Planetenschleifen mit Geogebra 1

Größe: px
Ab Seite anzeigen:

Download "Planetenschleifen mit Geogebra 1"

Transkript

1 Planetenschleifen Planetenschleifen mit Geogebra Entstehung der Planetenschleifen Nach dem dritten Kepler schen Gesetz stehen die Quadrate der Umlaufzeiten zweier Planeten im gleichen Verhältnis wie die Kuben der großen Halbachsen, oder in einem Formel gefasst P = const.. ( a Führt man weiterhin die Winkelgeschwindigkeit eines Planeten ein als ω = π, lässt sich Gleichung schreiben als P ω = const a /. ( Die Winkelgeschwindigkeit eines Planeten nimmt demnach ab, mit zunehmender großen Halbachse (vgl. Abbildung ω. ( a/ 7, Winkelgeschwindigkeit der Planeten,0 Merkur, Winkelgeschwindigkeit ω / a 0,0 7,,0, 0,0 Venus 7,,0 Mars, Saturn Uranus Neptun 0, große Halbachse a / AE Abbildung : Winkelgeschwindigkeit der Planeten Heliozentrisches Weltbild Im Vergleich zu den äußeren Planeten hat die eine höhere Winkelgeschwindigkeit und überholt diese folglich auf ihrer Bahn um die Sonne. Dabei entstehen die Planetenschleifen. Abbildung verdeutlicht dies am Beispiel von. Zur Vereinfachung des Problem werden die Planetenbahnen als Kreisbahnen (e = 0 angenommen und ihre Inklinationen i vernachlässigt. GeoGebra - Dynamic Mathematics for Everyone -

2 Planetenschleifen Am Himmel Okt Jan Jul Erdbahn Apr bahn Abbildung : Entstehung der Planetenschleifen Weiterhin soll die Umlaufperiode P von genau Jahre betragen. Tabelle zeigt die wahren Parameter der beiden Planeten. Die Abweichungen der vereinfachenden Annahmen sind nur gering und daher für den Einsatz im Unterricht annehmbar. Ein umlauf dauert soa / AE P / Jahre e i /,00,00 0,07 0,0,86 0,08, Tabelle : Parameter, [] mit Monate. In Abbildung sind sowohl auf der Erd-, als auch auf der bahn die einzelnen Monate abgetragen. Im gezeigten Beispiel bewegt sich in den Monaten Januar bis Juni (-6 entgegen des Uhrzeigersinnes durch den Fixsternhimmel. In den Monaten 7-0 verläuft seine Bewegung gegenläufig, im Uhrzeigersinn. Die Monate - werden wieder im Gegenuhrzeigersinn durchlaufen. Diesen Verlauf bezeichnet man als Planetenschleife. Die beiden inneren Planeten Merkur und Venus haben hingegen höhere Winkelgeschwindigkeiten als die. Sie überholen diese auf ihrer Bahn um die Sonne und erzeugen so ebenfalls Planetenschleifen mit der charakteristischen Phase der Rückläufigkeit des Planeten. Sowohl die Planetenschleifen der inneren, als auch der äußeren Planeten sind Projektionseffekte und im heliozentrischen Weltbild leicht durch die unterschiedlichen Winkelgeschwindigkeiten erklärbar.

3 Planetenschleifen Im geozentrischen Weltbild werden die Planetenschleifen dagegen durch die Überlagerung zweier Kreisbewegungen erklärt. Geozentrisches Weltbild Im geozentrischen Weltbild bewegt sich ein Planet auf einem Großkreis, dem sogenannten Deferenten um die. Gleichzeitig bewegt sich der Planet auf einer zweiten Kreisbahn, dem Epizykel (vgl. Abbildung. Für die äußeren Planeten entspricht der Radius des Deferenten der R Epi Deferent Epizykel R Def Abbildung : Planetenschleifen im geozentrischen Weltbild großen Halbachse des Planeten. Ein Umlauf des Epizykels dauert dabei gerade so lange wie die siderische Umlaufperiode des Planeten im heliozentrischen Weltbild. Der Radius des Epizykels entspricht der großen Halbachse der und der Umlauf des Planeten auf dem Epizykel dauert ein Jahr. Bei inneren Planeten beträgt der Radius des Deferenten eine astronomische Einheit und die Umlaufzeit beträgt ein Jahr. Der Planet kreist dann auf dem Epizykel, dessen Radius der großen Halbachse des Planeten im heliozentrischen Weltbild entspricht. Die Umlaufdauer entspricht der siderischen Periode des Planeten. Tabelle fasst die wichtigen Größen zusammen. Innere Planeten Äußere Planeten R Def AE a P lanet P Def a P sid,p lanet R Epi a P lanet AE P Epi P sid,p lanet a Tabelle : Deferent und Epizykel im geozentrischen Weltbild []

