Physik 1. Kinematik, Dynamik.
|
|
|
- Richard Gerstle
- vor 9 Jahren
- Abrufe
Transkript
1
2 Physik Mechanik 3 Physik 1. Kinematik, Dynamik. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH
3 Physik Mechanik 5 Themen Definitionen Kinematik Dynamik
4 Physik Mechanik 6 DEFINITIONEN
5 Physik Mechanik 7 Was ist klassische Mechanik? Lehre von der Bewegung von Körpern ohne Einwirkung von Kräften (Kinematik) mit Einwirkung von Kräften (Dynamik) Liefert Antworten auf Fragen wie: Wie schnell muss das Förderband in der Geschirrrückgabe laufen, damit 300 Personen pro Stunde ihr Geschirr abgeben können? Was für eine Konsistenz muss die Schokohülle des Eises haben, damit sie beim Zubeißen so toll knackt? Wie viele Personen kann ein Fahrstuhl sicher gleichzeitig transportieren? Klassisch, weil makroskopische Betrachtung, Newtonʼsche Gesetze gelten
6 Physik Mechanik 8 Was ist ein Körper? Gegenstand, dessen Verhalten beobachtet wird, egal ob fest flüssig gasförmig
7 Physik Mechanik 10 Was ist eine Kraft? die Fähigkeit einen Körper zu beschleunigen zu drücken oder zu verformen Englisch: physikalisches Formelzeichen: Einheit:
8 Physik Mechanik 12 Was ist eine Beschleunigung? die Fähigkeit zur Veränderung der Geschwindigkeit eines Gegenstandes in Richtung und/oder deren Betrag Englisch: physikalisches Formelzeichen: Einheit:
9 Physik Mechanik 14 Was ist eine Geschwindigkeit? die Fähigkeit in einer bestimmten Zeit t eine bestimmte Strecke s zurückzulegen Englisch: physikalisches Formelzeichen: Einheit:
10 Physik Mechanik 15 Zusammenhang zwischen Kraft F und Beschleunigung a Wirkende Kraft F und damit erzielte Beschleunigung a sind zueinander proportional F ~ a Was ist der Proportionalitätsfaktor? Oder: Wie wird daraus eine Gleichung?
11 Physik Mechanik 17 Masse Proportionalitätsfaktor zwischen Kraft F und Beschleunigung a ist die Masse m des Körpers auf den die Kraft wirkt Masse ist eine Größe mit zwei Eigenschaften Trägheit: Nur durch Wirken von Kräften ändert sich die Bewegung einer Masse Schwere: Zwischen zwei oder mehr Massen wirken Anziehungskräfte (Gravitationskräfte) Englisch: mass physikalisches Formelzeichen: m Einheit: kg
12 Physik Mechanik 18 Unterschied zwischen Masse und Gewicht Masse ist unveränderlich ortsunabhängig Gewicht ist eigentlich eine Kraft, die Gewichtskraft F g entsteht durch Wirken der Gravitation(-skraft) zwischen Masse und Erdkugel (Mond, wo auch immer die Masse sich befindet)
13 Physik Mechanik 20 Unterschied zwischen Masse und Gewicht Für solche Sprünge wäre ein Astronaut auf der Erde nicht kräftig genug! Quelle: NASA
14 Physik Mechanik 22 Größen in der Mechanik Größe Länge, Strecke Zeit Masse Fläche Volumen Geschwindigkeit Beschleunigung Kraft Energie Winkel übliches Formelzeichen l, s, r, d, h t m A V (groß) v (klein) a, g F E in SI-Einheiten
15 Physik Mechanik 23 Translation Bewegungen, die linear verlaufen, werden Translationsbewegungen genannt Kinematik, Dynamik
16 Physik Mechanik Kinematik 24 KINEMATIK
17 Physik Mechanik Kinematik 25 Kinematik Bewegungslehre ohne wirkende resultierende Gesamtkraft Bewegungen werden durch das 1. Newton sche Gesetz beschrieben
18 Physik Mechanik Kinematik Newtonʼsches Gesetz Ein Gegenstand verharrt in Ruhe oder unveränderter Bewegung, solange für die auf den Gegenstand wirkende Gesamtkraft F Ges gilt Beispiel: Stehender Mensch solange die Muskeln arbeiten, kompensieren sie die Schwerkraft der Erde F Ges = 0 bei Ohnmacht sind die Muskeln ausgeschaltet, Sie fallen zu Boden F Ges 0
