Dynamik. 4.Vorlesung EPI
|
|
|
- Sabine Kästner
- vor 8 Jahren
- Abrufe
Transkript
1 4.Vorlesung EPI I) Mechanik 1. Kinematik 2.Dynamik a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft 1
2 Das 2. Newtonsche Prinzip beschreibt empirischen Zusammenhang zwischen Kraft und zeitlicher Änderung des Impulses pmv: ( ) F r r p t und definiert Einheit der Kraft (1 Newton): [ ] 1[Newton] 1 kg m 1 N s 2 2
3 b) Fundamentale Kräfte Es gibt in der Natur 3 fundamentale Kräfte, die zwischen Elementarteilchen wirken: Schwerkraft (Gravitation) > wirkt auf Masse oder Energie: Planeten-, Sternbewegung,... Elektro-Magnetisch Magnetisch-Schwache Kraft (oder kurz: Elektroschwache Kraft) > wirkt auf elektrische und schwache Ladung: Atome, Moleküle, Festkörper... Starke Kraft >wirkt auf Quarks, Gluonen: Kernkräfte, Kräfte zwischen Neutron und Proton,... Alle Kräfte können auf die 3 elementaren Kräfte b.z.w. Wechselwirkungen zurückgef ckgeführt werden. 3
4 c) Schwerkraft Trägheit und Gewichtskraft Beobachtungen: Gegenstände auf der Erdoberfläche werden beschleunigt (Erdbeschleunigung, siehe Experiment mit fallenden Wassertropfen) Damit Gegenstand nicht fällt, ist eine (Halte-) Gegen-Kraft notwendig Versuche zur Beschleunigung im Erdfeld: 1.Fallender Gegenstand Beschleunigte Bewegung mit Erdbeschleunigung g, d.h. auf den Körper wirkt Kaft: F G m g 4
5 2. Versuch: Fallender Gegenstand (Masse m G ) zieht,d.h. beschleunigt zweite Masse (Schlittenmasse m S ) Gesamtmasse m G + m S wird beschleunigt durch Kraft F G m G g Kräftegleichgewicht: Gewichtskraft und Gegen-Trägheitskraft m Gesamt m S + m G Gewichtskraft Beschleunigende Kraft: F m G g m Gesamt a (m s + m G ) a Die Beschleunigung wird durch die zusätzliche (Schlitten) Masse verringert! a m G m G + m S g 5
6 1. Newtons Gravitationsgesetz: Zwischen 2 Körpern wirkt eine Kraft, die von den Massen der Körper abhängt: F G N M 1 M 2 r 2 Richtung der Kraft (anziehend) siehe Skizze mit G N 6, Nm 2 kg 2 6
7 Spezialfall: Schwerkraft auf der Erdoberfläche: M 1 M Erde kg; und r Erde 6400 km ergibt: M F G 1 M N 6, M 2 r F 9,81 N kg M 2 g M 2 9,8 M 2 mit der Erdbeschleunigung g Gewicht Kraft, die Erde auf Körper ausübt. Allgemeine Aussagen: 1. Erdgeschleunigung g hängt nicht von M 2 ab, solange M 2 <<M Erde. Versuch mit evakuiertem Fallrohr. Feder und Stein fallen gleich schnell. 2. Schwere und träge Masse sind identisch (Einstein) 7
8 d) Federkräfte Dynamik Kräfte bewirken eine elastische Verformung von Festkörpern wie Stahl (siehe deformierbare Medien). Dies kommt letztlich durch elektromagnetische Kräfte zwischen Atomen zustande. Für "kleine" Kräft F und kleine Verformungen x gilt ein linearer Zusammenhang: r F D r x D ist die "Federkonstante F die Kraft, mit der die Feder zieht. Federn können als Kraftmesser eingesetzt werden. "Newtonmeter", "Dynamometer" 8
9 5. Reibung e) Reibung: Mußte in unseren Versuchen unterdrückt werden; im Alltag lebensnotwendig (Gehen, Bremsen..) Reibung ist durch elektrische Kräfte zwischen Atomelektronen an den Grenzflächen bedingt Einfachste Formen: a) Haft-, Gleit-, Rollreibung ( Coulomb-Reibung ) b) innere Reibung bei Flüssigkeiten (Stokes) Erfahrung: Um einen Körper in Bewegung zu setzen, ist eine Kraft F R notwendig, die proportional zur Normalkraft F N und der Art der Oberfläche ist. mg r r F RH µ F H N µ : Haftreibungs-Koeffizient ( ) Η 9