4 Planetenschleifen Umsetzung in Geogebra Die Umsetzung wird hier am Beispiel von beschrieben. Für alle anderen Planeten gelten die gleichen Formel. Die Umlaufzeiten und Radien der Bahnen müssen dann entsprechend angepasst werden. In Geogebra soll ein Skalenteil einer astronomischen Einheit entsprechen. Heliozentrisches Weltbild Die Erd- und bahn sind konzentrische Kreise mit den Radien R E = und R Jup =, um den gemeinsamen Mittelpunkt (0, 0 in welchem die Sonne sitzt. Der Fixsternhimmel wird als Kreis mit dem Radius R Fix =, ebenfalls zentriert um die Sonne gewählt. Die Position der wird durch den Vektor r E und die von durch r Jup beschrieben (vgl. Abbildung Sichtlinie y/ae y Jup,helio r Jup r E x Jup,helio Sonne x /AE r E = Abbildung : Positionen der Planeten im heliozentrischen Weltbild ( xe y E ( cos(ϕe = sin(ϕ E ( xjup, r Jup = y Jup ( cos(ϕjup =, sin(ϕ Jup. ( Die Winkel ϕ E und ϕ Jup hängen von der Zeit ab und ergeben sich aus der Umlaufperiode der Planeten zu ϕ E = π M und ϕ Jup = π M, ( M steht für die Anzahl der vergangenen Monate. Für die ergibt sich ein voller Umlauf nach Monaten und für nach. Für die Anzahl der vergangenen Monate M wird ein Schieberegler im Bereich 0 M hinzugefügt. Für die Projektion von an den Fixsternhimmel fügt man einen Strahl durch zwei Punkte, beginnend im Punkt der, weiter über den Punkt für ein. Mit Hilfe des Werk- zeugs Schneide zwei Objekte wird die Projektion, der Schnittpunkt zwischen Strahl und Fixsternhimmel durch einen Punkt markiert. Zur Veranschaulichung wird in Geogebra eine Animation gestartet, welche die Anzahl der Monate in Schritten von 0,0 Monaten zwischen 0 Monaten und Monaten variiert. Die Schleifenbewegung wird dann deutlich sichtbar.

5 Planetenschleifen Geozentrisches Weltbild Im geozentrischen Weltbild setzt man zuerst einen Punkt für die in den Koordinatenursprung, fügt einen Kreis für den Deferenten mit dem Radius R Def = R Jup und einen mit dem Radius R Fix = hinzu; beide um den Mittelpunkt (0, 0. Der Mittelpunkt des Epizykelkreises läuft mit der siderischen Umlaufperiode von auf dem Deferenten um. Dieser Punkt hat demnach dieselben Koordinaten wir im heliozentrischen Weltbild. Man füge diesen Mittelpunkt und einen zugehörigen Kreis mit dem Radius R Epi = ein. Für den Planeten fügt man nun einen Punkt auf dem Epizykel hinzu, dessen Koordinaten (x Jup,geo, y Jup,geo aus der Summe der beiden Kreisbewegungen bestehen und x Jup,geo = y Jup,geo = [ R Def cos ( π M ] + [ ( ] π R Epi cos M [ ( ] [ ( ] π π R Def sin M + R Epi sin M. y Epi y Def y/ae y Jup,geo Epizykel Sichtlinie Deferent x Jup,geo x /AE x Def x Epi Abbildung : Positionen der Planeten im geozentrischen Weltbild Der Umlauf auf dem Epizykelkreis hat die Periodendauer P Epi = Monate. Abschließend fügt man auch hier einen Strahl durch zwei Punkte zwischen und ein sowie den Schnittpunkt, welcher die Projektion an den Fixsternhimmel anzeigt. Nach Rechtsklick auf den Planeten kann die Eigenschaft Spur ein ausgewählt werden. Literatur [] H. Karttunen: Astronomie - Eine Einführung; Springer-Verlag; 990 [] A. Unsöld, B. Baschek: Der neue Kosmos; 7. Auflage; