt die Schwerkraft nur noch g 2 = G M/(R+h)²und das Gewicht der Masse ist Q 2 = m g 2 = m G M/(R+h)². Mit Q 1 R² = m G M kann man auch schreiben: Q 2 = Q 1 R²/(R+h)² Q 1 (1 2h/R) für h << R. Mit einem Erdradius von 6371 km = = m, h = 1 m und einer Probemasse von m = 1 kg beträgt die Gewichtsdifferenz in den Positionen a und b: 0,314 mg = 314 µg. In einem ersten Experiment verwendete Jolly Messinggewichte der Masse 1 kg und eine Höhendifferenz der beiden Waagschalen von 5,29 m. Soffel 2011

24 Durchführung des Experiments: Zuerst wurden die beiden Gewichte in die oberen Waagschalen gegeben (a) und genau austariert. Dann wurde die rechte Masse in die untere, 5,29 m tiefer hängende Waagschale gelegt (b). Dabei wurde eine Gewichtszunahme von 1,51 mg gemessen. Theoretisch hätte eine Gewichtszunahme von 1,66 mg erfolgen sollen. Den gemessenen, etwas zu kleinen Wert, führte Jolly zurecht auf die Wirkung benachbarter Massen zurück, denn sie verringern die Abnahme der Schwerkraft mit der Höhe. Mit diesem Experiment konnte die Gültigkeit des Gravitationsgesetzes und die Abnahme der Schwerkraft mit der Höhe bestätigt werden. Dies war eine ganz neue Versuchsanordnung als die Experimente mit den Torsionswaagen. Soffel 2011

25 Probemasse: Q = 5, kg a = 0,5686 m r = 0,4975 m Bleikugel: ρ Pb = kg/m 3 ; r = 0,4975 m; M Pb = 5 775,2 kg Die untere Probemasse, die im Schwerefeld der Erde ein Gewicht von Q = 5, kg besaß, erfuhr durch die Bleikugel eine Gewichtszunahme von q = 0,589 mg. Dies war mit der extrem empfindlichen Balkenwaage auf 1 Mikrogramm genau messbar. Soffel 2011

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Keplersche Gesetze Gravitationsgesetz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 15. Nov. 2016 Der Drehimpuls m v v r v ω ω v r

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experientalphysik E1 Drehbewegung, Drehipuls Keplersche Gesetze Alle Inforationen zur Vorlesung unter : http://www.physik.lu.de/lehre/vorlesungen/index.htl 11. Nov. 2016 Ipuls p = v Definition des Ipulses

Mehr

I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie

I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie Versuch: Kreisel mit äußerer Kraft L T zur Dieser Vorgang heißt Präzession, Bewegung in der horizontalen Ebene (Kreisel weicht senkrecht zur Kraft aus).

Mehr

2.5 Dynamik der Drehbewegung

2.5 Dynamik der Drehbewegung - 58-2.5 Dynamik der Drehbewegung 2.5.1 Drehimpuls Genau so wie ein Körper sich ohne die Einwirkung äußerer Kräfte geradlinig mit konstanter Geschwindigkeit bewegt, so behält er seine Orientierung gegenüber

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Die Gravitationswaage

Die Gravitationswaage Physikalisches Praktikum für das Hauptfach Physik Versuch 02 Die Gravitationswaage Sommersemester 2005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davon.de Gruppe: 13 Assistent:

Mehr

Von Newton über Hamilton zu Kepler

Von Newton über Hamilton zu Kepler Von Newton über Hamilton zu Kepler Eine Variante von Ein Newton ergibt 3 Kepler, basierend auf einer Arbeit von Erich Ch. Wittman und den bis jetzt publizierten Beiträgen von Kepler_0x.pdf. 1. Bahnen in

Mehr

2.7 Gravitation, Keplersche Gesetze

2.7 Gravitation, Keplersche Gesetze 2.7 Gravitation, Keplersche Gesetze Insgesamt gibt es nur vier fundamentale Wechselwirkungen: 1. Gravitation: Massenanziehung 2. elektromagnetische Wechselwirkung: Kräfte zwischen Ladungen 3. starke Wechselwirkung:

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation

Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation 22. Oktober 2015 Physik Gravitation Newton s Gravitationsgesetz Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen.

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 9. Nov. Keplergleichungen, Gravitation u. Scheinkräfte Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Planetenbahnen http://www.astro.uni-bonn.de/~deboer/pdm/planet/sonnenap2/

Mehr

Satellitennavigation-SS 2011

Satellitennavigation-SS 2011 Satellitennavigation-SS 011 LVA.-Nr. 183.060 Gerhard H. Schildt Buch zur Vorlesung: ISBN 978-3-950518-0-7 erschienen 008 LYK Informationstechnik GmbH www.lyk.at office@lyk.at Satellitennavigation GPS,

Mehr

2 Gravitation. Himmelsmechanik. Eine Präsentation von Tobias Denkinger LK Physik /2007

2 Gravitation. Himmelsmechanik. Eine Präsentation von Tobias Denkinger LK Physik /2007 2 Gravitation Himmelsmechanik Eine Präsentation von Tobias Denkinger LK Physik 11 2006/2007 Gliederung 2.1 Das Gravitationsgesetz 2.2 Das Gravitationsfeld 2.3 Bewegung im Gravitationsfeld Ende Quellen

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 223 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 25. Janua6 Übungsblatt Lösungsvorschlag 3 Aufgaben,

Mehr

Geschichte der Astronomie

Geschichte der Astronomie Geschichte der Astronomie Klassische Astronomie - Himmelsmechanik Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1 Die Wägung der Weltsysteme Quelle: G.B. Riccioli, Almagestum Novum (Bologna

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2014/2015 1 Seite 2 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpunktes 3 1.1 Gleichförmig beschleunigte Bewegungen................

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 3 - Lösung Technische Universität München 1 Fakultät für Physik 1 Gleiten und Zwangsbedingungen Wir betrachten einen Block der Masse m 1 auf einem Keil der

Mehr

Die Wende vom geozentrischen zum heliozentrischen Planetensystem

Die Wende vom geozentrischen zum heliozentrischen Planetensystem Die Wende vom geozentrischen zum heliozentrischen Planetensystem 1. Planetensysteme der Antike 2. Bewegungen in verschiedenen Bezugssystemen 3. Welches ist das "richtige" Bezugssystem? 4. Nikolaus Kopernikus

Mehr

Experiment: Inelastischer Stoß

Experiment: Inelastischer Stoß Experiment: Inelastischer Stoß Langer Gleiter auf der Luftkissenbahn stößt inelastisch auf einen ruhenden von gleicher Masse. Gleiter kleben nach dem Stoß zusammen (Klebwachs). Messung der Geschwindigkeiten

Mehr

2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik

2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2.1. Trägheits- bzw. Scheinkräfte Die Bewegung in einem beschleunigen Bezugssystem lässt sich mit Hilfe von sogenannten Scheinkräften

Mehr

M1 - Gravitationsdrehwaage

M1 - Gravitationsdrehwaage Aufgabenstellung: Bestimmen Sie die Gravitationskonstante mit der Gravitationsdrehwaage nach Cavendish. Stichworte zur Vorbereitung: Gravitation, Gravitationsgesetz, Gravitationsgesetze, NEWTONsche Axiome,

Mehr

Theoretische Physik I bei Prof. A. Rosch

Theoretische Physik I bei Prof. A. Rosch Vorlesungsmitschrift Theoretische Physik I bei Prof. A. Rosch von M. & O. Filla 8. November 206 Zur Erinnerung: Das Zweikörperproblem wurde auf zwei Differenzialgleichungen heruntergebrochen. Diese können

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Stein fällt in Brunnen Ein Stein fällt in einen Brunnen. Seine Anfangsgeschwindigkeit

Mehr

Vorlesung Physik für Pharmazeuten PPh - 04

Vorlesung Physik für Pharmazeuten PPh - 04 Vorlesung Physik für Pharmazeuten PPh - 04 Starrer Körper: Hebelgesetz, Drehmoment, Schwerpunkt, Drehimpuls Deformierbarer Körper: Elastizitätsmodul Punktmassen-Systeme Abgeschlossenes System : * Keine

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 1: Grundlagen der Newton schen Mechanik, Zweiteilchensysteme gehalten von: Markus Krottenmüller

Mehr

IU2. Modul Universalkonstanten. Gravitationskonstante

IU2. Modul Universalkonstanten. Gravitationskonstante IU2 Modul Universalkonstanten Gravitationskonstante Neben der Formulierung seiner Bewegungsgesetze war ISAAK NEWTON s zweiter und vielleicht grösster Beitrag zur Physik die Entdeckung des allgemeinen Gravitationsgesetzes.

Mehr

Astronomische Beobachtungen und Weltbilder

Astronomische Beobachtungen und Weltbilder Astronomische Beobachtungen und Weltbilder Beobachtet man den Himmel (der Nordhalbkugel) über einen längeren Zeitraum, so lassen sich folgende Veränderungen feststellen: 1. Die Fixsterne drehen sich einmal

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoretische Physik I/II Prof. Dr. M. Bleicher Institut für Theoretische Physik J. W. Goethe-Universität Frankfurt Aufgabenzettel XI 27. Juni 2011 http://th.physik.uni-frankfurt.de/ baeuchle/tut Lösungen

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Vorlesung 1 Klassische Mechanik des Massenpunktes und Bezugssysteme Ann-Kathrin Straub, Christoph Raab, Markus Perner 22.03.2010 1 Klassische Mechanik des Massenpunktes

Mehr

Reibungskräfte. Haftreibung. (µ H hängt von Material und Oberflächenbeschaffenheit ab, aber nicht von der Größe der reibenden Oberflächen)

Reibungskräfte. Haftreibung. (µ H hängt von Material und Oberflächenbeschaffenheit ab, aber nicht von der Größe der reibenden Oberflächen) Reibungskräfte F =g=g N F zug Reibung ist eine der Bewegung entgegenwirkende Kraft, die entsteht, wenn zwei sich berührende Körper sich gegeneinander bewegen. Haftreibung F zug = F H ist die Kraft, die

Mehr

Gravitation Urkraft des Universums

Gravitation Urkraft des Universums Gravitation Urkraft des Universums Alles ist Geometrie Max Camenzind Akademie HD September 2016 Motivation zu diesem Zyklus: 100 Jahre Einstein-Gravitation Die Doku zu den Vorträgen: Ca. 230 S. A4 sw

Mehr

Weltbilder von Ptolemäus bis Newton

Weltbilder von Ptolemäus bis Newton Weltbilder von Ptolemäus bis Newton Das Sonnensystem und seine nächsten Verwandten für Nicht-Physiker Haus der Astronomie / Max-Planck-Institut für Astronomie 23.10.2018 Der Anblick des Himmels Der Anblick

Mehr

Dynamik. 4.Vorlesung EPI

Dynamik. 4.Vorlesung EPI 4.Vorlesung EPI I) Mechanik 1. Kinematik 2.Dynamik a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft 1 Das 2. Newtonsche Prinzip

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Bestimmung der Gravitationskonstanten mit der Gravitations-Drehwaage Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer:

Mehr

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2. Physik: Mechanik Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Grundlagen Zeit & Raum Zeit t R Länge x R als Koordinate Zeit & Raum Zeit t R Länge x R als Koordinate Raum

Mehr

6 Gravitation (gravitación, la)

6 Gravitation (gravitación, la) 6 Gravitation Hofer 1 6 Gravitation (gravitación, la) A1: Informiere dich über unser Sonnensystem und trage dein Wissen in Form eines Kurzreferates vor. 6.1 Weltbilder 6.1.2 Das geozentrische Weltbild(concepto

Mehr

Vom geozentrischen Weltbild zum heliozentrischen Weltbild der Neuzeit

Vom geozentrischen Weltbild zum heliozentrischen Weltbild der Neuzeit zum Matthias Nadenau 2010... 2013 Matthias Nadenau 1 / 13 zum zum Matthias Nadenau 2 / 13 Quellen im Alten Testament zum 16 Gott machte die beiden großen Lichter, das größere, das über den Tag herrscht,

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

Labor zur Vorlesung Physik

Labor zur Vorlesung Physik Labor zur Vorlesung Physik 1. Zur Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Gravitationsgesetz, Gravitationswaage, gedämpfte Torsionsschwingung, Torsionsmoment, Drehmoment,

Mehr

Falls die Masse nicht konstant ist, gilt die allgemeine Formulierung: p ist der Impuls des Körpers.

Falls die Masse nicht konstant ist, gilt die allgemeine Formulierung: p ist der Impuls des Körpers. Mechanik Physik Mechanik Newton sche Gesetze 1. Newton sches Gesetz - Trägheitssatz Wirkt auf einen Körper keine Kraft oder befindet er sich im Kräftegleichgewicht, so bleibt er in Ruhe oder er bewegt

Mehr

Die Keplerschen Gesetze

Die Keplerschen Gesetze Die Keplerschen Gesetze Kepler I: Die Planeten bewegen sich auf Ellipsenbahnen. In einem Brennpunkt steht die Sonne. r(t + dt) r(t) da d r = vdt Kepler II: Der Verbindungsstrahl Sonne-Planet überstreicht

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2017 Vorlesung 1 (mit freundlicher Genehmigung von Merlin Mitschek und Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis

Mehr

2.13 Newton sches Gravitationsgesetz, Planetenbewegung und Kepler sche Gesetze

2.13 Newton sches Gravitationsgesetz, Planetenbewegung und Kepler sche Gesetze 2.13. NEWTON, KEPLER UND DIE PLANETEN 95 2.13 Newton sches Gravitationsgesetz, Planetenbewegung und Kepler sche Gesetze 2.13.1 Das Newton sche Gravitationsgesetz Bislang hatten wir die Schwerkraft, die

Mehr

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.)

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.) Otsabhängige Käfte Bsp.: akete i Gavitationsfeld (g nicht const.) F () Nu -Kop. G M 2 e (späte eh) a v dv a d v dv v dv d v dv 1 G M 2 v2 C 1 1 2 v (Abschuss vo Pol) d G M 2 C 1 d 2 G M dv d v 1 2 v 2

Mehr

1.) Der Torsionsfaden hat einen extrem kleinen Radius. Wie wirkt sich dies auf die Winkelrichtgröße D und die Schwingungsdauer T aus?

1.) Der Torsionsfaden hat einen extrem kleinen Radius. Wie wirkt sich dies auf die Winkelrichtgröße D und die Schwingungsdauer T aus? M50 Name: Bestimmung der Gravitationskonstanten mit der Gravitations-Drehwaage Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Klausur 2 Anmerkung: Diese Klausur enthält 9 Aufgaben, davon eine Multiple

Mehr

Das Galaktische Zentrum

Das Galaktische Zentrum Das Galaktische Zentrum Max Camenzind Akademie Heidelberg Januar 2016 Avery Broderick Korrektur zu NGC 1277 Die Masse war falsch! Diese Masse ist falsch! Korrektur zu NGC 1277: Die Masse beträgt nur 1

Mehr

Drei Kepler ergeben einen Newton und einen Hamilton

Drei Kepler ergeben einen Newton und einen Hamilton Drei Keler ergeben einen Newton und einen Hamilton 1. Die drei Gesetze von Keler 2. Ebene Bahnen, die K2 gehorchen, verlangen, dass die Kraft eine Zentralkraft ist 3. Aus K1 und K2 folgt, dass die Beschleunigung

Mehr

Hanser Fachbuchverlag, 1999, ISBN

Hanser Fachbuchverlag, 1999, ISBN *XQGODJHQGH3K\VLN Vorlesung im Fachbereich VI der niversität Trier Fach: Geowissenschaften Sommersemester 21 'R]HQW '.DOROWH 'LSORP3K\VLNH )DFKKRFKVFKXOH7LH 7HO )D[ (DLOPROWH#IKWLHGH,QIRV]X9ROHVXQJXQWHKWWSZZZIKWLHGHaPROWHJGS

Mehr

Zentralpotential. Zweikörperproblem. Symmetrie Erhaltungsgröße Vereinfachung. Transformation zu Schwerpunkts- und Relativkoordinaten

Zentralpotential. Zweikörperproblem. Symmetrie Erhaltungsgröße Vereinfachung. Transformation zu Schwerpunkts- und Relativkoordinaten Zentralpotential Zweikörperproblem Symmetrie Erhaltungsgröße Vereinfachung 1. Translation Schwerpunktsimpuls Einteilchenproblem 2. Zeittransl. Energie Dgl. 1. Ordnung 3. Rotation Drehimpuls Radialgl. Transformation

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 215/16 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Nitin Saxena, Daniel Moseguí

Mehr

{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M.