10 Reibung Die Haftreibung hängt nur von der Normalkraft ab, nicht von der Größe der Auflagefläche. Rutscht der Körper, dann nimmt die Reibungskraft ab F (Ziehen an Federwaage) r F RG r µ F µ G N H r F N t 10
11 Reibung Messung der Haftreibungskraft: schiefe Ebene: F R F H F G sinα wobei F G mg r r F RH µ F H N (Hangabtriebskraft) (Reibungskraft) wobei F N F G cosα (Normalkraft) Generell gilt: µ < RR < µ G µ H 11
12 Typen der Reibung: α) Coulomb Reibung Wann: zwischen festen Körpern Reibungskonstante μ Haftreibung μ H (Relativgeschwindigkeit v0) Gleitreibung µ G (v 0, (v 0, µ R hängt nicht von v ab!) Rollreibung µ RR 0, µ G hängt nicht von v ab!) Stahl/Stahl Stahl/Stahl (Öl) Teflon/Teflon Gummi/Asphalt (Bei Nässe μ H μ G μ RR wesentlich kleiner) 12
13 Rollreibung durch Verformung von Rad und Untergrund: β)stokes Reibung (Viskose Reibung) Wann: fester Körper, der sich langsam durch Fluid bewegt, mit Relativgeschwindigkeit v F R ~ v Beispiel: Kugel mit Radius r in Fluid mit Viskosität η F R 6 πηrv [Versuch zur Stokes-Reibung] 13
14 γ) Newton Reibung Bei schneller Bewegung! (Wirbelbildung). Der Körper verdrängt und beschleunigt Fluidteile F R ~ v 2 F R 0.5C W ρav 2 Mit ρ Dichte des Fluids, A Querschnitt des Körpers senkrecht zur Bewegungsrichtung, v Geschwindigkeit und Widerstandskoeffizient C W (formabhängig) Kugel C W 1, Auto C W Bei konstanter Kraft wird die maximale Geschwindigkeit durch die Reibung bestimmt: F R (v) F ext Beispiel: Auto mit C W 0.5; A 2m² ρ Luft 1.3 kg/m³ Maximale Leistung W Max 100 kw, F ext W Max /v F R 1 2 C W ρav 2 F ext W v Max v max 2WMax C ρa W m 53 s 192 km h 14
Dynamik. 4.Vorlesung EP
4.Vorlesung EP I) Mechanik 1. Kinematik 2.Dynamik Fortsetzung a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft Versuche: 1.
Dynamik. 4.Vorlesung EP
4.Vorlesung EP I) Mechanik 1. Kinematik.Dynamik ortsetzung a) Newtons Axiome (Begriffe Masse und Kraft) b) undamentale Kräfte c) Schwerkraft (Gravitation) d) ederkraft e) Reibungskraft Versuche: Zwei Leute
4. Beispiele für Kräfte
4. Beispiele für Kräfte 4.1 Federkraft 4.2 Gravitation 4.3 Elektrische Kraft 4.4 Reibungskraft 4. Beispiele für Kräfte Man kennt: Federkraft, Reibungskraft, Trägheitskraft, Dipolkraft, Schubskraft, Coulombkraft,
4. Beispiele für Kräfte
4. Beispiele für Kräfte 4.1 Federkraft 4.2 Gravitation 4.3 Elektrische Kraft 4.4 Reibungskraft 4Bi 4. Beispiele il für Kräfte Käft Man kennt: Federkraft, Reibungskraft, Trägheitskraft, Dipolkraft, Schubskraft,
4. Beispiele für Kräfte
Inhalt 4. Beispiele für Kräfte 4.1 Gravitation 4.2 Elektrische Kraft 4.3 Federkraft 4.4 Reibungskraft 4.1 Gravitation 4.1 Gravitation 4. Beispiele für Kräfte Man kennt: Federkraft, Reibungskraft, Trägheitskraft,
2.0 Dynamik Kraft & Bewegung
.0 Dynamik Kraft & Bewegung Kraft Alltag: Muskelkater Formänderung / statische Wirkung (Gebäudestabilität) Physik Beschleunigung / dynamische Wirkung (Impulsänderung) Masse Schwere Masse: Eigenschaft eines