19 Physik Mechanik Kinematik 29 Bewegungen nach dem 1. Newtonʼschen Gesetz heißen gleichförmige Bewegung haben eine konstante Geschwindigkeit (v = ) haben keine Beschleunigung (a = )
20 Physik Mechanik Kinematik 31 Bewegungsgesetz gleichförmiger Bewegungen Weg-Zeit-Gesetz mit v Geschwindigkeit in m/ s s Weg in m t Zeit in s
21 Physik Mechanik Kinematik 37 Gleichförmige Bewegung (6/6) Momentaufnahmen einer Bewegung s = 0 m t = 0 s s = 5 m t = 10 s
22 Physik Mechanik Kinematik 38 Gleichförmige Bewegung Erstellen Sie die Messwerttabelle und berechnen Sie die Geschwindigkeit v des Körpers! s = 0 m t = 0 s s = 1 m t = 2 s s = 2 m t = 4 s s = 3 m t = 6 s s = 4 m t = 8 s s = 5 m t = 10 s
23 Physik Mechanik Kinematik 39 Aufgabe 1: Messwerttabelle
24 Physik Mechanik Kinematik 41 Grafische Darstellung der gleichförmigen Bewegung (s-t-diagramm) s in m allgemeine Geradengleichung Bewegungsgleichung t in s
25 Physik Mechanik Kinematik 42 Aufgabe 2: Tablettrückgabe Wie groß ist die Geschwindigkeit des Förderbands für die Geschirrrückgabe? Die Tabletts haben eine Länge l = 50 cm. Wie groß ist die maximale Kapazität des Förderbands? Auf welchen Wert müsste die Transportgeschwindigkeit v erhöht werden, um doppelt so viele Tabletts zurückgeben zu können?
26 Physik Mechanik Kinematik 43 Lösung 2: Tablettrückgabe
27 Physik Mechanik Kinematik 44 Aufgabe 3: Gleichförmige Bewegung Bestimmen Sie die Bewegungsgleichung! s in m t in s
28 Physik Mechanik Kinematik 47 Federwaage mit F k d Feder (Hooke'sches Gesetz) : Federkraft in N : Federkonstante in N/m : Auslenkung in m Die Kraft F wirkt der Auslenkung immer entgegen!
29 Physik Mechanik Kinematik 48 Aufgabe 4: Tablettspender Ein Tablettspender soll so gebaut sein, dass das oberste Tablett sich auf einer bestimmten Höhe befindet. Dies bewirkt eine Feder. Welche Kräfte wirken? Wie groß muss die Federkonstante in N/m gewählt werden, damit sich Tabletts mit einer Masse m = 300 g und einer Höhe h = 5 mm immer auf der richtigen Höhe befinden?
30 Physik Mechanik Kinematik 49 Lösung 4: Tablettspender
31 Physik Mechanik Dynamik 50 DYNAMIK
32 Physik Mechanik Dynamik 51 Dynamik Bewegungslehre mit resultierender Kraft Bewegungen werden durch das 2. Newtonʼsches Gesetz beschrieben
33 Physik Mechanik Dynamik Newtonʼsches Gesetz Die Bewegungsänderung eines Körpers ist proportional zu der auf ihn wirkenden Gesamtkraft F Ges Die auf einen Gegenstand wirkende Gesamtkraft F Ges ist gleich dem Produkt aus Masse m des Körpers und Beschleunigung a des Körpers. F Ges =m a Die Beschleunigung erfolgt in die Richtung, in die die Kraft F Ges wirkt. Grundgesetz der Mechanik
34 Physik Mechanik Dynamik 54 Bewegungen nach dem 2. Newtonʼschen Gesetz sind beschleunigte Bewegungen (a m/s 2 ) heißen gleichmäßig beschleunigte Bewegungen, wenn a = const sind Bewegungen unter Einfluss einer Kraft (F Ges N)
35 Physik Mechanik Dynamik 56 Gleichmäßig beschleunigte Bewegung Bewegungsgleichungen mit s Weg in m a Beschleunigung in m/ s t Zeit in s v Geschwindigkeit in m/ s 2
36 Physik Mechanik Dynamik 60 Aufgabe 5 Berechnen Sie die Beschleunigung der Bewegung von der vorigen Seite Erweitern Sie dazu die Tabelle und beschriften Sie den Tabellenkopf (Folie 61) Zeichnen Sie das Weg-Zeit-Diagramm auf Folie 63
37 Physik Mechanik Dynamik 61 Freier Fall im Vakuum (gleichmäßig beschleunigte Bewegung) t s v a in s in m in m/s in
38 Physik Mechanik Dynamik 63 Weg Zeit Diagramm (s-t-diagramm) Bei beschleunigten Bewegungen besteht kein linearer Zusammen-hang zwischen Weg s und Zeit t ( s~ t) Geschwindigkeit v ändert sich in jedem Punkt Steigungsdreieck liefert falsche Ergebnisse s in m t in s
39 Physik Mechanik Dynamik 65 Geschwindigkeits Zeit Diagramm (v-t-diagramm) Bei gleichmäßig beschleunigten Bewegungen gilt v in m/s freier Fall: t in s
40 Physik Mechanik Kinematik/Dynamik 67 Vergleich Kinematik - Dynamik gleichförmige Bewegung gleichmäßig beschleunigte Bewegung
41 Physik Mechanik Kinematik/Dynamik 69 Ungleichmäßige Beschleunigung: Achterbahnfahrt (reibungsfrei) v 0 =2m/s t 0 t 1 t 2 t 3 t=4s t=6s t=4s
42 Physik Mechanik Kinematik/Dynamik 71 v-t-diagramm, qualitativ I II III v in m/s v t in s t 0 t 1 t 2 t 3
43
Tutorium Physik 1. Kinematik, Dynamik
1 Tutorium Physik 1. Kinematik, Dynamik WS 15/16 1.Semester BSc. Oec. und BSc. CH 3 2. KINEMATIK, DYNAMIK (I) 2.1 Gleichförmige Bewegung: Aufgabe (*) 4 a. Zeichnen Sie ein s-t-diagramm der gleichförmigen
Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung.
2 Grund- und Angleichungsvorlesung Physik. Energie, Arbeit & Leistung. WS 16/17 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell
Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung.
3 Grund- und Angleichungsvorlesung Physik. Energie, Arbeit & Leistung. WS 16/17 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell
2. Kinematik Mechanische Bewegung. Zusammenfassung. Vorlesung. Übungen
Lehr- und Lernmaterial / Physik für M-Kurse am Landesstudienkolleg Halle / Jörg Thurm 2. Kinematik Physikalische Grundlagen Vorlesung 2.1. Mechanische Bewegung Zusammenfassung 1. Semester / 2. Thema /
Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2
Die Kraft Mechanik Newton sche Gesetze und ihre Anwendung (6 h) Physik Leistungskurs physikalische Bedeutung: Die Kraft gibt an, wie stark ein Körper auf einen anderen einwirkt. FZ: Einheit: N Gleichung:
Hochschule Düsseldorf University of Applied Sciences. 03. November 2016 HSD. Physik. Newton s Gesetze
Physik Newton s Gesetze http://de.wikipedia.org/wiki/philosophiae_naturalis_principia_mathematica Philosophiae Naturalis Principia Mathematica Mathematische Prinzipien der Naturphilosophie Im Sprachgebrauch
Tutorium Physik 2. Rotation
1 Tutorium Physik 2. Rotation SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 8. ROTATION 8.1 Rotation: Lösungen a
Brückenkurs Physik SS11. V-Prof. Oda Becker
Brückenkurs Physik SS11 V-Prof. Oda Becker Überblick Mechanik 1. Kinematik (Translation) 2. Dynamik 3. Arbeit 4. Energie 5. Impuls 6. Optik SS11, BECKER, Brückenkurs Physik 2 Beispiel Morgens um 6 Uhr
Prüfungsvorbereitung Physik: Bewegungen und Kräfte
Prüfungsvorbereitung Physik: Bewegungen und Kräfte Theoriefragen: Diese Begriffe müssen Sie auswendig in ein bis zwei Sätzen erklären können. a) Vektor/Skalar b) Woran erkennt man eine Kraft? c) Welche
Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com
GRUNDLAGEN DER MECHANIK Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11 von Matthias Kolodziej shorebreak13 @ aol.com Hagen, Westfalen September 2002 Inhalt: I. Kinematik 1.
MECHANIK I. Kinematik Dynamik
MECHANIK I Kinematik Dynamik Mechanik iki Versuche Luftkissenbahn Fallschnur Mechanik iki Kinematik Kinematik beschreibt Ablauf einer Bewegungeg Bewegung sei definiert relativ zu Bezugssystem Koordinatensystem
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Mechanik
4. Veranstaltung. 16. November 2012
4. Veranstaltung 16. November 2012 Heute Wiederholung Beschreibung von Bewegung Ursache von Bewegung Prinzip von Elektromotor und Generator Motor Generator Elektrischer Strom Elektrischer Strom Magnetkraft
Vorlesung 2: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion
Vorlesung 2: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion Newton (1642-1727) in Philosophiae Naturalis Principia Mathematica, publiziert in 1687. Immer
6 Dynamik der Translation
6 Dynamik der Translation Die Newton sche Axiome besagen, nach welchen Geseten sich Massenpunkte im Raum bewegen. 6.1.1 Erstes Newton sches Axiom (Trägheitsgeset = law of inertia) Das erste Newton sche
Länge der Feder (unbelastet): l 0 = 15 cm; Aus dem hookeschen Gesetz errechnet man die Ausdehnung s:
Die Federkonstante ist für jede Feder eine charakteristische Größe und beschreibt den Härtegrad der Feder. Je größer bzw. kleiner die Federkonstante ist, desto härter bzw. weicher ist die Feder. RECHENBEISPIEL:
Physikunterricht 11. Jahrgang P. HEINECKE.
Physikunterricht 11. Jahrgang P. HEINECKE Hannover, Juli 2008 Inhaltsverzeichnis 1 Kinematik 3 1.1 Gleichförmige Bewegung.................................. 3 1.2 Gleichmäßig
Experimentalphysik E1
Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html
Physik 1 für Chemiker und Biologen 3. Vorlesung
Physik 1 für Chemiker und Biologen 3. Vorlesung 07.11.2015 Heute: - Fortsetzung: Bewegungen in 1, 2 und 3 D - Freier Fall und Flugbahnen - Kräfte und Bewegung - Newtonschen Axiome https://xkcd.com/482/
Vorlesung 5: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion
Vorlesung 5: Roter Faden: Newtonsche Axiome: 1. Trägheitsgesetz 2. Bewegungsgesetz F=ma 3. Aktion=-Reaktion Newton (1642-1727) in Philosophiae Naturalis Principia Mathematica, publiziert in 1687. Immer
2.0 Dynamik Kraft & Bewegung
.0 Dynamik Kraft & Bewegung Kraft Alltag: Muskelkater Formänderung / statische Wirkung (Gebäudestabilität) Physik Beschleunigung / dynamische Wirkung (Impulsänderung) Masse Schwere Masse: Eigenschaft eines
Kinematik & Dynamik. Über Bewegungen und deren Ursache Die Newton schen Gesetze. Physik, Modul Mechanik, 2./3. OG
Kinematik & Dynamik Über Bewegungen und deren Ursache Die Newton schen Gesetze Physik, Modul Mechanik, 2./3. OG Stiftsschule Engelberg, Schuljahr 2016/2017 1 Einleitung Die Mechanik ist der älteste Teil
zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung
Fach: Physik/ L. Wenzl Datum: zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Aufgabe 1: Ein Auto beschleunigt gleichmäßig in 12,0 s von 0 auf 100 kmh -1. Welchen Weg hat es in dieser Zeit
Kinetik des Massenpunktes
Technische Mechanik II Kinetik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.
Tutorium Physik 1. Kinematik, Dynamik
1 Tutorium Physik 1. Kinematik, Dynamik WS 15/16 1.Semester BSc. Oec. und BSc. CH 56 KINEMATIK, DYNAMIK (II) 2.16 Bungee-Sprung von der Brücke: Aufgabe (***) 57 Beim Sprung von der Europabrücke wird nach
Anwendung der Infinitesimalrechnung in der Physik (besonders geeignet für Kernfach Physik Kurshalbjahr Mechanik Anforderung auf Leistungskursniveau)
Anwendung der Infinitesimalrechnung in der Physik (besonders geeignet für Kernfach Physik Kurshalbjahr Mechanik Anforderung auf Leistungskursniveau) Vorbemerkung Die nachfolgenden Darstellungen dienen
2) Nennen und beschreiben Sie kurz die drei Newtonschen Axiome! 1. Newt. Axiom: 2. Newt. Axiom: 3. Newt. Axiom:
Übungsaufgaben zu 3.1 und 3.2 Wiederholung zur Dynamik 1) An welchen beiden Wirkungen kann man Kräfte erkennen? 2) Nennen und beschreiben Sie kurz die drei Newtonschen Axiome! 1. Newt. Axiom: 2. Newt.
Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik
Fakultät für Physik Wintersemester 2016/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 4 / 9.11.2016 1. May the force... Drei Leute A, B, C ziehen
Dynamik. 4.Vorlesung EPI
4.Vorlesung EPI I) Mechanik 1. Kinematik 2.Dynamik a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft 1 Das 2. Newtonsche Prinzip
Hochschule Düsseldorf University of Applied Sciences. 22. Oktober 2015 HSD. Physik. Gravitation
22. Oktober 2015 Physik Gravitation Newton s Gravitationsgesetz Schwerpunkt Bewegungen, Beschleunigungen und Kräfte können so berechnet werden, als würden Sie an einem einzigen Punkt des Objektes angreifen.
Physik für Biologen und Zahnmediziner
Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung
Masse, Kraft und Beschleunigung Masse:
Masse, Kraft und Beschleunigung Masse: Seit 1889 ist die Einheit der Masse wie folgt festgelegt: Das Kilogramm ist die Einheit der Masse; es ist gleich der Masse des Internationalen Kilogrammprototyps.
Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn
Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu
Liebe Schülerin, lieber Schüler,
Liebe Schülerin, lieber Schüler, Wir gratulieren herzlich, dass Sie in die zweite Runde weitergekommen sind. Der erste Teil der zweiten Runde des Wettbewerbs besteht darin, dass Sie einen Test, wie in
PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version
PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................
Prüfungsvorbereitung Physik: Beschreibung von Bewegungen
Prüfungsvorbereitung Physik: Beschreibung von Bewegungen Theoriefragen: Diese Begriffe müssen Sie auswendig in ein bis zwei Sätzen erklären können. a) Bezugssystem b) Inertialsystem c) Geschwindigkeit
In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg:
Werkstatt: Arbeit = Kraft Weg Viel Kraft für nichts? In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg: W = * = F * s FII bezeichnet dabei die Kraftkomponente in Wegrichtung s. Die
Dynamik. 4.Vorlesung EP
4.Vorlesung EP I) Mechanik 1. Kinematik 2.Dynamik Fortsetzung a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft Versuche: 1.
Physik für Pharmazeuten und Biologen MECHANIK I. Kinematik Dynamik
Physik für Pharmazeuten und Biologen MECHANIK I Kinematik Dynamik MECHANIK Bewegungslehre (Kinematik) Gleichförmige Bewegung Beschleunigte Bewegung Kräfte Mechanik I 1.1 Kinematik Kinematik beschreibt
M1 Maxwellsches Rad. 1. Grundlagen
M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Die allgemeine Relativitätstheorie - einfach erklärt
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Die allgemeine Relativitätstheorie - einfach erklärt Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT
Mechanik. Entwicklung der Mechanik
Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik
Formelsammlung: Physik I für Naturwissenschaftler
Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]
Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie
Aufgaben 2 Translations-Mechanik Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie Lernziele - den Zusammenhang zwischen Impuls, Masse und Geschwindigkeit eines Körpers anwenden können. - das
Grundlagen Physik für 7 I
Grundlagen Physik für 7 I Mechanik Länge l (engl. length) Zeit t (engl. time) Masse m (engl. mass) Kraft F (engl. force) ll = 1 m [t] = 1 s [m] = 1 kg Maß für die Trägheit und Schwere eines Körpers ortsunabhängig
Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach)
Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Klasse 7Na (Daniel Oehry) Name: Diese Arbeit umfasst vier Aufgaben Hilfsmittel: Dauer: Hinweise: Formelsammlung, Taschenrechner (nicht
Theoretische Physik I und II
Theoretische Physik I und II gelesen von Dr. F. Spanier Sommersemester 2009 L A TEX von Maximilian Michel 22. April 2009 Inhaltsverzeichnis I. Theoretische Physik 1 Mechanik 4 1. Historische Einführung
Vordiplomsklausur Physik
Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 22.Februar 2006, 9:00-11:00 Uhr für die Studiengänge Mb, Inft, Ciw, E+R/Bach. (bitte deutlich
Optik. Schatten: Siehe: Spiegelung: Spiegel
Optik Schatten: Siehe: http://www.leifiphysik.de/web_ph07_g8/grundwissen/0_schatten/schatten.htm Spiegelung: Wand Spiegel Beobachter Finde durch Konstruktion das Bild des Pfeils im Spiegel Brechung: Zeichne
Klassenarbeit Nr. 3 Physik Kinematik SJ
Klassenarbeit Nr. 3 Physik Kinematik SJ Version 1: Name: Hinweise: Bitte immer auf zwei Nachkommastellen runden. (t in Sekunden, v in Meter pro Sekunde, 0 8 ; 0 50 ). & Geschwindigkeits-Zeit- Funktionen
Fig. 1 zeigt drei gekoppelte Wagen eines Zuges und die an Ihnen angreifenden Kräfte. Fig. 1
Anwendung von N3 Fig. 1 zeigt drei gekoppelte Wagen eines Zuges und die an Ihnen angreifenden Kräfte. Die Beschleunigung a des Zuges Massen zusammen. Die Antwort Fig. 1 sei konstant, die Frage ist, wie
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Newton'schen Axiome mit einer Farbfolie
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Die Newton'schen Axiome mit einer Farbfolie Das komplette Material finden Sie hier: Download bei School-Scout.de 14. Die Newton schen
V12 Beschleunigte Bewegungen
Aufgabenstellung: 1. Ermitteln Sie die Fallbeschleunigung g aus Rollexperimenten auf der Rollbahn. 2. Zeigen Sie, dass für die Bewegung eines Wagens auf der geneigten Ebene der Energieerhaltungssatz gilt.
Dom-Gymnasium Freising Grundwissen Natur und Technik Jahrgangsstufe 7. 1 Grundwissen Optik
1.1 Geradlinige Ausbreitung des Lichts Licht breitet sich geradlinig aus. 1 Grundwissen Optik Sein Weg kann durch Lichtstrahlen veranschaulicht werden. Lichtstrahlen sind ein Modell für die Ausbreitung
Tutorium Physik 1. Arbeit, Energie, Leistung
1 Tutorium Physik 1. Arbeit, Energie, Leistung WS 15/16 1.Semester BSc. Oec. und BSc. CH 3 3. ARBEIT, ENERGIE, LEISTUNG 3.1 Energie: Aufgabe (*) 4 a. Was ist Energie? b. Worin liegt der Unterschied zwischen
Grundwissen Physik 7. Jahrgangsstufe
Grundwissen Physik 7. Jahrgangsstufe I. Elektrizitätslehre und Magnetismus 1. Der elektrische Strom ist nur durch seine Wirkungen erkennbar: magnetische, chemische, Licht- und Wärmewirkung. Vorsicht Strom
Sinkt ein Körper in einer zähen Flüssigkeit mit einer konstanten, gleichförmigen Geschwindigkeit, so (A) wirkt auf den Körper keine Gewichtskraft (B) ist der auf den Körper wirkende Schweredruck gleich
Lösung IV Veröffentlicht:
Fx = mg sin θ = ma x 1 Konzeptionelle Frage I Welche der der folgenden Aussagen über Kraft Bewegung ist korrekt? Geben sie Beispiele an (a) Ist es für ein Objekt möglich sich zu bewegen, ohne dass eine
Tutorium Physik 2. Schwingungen
1 Tutorium Physik 2. Schwingungen SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 9. SCHWINGUNGEN 9.1 Bestimmen der
Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/
Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS013/14 18.1.013 Diese Aufgaben entsprechen der Abschlußklausur, für die 1 ¾ Stunden
Physik. 1. Mechanik. Inhaltsverzeichnis. 1.1 Mechanische Grössen. LAP-Zusammenfassungen: Physik Kraft (F) und Masse (m) 1.1.