{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M. Otsabhängige Käfte Bsp.: Rakete im Gavitationsfeld (g nicht const.) F () = G m M 2 Nu -Komp. a = dv dt e v = v = dv d d dt a d = v dv v dv = G M 1 2 v2 = G M C 1 = 1 2 v 0 (späte meh) (Abschuss vom Pol)

Mehr

Versuch 2 Gravitationswaage

Versuch 2 Gravitationswaage Physikalisches Praktikum Versuch Gravitationswaage Name: Johannes Dörr Gruppe: 3 Oliver Schönborn Datum: 9.5.6 Assistent: Matthias Stein testiert: 1 Einleitung Neben starker Wechselwirkung, schwacher Wechselwirkung

Mehr

+m 2. r 2. v 2. = p 1

+m 2. r 2. v 2. = p 1 Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

Die Entwicklung des Erde-Mond-Systems

Die Entwicklung des Erde-Mond-Systems THEORETISCHE AUFGABE Nr. 1 Die Entwicklung des Erde-Mond-Systems Wissenschaftler können den Abstand Erde-Mond mit großer Genauigkeit bestimmen. Sie erreichen dies, indem sie einen Laserstrahl an einem

Mehr

Formelsammlung Mechanik

Formelsammlung Mechanik Joachim Stiller Formelsammlung Mechanik Alle Rechte vorbehalten Formelsammlung Mechanik Ich möchte in den nächsten Wochen einmal eine Formelsammlung zur Mechanik erstellen, die ich aus dem Telekolleg Mechanik

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls Physik Impuls Impuls Träge Masse in Bewegung Nach dem 1. Newton schen Gesetz fliegt ein kräftefreier Körper immer weiter gradeaus. Je größer die träge Masse desto größer setzt sie einer Beschleunigung

Mehr

Schwingungen. Eine ausgelenkte Feder schwingt harmonisch. Die Bewegungsgleichung. D m. und B = ω

Schwingungen. Eine ausgelenkte Feder schwingt harmonisch. Die Bewegungsgleichung. D m. und B = ω Schwingungen Eine ausgelenkte Feder schwingt harmonisch. Die Bewegungsgleichung ẍ = D m x führt zu einer Schwingung A = x(t) = A e iωt + B e iωt, mit ω = ( x0 2 i 2 ) ẋ 0 e iωt 0 und B = ω D m ( x0 2 +

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Expeimentalphysik I (Kip WS 009) Inhalt de Volesung Expeimentalphysik I Teil : Mechanik. Physikalische Gößen und Einheiten. Kinematik von Massepunkten 3. Dynamik von Massepunkten 4. Gavitation 4. Keplesche

Mehr

E1 Mechanik Lösungen zu Übungsblatt 3

E1 Mechanik Lösungen zu Übungsblatt 3 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik en zu Übungsblatt 3 WS 014 / 015 Prof. Dr. Hermann Gaub Aufgabe 1 Sonnensystem Abstände innerhalb des Sonnensystems werden häufig

Mehr

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen Physik für Pharmazeuten MECHANIK II Arbeit, Energie, Leistung Impuls Rotationen Mechanik ikii Flaschenzug Mechanik ikii Flaschenzug: beobachte: F 1 kleiner als F (Gewichtskraft), aber: r größer alsr aber:

Mehr

Einführung in die Astronomie und Astrophysik II

Einführung in die Astronomie und Astrophysik II Einführung in die Astronomie und Astrophysik II Teil 8 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Quiz: Wo und was in aller Welt ist das? Themen Sternentstehung Sternentwicklung Das