4. Beispiele für Kräfte
4. Beispiele für Kräfte Inhalt 4. Beispiele für Kräfte 4.1 Gravitation 4.2 Elektrische Kraft 4.3 Federkraft 4.4 Reibungskraft 4.5 Magnetische Kraft 4.1 Gravitation 4. Beispiele für Kräfte 4.1 Gravitation
4. Beispiele für Kräfte
4. Beispiele für Kräfte 4.1 Federkraft 4.2 Gravitation 4.3 Elektrische Kraft 4.4 Reibungskraft 4. Beispiele für Kräfte Man kennt: Federkraft, Reibungskraft, Trägheitskraft, Dipolkraft, Schubskraft, Coulombkraft,
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung
7.6 Brechung. 7.7 Zusammenfassung. Schwingungen und Wellen. Phasengeschwindigkeit ist von Wassertiefe abhängig
7.6 Brechung Phasengeschwindigkeit ist von Wassertiefe abhängig Dreieckige Barriere lenkt ebene Welle ab Dispersion Brechung von Licht 7.7 Zusammenfassung Schwingungen und Wellen 7.1 Harmonische Schwingungen
Fundamentale Kräfte Kontakt - Kräfte Feld - Kräfte
Fundamentale Kräfte Kontakt - Kräfte Feld - Kräfte Fundamentale Kräfte Gravitationskraft und Gewicht (Melone) Reaktions- Partner Nach dem 3. Newton schen Prinzip übt der Körper auch Eine Kraft auf die
MECHANIK I. Kinematik Dynamik
MECHANIK I Kinematik Dynamik Mechanik iki Versuche Luftkissenbahn Fallschnur Mechanik iki Kinematik Kinematik beschreibt Ablauf einer Bewegungeg Bewegung sei definiert relativ zu Bezugssystem Koordinatensystem
Physik 1 für Chemiker und Biologen 4. Vorlesung
Physik 1 für Chemiker und Biologen 4. Vorlesung 13.11.2015 https://xkcd.com/539/ Prof. Dr. Jan Lipfert [email protected] Heute: - Allgemeines zu Kräften - Kreisbewegungen - Zentrifugalkraft - Reibung
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 2: Kinematik und Dynamik Dr. Daniel Bick 04. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 04. November 2016 1 / 28 Wiederholung Konstante
Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn
Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu
Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2
Die Kraft Mechanik Newton sche Gesetze und ihre Anwendung (6 h) Physik Leistungskurs physikalische Bedeutung: Die Kraft gibt an, wie stark ein Körper auf einen anderen einwirkt. FZ: Einheit: N Gleichung:
Physik I Mechanik und Thermodynamik
Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften 1.5 Maßsysteme 1.6 Messfehler und
Dynamik. 4.Vorlesung EP
4.Volesung EP I) Mechanik. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft Vesuche: Raketenvesuche: Impulsehaltung
Klassische Experimentalphysik I Mechanik
Klassische Experimentalphysik I Mechanik Winter 2015/2016, Prof. Thomas Müller, IEKP, KIT Lösungsblatt 4) 1. Fahrstuhlfahrt F = m a Die Waage steht auf dem Fahrstuhlboden sieht daher mein Gewicht als F
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 15. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 15. November 2017 1 / 29 Übersicht 1 Wiederholung
Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation
22. Oktober 2015 Physik Gravitation Newton s Gravitationsgesetz Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen.
Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.