Physik Inhaltsverzeichnis 1. Mechanik...1 1.1 Mechanische Grössen...1 1.1.1 Kraft (F) und Masse (m)...1 1.1.2 Die Masse m...1 1.1.3 Die Kraft F...1 1.1.4 Die Geschwindigkeit (v) und die Beschleunigung
Physik 1. Stoßprozesse Impulserhaltung.
Physik Mechanik Impulserhaltung 3 Physik 1. Stoßprozesse Impulserhaltung. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik Impulserhaltung 5 Themen Stoßprozesse qualitativ quantitativ Impulserhaltungssatz
Physik 1 Zusammenfassung
Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................
Grundwissen Physik 8. Klasse Schuljahr 2011/12
1. Was du aus der 7. Klasse Natur und Technik unbedingt noch wissen solltest a) Vorsilben (Präfixe) und Zehnerpotenzen Bezeichnung Buchstabe Wert Beispiel Kilo k 1.000=10 3 1 kg=1000 g=10 3 g Mega M 1.000.000=10
Tutorium Physik 1. Arbeit, Energie, Leistung
1 Tutorium Physik 1. Arbeit, Energie, Leistung WS 15/16 1.Semester BSc. Oec. und BSc. CH 9.015 Tutorium Physik 1 Arbeit, Energie, Leistung Großmann 3 3. ARBEIT, ENERGIE, LEISTUNG 9.015 Tutorium Physik
Physik 2 am
Name: Matrikelnummer: Studienfach: Physik 2 am 28.03.2017 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vorlesung
Arbeit und Energie. Brückenkurs, 4. Tag
Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:
Experimentalphysik E1
Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.
Orientierungshilfen für die Zugangsprüfung Physik
Orientierungshilfen für die Zugangsprüfung Physik Anliegen der Prüfung Die Zugangsprüfung dient dem Herausstellen der Fähigkeiten des Prüflings, physikalische Zusammenhänge zu erkennen. Das physikalische
Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte
Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,
Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 28. September 2009
Physik für Studierende der Biologie und Chemie Universität Zürich, HS 2009, U. Straumann Version 28. September 2009 Inhaltsverzeichnis 3.5 Die Newton schen Prinzipien............................. 3.1 3.5.1
v = x t = 1 m s Geschwindigkeit zurückgelegter Weg benötigte Zeit x t Zeit-Ort-Funktion x = v t + x 0
1. Kinematik ================================================================== 1.1 Geradlinige Bewegung 1.1. Gleichförmige Bewegung v = x v = 1 m s v x Geschwindigkeit zurückgelegter Weg benötigte Zeit
Übung. Geradlinie gleichförmige und gleichmäßige Bewegung, Freier Fall, Senkrechter Wurf
Übung Geradlinie gleichförmige und gleichmäßige Bewegung, Freier Fall, Senkrechter Wurf Wissensfragen 1. Welches sind die Grundeinheiten des SI-Systems? Nennen Sie die Größen, den Namen der Einheiten und
2 Gleichmässig beschleunigte Bewegung
2 Gleichmässig beschleunigte Bewegung Ziele dieses Kapitels Du kennst die Definition der Grösse Beschleunigung. Du kannst die gleichmässig beschleunigte Bewegung im v-t- und s-t-diagramm darstellen. Du
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Mechanik
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Mechanik Das komplette Material finden Sie hier: School-Scout.de Thema: Arbeitsblätter für
TECHNISCHE MECHANIK III (DYNAMIK)
Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:
Vordiplomsklausur Physik
Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich
Dynamik Lehre von den Kräften
Dynamik Lehre von den Kräften Physik Grundkurs Stephie Schmidt Kräfte im Gleichgewicht Kräfte erkennt man daran, dass sie Körper verformen und/oder ihren Bewegungszustand ändern. Es gibt Muskelkraft, magnetische
A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5 m/s D. v = 4.4 m/s E. v = 1.3 m/s
Aufgabe 1: Wie schnell muss ein Wagen in einem Looping mit 8 m Durchmesser am höchsten Punkt sein, damit er gerade nicht herunterfällt? (im Schwerefeld der Erde) A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5
Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr
Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments
2.2 Dynamik von Massenpunkten
- 36-2.2 Dynamik von Massenpunkten Die Dynamik befasst sich mit der Bewegung, welche von Kräften erzeugt und geändert wird. 2.2.1 Definitionen Die wichtigsten Grundbegriffe der Dynamik sind die Masse,
6 Vertiefende Themen aus des Mechanik
6 Vertiefende Themen aus des Mechanik 6.1 Diagramme 6.1.1 Steigung einer Gerade; Änderungsrate Im ersten Kapitel haben wir gelernt, was uns die Steigung (oft mit k bezeichnet) in einem s-t Diagramm ( k=
Kinematik - Lehre von den Bewegungen
Kinematik - Lehre von den Bewegungen Physik Grundkurs 11 Goethegymnasium Auerbach Stephie Schmidt Grundbegriffe Bewegungslehre Bewegungslehre behandelt den zeitlichen Ablauf der Ortsveränderung eines Körpers,
Übungsblatt IX Veröffentlicht:
Pendel Eine Kugel der Masse m und Geschwindigkeit v durchschlägt eine Pendelscheibe der Masse M. Hinter der Scheibe hat die Kugel die Geschwindigkeit v/2. Die Pendelscheibe hängt an einem steifen Stab
Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung
Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik
Kinematik ================================================================== 1. Zeit-Ort-Diagramm geradliniger Bewegungen
Kinematik ================================================================== 1. Zeit-Ort-Diagramm geradliniger Bewegungen Bewegt sich ein Körper geradlinig, dann kann mit einem Zeit-Ort-Diagramm dargestellt
Gymnasium Koblenzer Straße, Grundkurs EF Physik 1. Halbjahr 2012/13
Aufgaben für Dienstag, 23.10.2012: Physik im Straßenverkehr Für die Sicherheit im Straßenverkehr spielen die Bedingungen bei Beschleunigungsund Bremsvorgängen eine herausragende Rolle. In der Straßenverkehrsordnung
Allgemeine Bewegungsgleichung
Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit
Die Höhenenergie. Nach diesen Überlegungen wird die Höhenenergie wie folgt festgelegt: Die Bewegungsenergie
Die Höhenenergie Fallbeispiel: Fall 1: Ein Kran hebt einen Eisenträger ( G = 50.000 N ) in den 1. Stock eines Hauses. Dabei verbraucht er eine bestimmte Menge Treibstoff. Fall 2: Hebt der Kran die Last
Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: , Abgabe am )
Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: 7.9.11, Abgabe am 14.9.11) Beispiel 1: Stoß in der Ebene [3 Punkte] Betrachten Sie den elastischen Stoß dreier Billiardkugeln A, B und C
Wiederholung Physik I - Mechanik
Universität Siegen Wintersemester 2011/12 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Risse, M. Niechciol Department Physik 9. Übungsblatt zur Vorlesung Physik II für Elektrotechnik-Ingenieure
4.9 Der starre Körper
4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte
Klassische Physik. PfE. Physik der Griechen. Vorgänge der materiellen Welt der Rest: Metaphysik
Klassische Physik Physik der Griechen Vorgänge der materiellen Welt der Rest: Metaphysik Die 5 Gebiete der klass. Physik Mechanik Statistische Mechanik Thermodynamik Optik Elektrizität Elektrodynamik Magnetismus
Lernstation I. Abstrakte Formulierungen die drei Größen in der Kraftformel. 4. Zum Ausprobieren: Auf dem Tisch liegen verschieden
Lernstation I Abstrakte Formulierungen die drei Größen in der Kraftformel 1. Welche Kraft wird benötigt, um einen Körper der Masse m = 1 kg mit a = 1 m s 2 zu beschleunigen? Schreiben sie einen Antwortsatz!
1.2 Kinematik des Massepunktes
1.2 Kinematik des Massepunktes Die Kinematik ist die Lehre der Bewegungen, wobei die Ursache der Bewegung nicht untersucht wird (Die Ursachen von Bewegungen werden im Kapitel 1.3 im Rahmen der Dynamik
1. Zeichnen Sie das v(t) und das a(t)-diagramm für folgende Bewegung. 3 Der Körper fährt eine Strecke von 30 m mit seiner bisherigen
Staatliche Technikerschule Waldmünchen Fach: Physik Häufig verwendete Formeln aus der Europa-Formelsammlung Lineare Bewegungen: Gleichförmige Bewegung: S. 11/ 2-7 Beschleunigte Bewegung: S. 12 / 2-20,