Mehr

Einführung in die Physik für Maschinenbauer

Einführung in die Physik für Maschinenbauer Einführung in die Physik für Maschinenbauer WS 011/01 Teil 5 7.10/3.11.011 Universität Rostock Heinrich Stolz heinrich.stolz@uni-rostock.de 6. Dynamik von Massenpunktsystemen Bis jetzt: Dynamik eines einzelnen

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht, Rotation Dr. Daniel Bick 14. November 2012 Daniel Bick Physik für Biologen und Zahnmediziner 14. November 2012 1 / 38 Folien

Mehr

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze Seite 1 von 6 Astronomische Weltbilder und Keplersche Gesetze Heliozentrisches Weltbild Die Sonne steht im Mittelpunkt unseres Sonnensystems, die Planeten umkreisen sie. Viele Planeten werden von Monden

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Hochschule Düsseldorf University of Applied Sciences. 29. September 2016 HSD. Physik. Donec quis nunc. Quelle: Wikipedia

Hochschule Düsseldorf University of Applied Sciences. 29. September 2016 HSD. Physik. Donec quis nunc. Quelle: Wikipedia Physik Donec quis nunc Quelle: Wikipedia Wie lerne ich erfolgreich? Gruppenarbeit Lernerfolg überprüfen Gegenseitig,aus dem Kopf erklären Arbeitsbelastung einteilen Schwere Fächer zuerst Wie lerne ich

Mehr

Mathematisches Kaleidoskop WS15/16 Materialien Teil 1

Mathematisches Kaleidoskop WS15/16 Materialien Teil 1 Mathematisches Kaleidoskop WS15/16 Materialien Teil 1 Dr. Hermann Duerkop E-Mail: hd@nabla.de 1 1 Kegelschnitte 1.1 Kopernikus, Kepler und Newton: Planetenbewegungen Kopernikus (1473-1543) Kepler (1571-1630)

Mehr

Das Sonnensystem. Teil 1. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg

Das Sonnensystem. Teil 1. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg Das Sonnensystem Teil 1 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 6. Dezember 2016 1 / 42 Übersicht Allgemeiner Überblick Bahnen der Planeten historisch:

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 4

Grundlagen der Physik 1 Lösung zu Übungsblatt 4 Grundlagen der Physik Lösung zu Übungsblatt 4 Daniel Weiss 3. November 9 Inhaltsverzeichnis Aufgabe - Elektron auf Kreisbahn a) Geschwindigkeit des Elektrons.......................... b) Energie des Elektrons...............................

Mehr

Hochschule Düsseldorf University of Applied Sciences. 01. Oktober 2015 HSD. Physik. Quelle: Wikipedia

Hochschule Düsseldorf University of Applied Sciences. 01. Oktober 2015 HSD. Physik. Quelle: Wikipedia Physik Quelle: Wikipedia Wie lerne ich erfolgreich? Gruppenarbeit Lernerfolg überprüfen Gegenseitig,aus dem Kopf erklären Arbeitsbelastung einteilen Schwere Fächer zuerst Lernen Sie nie allein! Selber

Mehr

T1: Theoretische Mechanik, SoSe 2016

T1: Theoretische Mechanik, SoSe 2016 T1: Theoretische Mechanik, SoSe 2016 Jan von Delft http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik Newtonsche Sätze (Originalformulierung) 1. Jeder Körper verharrt in seinem

Mehr

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus.

F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus. II. Die Newtonschen esetze ================================================================== 2. 1 Kräfte F H Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die

Mehr

5.3 Drehimpuls und Drehmoment im Experiment

5.3 Drehimpuls und Drehmoment im Experiment 5.3. DREHIMPULS UND DREHMOMENT IM EXPERIMENT 197 5.3 Drehimpuls und Drehmoment im Experiment Wir besprechen nun einige Experimente zum Thema Drehimpuls und Drehmoment. Wir betrachten ein System von N Massenpunkten,

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Planetenschleifen mit Geogebra 1

Planetenschleifen mit Geogebra 1 Planetenschleifen Planetenschleifen mit Geogebra Entstehung der Planetenschleifen Nach dem dritten Kepler schen Gesetz stehen die Quadrate der Umlaufzeiten zweier Planeten im gleichen Verhältnis wie die

Mehr

2. Klassisches Teilchenbild: Konzept der Newtonschen Mechanik

2. Klassisches Teilchenbild: Konzept der Newtonschen Mechanik 2. Klassisches Teilchenbild: Konzept der Newtonschen Mechanik Unsere Alltagserfahrung vermittelt den Eindruck, dass sich die Sonne um die Erde bewegt. Demgegenüber bezieht Nikolaus Kopernikus vor rund

Mehr

Physik für Pharmazeuten und Biologen MECHANIK I. Kinematik Dynamik

Physik für Pharmazeuten und Biologen MECHANIK I. Kinematik Dynamik Physik für Pharmazeuten und Biologen MECHANIK I Kinematik Dynamik MECHANIK Bewegungslehre (Kinematik) Gleichförmige Bewegung Beschleunigte Bewegung Kräfte Mechanik I 1.1 Kinematik Kinematik beschreibt

Mehr

Gravitationstheorie: nach Newton und nach Einstein

Gravitationstheorie: nach Newton und nach Einstein Gravitationstheorie: nach Newton und nach Einstein Franz Embacher Fakultät für Physik der Universität Wien Vortrag im Astronomischen Seminar Kuffner Sternwarte, Wien, 13. April 2015 Inhalt Kepler: die

Mehr

Formelsammlung Astronomie

Formelsammlung Astronomie Joachim Stiller Formelsammlung Astronomie Alle Rechte vorbehalten Formelsammlung Astronomie In diesem Thread möchte ich einmal eine Formelsammlung zur Astronomie für die Galerie vorinstallieren... Zunächst

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Theorie A (WS2005/06) Musterlösung Übungsblatt

Theorie A (WS2005/06) Musterlösung Übungsblatt Theorie A (WS2005/06) Musterlösung Übungsblatt 3 0.02.06. Stammfunktionen: dx sin(x) = cos(x), dx x = 2(x) 3/2, 2. Partielle Integration: dxu(x) v (x) = u(x) v(x) dx cos(x) = sin(x), dxx n = n + x(n+)

Mehr

Von Newton bis Einstein-Die Anziehungskraft

Von Newton bis Einstein-Die Anziehungskraft Von Newton bis Einstein-Die Anziehungskraft Dr. Fabiano Nart Gruppo Divulgazione Scientifica Dolomiti E. Fermi www.gdsdolomiti.org info.gdsdolomiti@gmail.com Bozen, den 26/03/2010 Dr. Fabiano Nart (GDS

Mehr

Andreas Brenneis; Rebecca Saive; Felicitas Thorne. Mechanik 28./

Andreas Brenneis; Rebecca Saive; Felicitas Thorne. Mechanik 28./ TU München Experimentalphysik 1 DVP Vorbereitungskurs Andreas Brenneis; Rebecca Saive; Felicitas Thorne Mechanik 28./29.07.2008 Inhaltsverzeichnis 1 Kinematik 2 1.1 Ort, Geschwindigkeit, Beschleunigung....................

Mehr

Vorlesung 3: Roter Faden:

Vorlesung 3: Roter Faden: Vorlesung 3: Roter Faden: Bisher: lineare Bewegungen Energie- und Impulserhaltung Heute: Beispiele Energie- und Impulserhaltung Stöße Gravitationspotential Exp.: Billiard Ausgewählte Kapitel der Physik,

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Nachlese zur Kopernikanischen Revolution. Max Camenzind Akademie HD März 2016

Nachlese zur Kopernikanischen Revolution. Max Camenzind Akademie HD März 2016 Nachlese zur Kopernikanischen Revolution Max Camenzind Akademie HD März 2016 Aristoteles Alles fällt zum Zentrum der Erde Also ist die Erde das Zentrum des Kosmos! Doch warum fallen Steine zur Erde, während

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

Fundamentale Kräfte Kontakt - Kräfte Feld - Kräfte

Fundamentale Kräfte Kontakt - Kräfte Feld - Kräfte Fundamentale Kräfte Kontakt - Kräfte Feld - Kräfte Fundamentale Kräfte Gravitationskraft und Gewicht (Melone) Reaktions- Partner Nach dem 3. Newton schen Prinzip übt der Körper auch Eine Kraft auf die

Mehr