Physik: Mechanik Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Grundlagen Zeit & Raum Zeit t R Länge x R als Koordinate Zeit & Raum Zeit t R Länge x R als Koordinate Raum
2.2 Dynamik von Massenpunkten
- 36-2.2 Dynamik von Massenpunkten Die Dynamik befasst sich mit der Bewegung, welche von Kräften erzeugt und geändert wird. 2.2.1 Definitionen Die wichtigsten Grundbegriffe der Dynamik sind die Masse,
Fig. 1 zeigt drei gekoppelte Wagen eines Zuges und die an Ihnen angreifenden Kräfte. Fig. 1
Anwendung von N3 Fig. 1 zeigt drei gekoppelte Wagen eines Zuges und die an Ihnen angreifenden Kräfte. Die Beschleunigung a des Zuges Massen zusammen. Die Antwort Fig. 1 sei konstant, die Frage ist, wie
F H. Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die Umgebung wirkt auf ihn Kräfte aus.
II. Die Newtonschen esetze ================================================================== 2. 1 Kräfte F H Um einen Körper zu beschleunigen, müssen Körper aus der Umgebung ihn einwirken. Man sagt die
Basisexperiment: Bestimmung des Haft- und Gleitreibungskoeffizienten
Lehrerversion Basiseperiment: Bestimmung des Haft- und Gleitreibungskoeffizienten Lehrplanbezug: Reibungskraft, Gewichtskraft Ziel: Eperimentelle Bestimmung des Gleit- und Haftreibungskoeffizienten Voraussetzungen:
Mechanik. Entwicklung der Mechanik
Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik
Reibungskräfte. Haftreibung. (µ H hängt von Material und Oberflächenbeschaffenheit ab, aber nicht von der Größe der reibenden Oberflächen)
Reibungskräfte F =g=g N F zug Reibung ist eine der Bewegung entgegenwirkende Kraft, die entsteht, wenn zwei sich berührende Körper sich gegeneinander bewegen. Haftreibung F zug = F H ist die Kraft, die
Basisexperiment: Bestimmung des Haft- und Gleitreibungskoeffizienten
Lehrerversion Basiseperiment: Bestimmung des Haft- und Gleitreibungskoeffizienten Lehrplanbezug: Reibungskraft, Gewichtskraft Ziel: Eperimentelle Bestimmung des Gleit- und Haftreibungskoeffizienten Voraussetzungen:
Kapitel 5 Weitere Anwendungen der Newton schen Axiome
Kapitel 5 Weitere Anwendungen der Newton schen Axiome 5.1 Reibung 5.2 Widerstandskräfte 5.3 Krummlinige Bewegung 5.4 Numerische Integration: Das Euler-Verfahren 5.5 Trägheits- oder Scheinkräfte 5.6 Der
Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik
Fakultät für Physik Wintersemester 2016/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 4 / 9.11.2016 1. May the force... Drei Leute A, B, C ziehen
4. Dynamik der Massenpunkte und starren Körper
4. Dynamik der Massenpunkte und starren Körper Bisher: Die Ursache von Bewegungen blieb unberücksichtigt Im Folgenden: Es sollen die Ursachen von Wirkungen untersucht werden. Dynamik: Lehre von den Kräften
Kinetik des Massenpunktes
Technische Mechanik II Kinetik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.
Physik. 1. Mechanik. Inhaltsverzeichnis. 1.1 Mechanische Grössen. LAP-Zusammenfassungen: Physik Kraft (F) und Masse (m) 1.1.
Physik Inhaltsverzeichnis 1. Mechanik...1 1.1 Mechanische Grössen...1 1.1.1 Kraft (F) und Masse (m)...1 1.1.2 Die Masse m...1 1.1.3 Die Kraft F...1 1.1.4 Die Geschwindigkeit (v) und die Beschleunigung
MECHANIK. Impuls und Geschwindigkeit. Holger Hauptmann Europa-Gymnasium, Wörth am Rhein Strukturen und Analogien - Mechanik 1
MECHANIK Impuls und Geschwindigkeit Holger Hauptmann Europa-Gymnasium, Wörth am Rhein [email protected] Strukturen und Analogien - Mechanik 1 a. Impuls von Anfang an Bemerkungen Physik mit extensiven
2) Nennen und beschreiben Sie kurz die drei Newtonschen Axiome! 1. Newt. Axiom: 2. Newt. Axiom: 3. Newt. Axiom:
Übungsaufgaben zu 3.1 und 3.2 Wiederholung zur Dynamik 1) An welchen beiden Wirkungen kann man Kräfte erkennen? 2) Nennen und beschreiben Sie kurz die drei Newtonschen Axiome! 1. Newt. Axiom: 2. Newt.
Dynamik des Massenpunktes
Dynamik des Massenpunktes Dynamik: Beschreibt die Bewegung von Körpern unter Berücksichtigung der auf die Körper wirkenden Kräfte. Damit versucht die Dynamik, Ursachen für die Bewegung von Körpern zu beschreiben.
~F Z. Physik 1 für Chemiker und Biologen 5. Vorlesung Heute: - Reibung, fortgesetzt - Gravitation - Arbeit, Energie, Leistung
Physik 1 für Chemiker und Biologen 5. Vorlesung 26.11.2018 Heute: - Reibung, fortgesetzt - Gravitation - Arbeit, Energie, Leistung Wiederholungs-/Einstiegsfrage: Abstimmen unter pingo.upb.de, # 486428
Ferienkurs Experimentalphysik 1
Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2014/2015 1 Seite 2 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpunktes 3 1.1 Gleichförmig beschleunigte Bewegungen................
Aufrechterhaltung der Energie im Betrieb Kraft und Arbeitsmaschinen Physikalische Grundlagen. Wolfgang Weiß
Aufrechterhaltung der Energie im Betrieb Kraft und Arbeitsmaschinen Physikalische Grundlagen Wolfgang Weiß 10-04-2016 Maßeinheiten 2 Bewegungsgleichungen 3 Energie Energie ist eine fundamentale physikalische
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel
Arbeit, Leistung und Energie
Arbeit, Leistung und Energie Aufgabe 1 Ein Block kann reibungsfrei über einen ebenen Tisch gleiten. Sie üben eine Kraft von 5 Newton in Richtung 37 von der Waagrechten aus. Sie üben diese Kraft aus, während
Physik 1 für Chemiker und Biologen 3. Vorlesung
Physik 1 für Chemiker und Biologen 3. Vorlesung 06.11.2017 Wiederholungs-/Einstiegsfrage: Abstimmen unter pingo.upb.de Session ID: 389906 Der Ironman Triathlon auf Hawaii besteht aus 4 km Schwimmen, 180
Vorlesung 2: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion
Vorlesung 2: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion Newton (1642-1727) in Philosophiae Naturalis Principia Mathematica, publiziert in 1687. Immer
Vorlesung 5: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion
Vorlesung 5: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion Newton (1642-1727) in Philosophiae Naturalis Principia Mathematica, publiziert in 1687. Immer
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene
Physik 1 für Ingenieure
Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm [email protected] Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#
2.2 Arbeit und Energie. Aufgaben
2.2 Arbeit und Energie Aufgaben Aufgabe 1: Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt. Für die
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel
Prof. Liedl Übungsblatt 6 zu PN1. Übungen zur Vorlesung PN1. Übungsblatt 6 Lösung. Besprechung am
Übungen zur Vorlesung PN1 Übungsblatt 6 Lösung Besprechung a7.11.2012 Aufgabe 1: Zentrifuge Eine Zentrifuge habe einen Rotor mit einem Durchmesser von 80 cm. An jedem Ende hängen Schwinggefäße mit einer
Was haben Sie zum Unterrichtsinhalt Translation gelernt?
Was haben Sie zum Unterrichtsinhalt Translation gelernt? Bewegung Veränderung des Ortes mit der Zeit relativ zu einem Bezugssystem Veränderung in Raum und Zeit von einem Standpunkt aus Mensch bewegt sich
Übungen zu Physik I für Physiker Serie 3 Musterlösungen
Übungen zu Physik I für Physiker Serie 3 Musterlösungen Allgemeine Fragen 1. Coulomb- und Gravitationskraft Atome und damit die Materie bestehen aus den Z-fach positiv geladenen Atomkernen und Z negativ
Ferienkurs Experimentalphysik 1
Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2015/2016 1 Seite 2 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpunktes 3 1.1 Gleichförmig beschleunigte Bewegungen................
Solution V Published:
1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale
Die fundamentalen Gesetze der Mechanik (Isaac Newton, Kraft, Masse)
Die fundamentalen Gesetze der Mechanik (Isaac Newton, Kraft, Masse) Die fundamentalen Gesetze der Mechanik (Isaac Newton, Kraft, Masse) Bewegung Masse Kräfte Die fundamentalen Gesetze der Mechanik (Isaac
Lösungen zu Aufgaben Kräfte, Drehmoment c 2016 A. Kersch
Lösungen zu Aufgaben Kräfte, Drehmoment c 2016 A. Kersch Freischneiden Was zeigt die Waage? Behandeln Sie die Person auf der Plattform auf der Waage als eindimensionales Problem. Freischneiden von Person
Physik 1. Kinematik, Dynamik.
Physik Mechanik 3 Physik 1. Kinematik, Dynamik. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik 5 Themen Definitionen Kinematik Dynamik Physik Mechanik 6 DEFINITIONEN Physik Mechanik 7 Was ist
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene
v = x t = 1 m s Geschwindigkeit zurückgelegter Weg benötigte Zeit x t Zeit-Ort-Funktion x = v t + x 0
1. Kinematik ================================================================== 1.1 Geradlinige Bewegung 1.1. Gleichförmige Bewegung v = x v = 1 m s v x Geschwindigkeit zurückgelegter Weg benötigte Zeit
Experimentalphysik E1
Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html
Physik 1 Zusammenfassung
Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................
Kapitel 04 Kräfte. Arten Wirkungen Eigenschaften Messbarkeit Genau betrachtet: Die Gewichtskraft; Die Reibungskraft
Kapitel 04 Kräfte Arten Wirkungen Eigenschaften Messbarkeit Genau betrachtet: Die Gewichtskraft; Die Reibungskraft a) Welche Kräfte gibt es? (S. 61, 62) Zähle übersichtlich auf, welche Kräfte es gibt!
Physik Klasse 7. Projekt. Energie, Umwelt, Mensch 8h. Kraft und ihre Wirkungen. 22h. Elektrische Leitungsvorgänge. Naturgewalten Blitz und Donner 3h
1. Kraft und ihre Wirkungen KA 22h Energie, Umwelt, Mensch 8h 2. Projekt Physik Klasse 7 3. Elektrische Leitungsvorgänge KA 20h 4. Naturgewalten Blitz und Donner 3h Kraft und ihre Wirkungen Lies LB. S.
3. Laminar oder turbulent?
3. Laminar oder turbulent? Die Reynoldszahl Stokes- Gleichung Typisch erreichbare Reynoldszahlen in der Mikrofluik Laminare Strömung Turbulente Strömung 1 Durchmesser L Dichte ρ TrägheitskraG: F ρ ρu 2
Physik 1 für Chemiker und Biologen 3. Vorlesung
Physik 1 für Chemiker und Biologen 3. Vorlesung 07.11.2015 Heute: - Fortsetzung: Bewegungen in 1, 2 und 3 D - Freier Fall und Flugbahnen - Kräfte und Bewegung - Newtonschen Axiome https://xkcd.com/482/
(no title) Ingo Blechschmidt. 13. Juni 2005
(no title) Ingo Blechschmidt 13. Juni 2005 Inhaltsverzeichnis 0.1 Tests............................. 1 0.1.1 1. Extemporale aus der Mathematik...... 1 0.1.2 Formelsammlung zur 1. Schulaufgabe..... 2 0.1.3
Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte
Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,
Das Magnetfeld. Das elektrische Feld
Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht und Rotation Dr. Daniel Bick 16. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 16. November 2016 1 / 39 Impuls
Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte
Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,
Formelsammlung: Physik I für Naturwissenschaftler
Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]
5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009
5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken
Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich
2.2 Arbeit und Energie. Aufgaben
Technische Mechanik 3 2.2-1 Prof. Dr. Wandinger Aufgabe 1 Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt.
Physik für Pharmazeuten und Biologen MECHANIK I. Kinematik Dynamik
Physik für Pharmazeuten und Biologen MECHANIK I Kinematik Dynamik MECHANIK Bewegungslehre (Kinematik) Gleichförmige Bewegung Beschleunigte Bewegung Kräfte Mechanik I 1.1 Kinematik Kinematik beschreibt
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #7 28/10/2008 Vladimir Dyakonov [email protected] Mechanik Teil 3 - Versuche M1 Dichte und Hydrodynamik: Bestimmung der Dichte eines zylindrischen
Mechanik I. Arbeitsblätter. (Lehrerversion) GIDA 2010
Arbeitsblätter (Lehrerversion) Sek. I Arbeitsblatt 1 Kräfte: Vervollständige den Lückentext! Überall in der Welt begegnen uns Kräfte. Man kann sie nicht direkt sehen, man erkennt sie nur an ihrer Wirkung.
Theoretische Physik I und II
Theoretische Physik I und II gelesen von Dr. F. Spanier Sommersemester 2009 L A TEX von Maximilian Michel 22. April 2009 Inhaltsverzeichnis I. Theoretische Physik 1 Mechanik 4 1. Historische Einführung
Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com
GRUNDLAGEN DER MECHANIK Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11 von Matthias Kolodziej shorebreak13 @ aol.com Hagen, Westfalen September 2002 Inhalt: I. Kinematik 1.
Grund- und Angleichungsvorlesung Kinematik, Dynamik.
2 Grund- und Angleichungsvorlesung Physik. Kinematik, Dynamik. WS 18/19 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe
Masse, Kraft und Beschleunigung Masse:
Masse, Kraft und Beschleunigung Masse: Seit 1889 ist die Einheit der Masse wie folgt festgelegt: Das Kilogramm ist die Einheit der Masse; es ist gleich der Masse des Internationalen Kilogrammprototyps.
Version A. Aufgabe 1. A: 1.2 m B: 0.01 m C: 0.11 m D: 0.31 m E: m. Aufgabe 2
Aufgabe 1 Eine Kugel mit Masse 5 kg wird auf eine senkrecht stehende Spiralfeder mit Federkonstante D=5000 N/m gelegt. Wie weit muss man die Kugel nun nach unten drücken (die Feder stauchen), damit beim
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
Zusammenfassung. Reale feste und flüssigekörper
Zusammenfassung Kapitel l6 Reale feste und flüssigekörper 1 Reale Körper Materie ist aufgebaut aus Atomkern und Elektronen-Hülle Verlauf von potentieller Energie E p (r) p und Kraft F(r) zwischen zwei
Grundwissen. Physik. Jahrgangsstufe 7
Grundwissen Physik Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Seite 1 1. Aufbau der Materie 1.1 Atome Ein Atom besteht aus dem positiv geladenen Atomkern und der negativ geladenen Atomhülle aus
1. Geradlinige Bewegung
1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei
Physikalisches Praktikum
Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches
Prüfungsfrage Strömung der Flüssigkeiten. Fluideigenschaften. Strömungslehre. HYDROSTATIK keine Bewegung
016.11.18. Prüfungsfrage Strömung der Flüssigkeiten Typen der Flüssigkeitsströmung. Die Reynolds-Zahl. Die Viskosität. Die Gesetzmäßigkeiten der Flüssigkeitsströmung: die Gleichung der Kontinuität, das
Formelsammlung
Formelsammlung Geradlinige Bewegung Bewegung eines Körpers Geschwindigkeit Weg Zeit - Diagramme Zeit s s ~ t v v = const t a a = 0 t t Bewegung eines Körpers Beschleunigte Bewegung Beschleunigung Geschwindigkeit
Die hier im pdf-format dargestellten Musterblätter sind geschützt und können weder bearbeitet noch kopiert werden.
Die hier im pdf-format dargestellten Musterblätter sind geschützt und können weder bearbeitet noch kopiert werden. Inhalt Themengebiet Beschreibung Arbeitsblatt zur Haft- und Gleitreibung Arbeitsblatt
1 Klassische Mechanik
1 Klassische Mechanik 1.1 Einführung Einheiten, Einheitensysteme Messungen und Messgenauigkeit Statistische Beschreibung und signifikante Stellen Dimensionsanalyse und Lösung physikalischer Probleme 1.2
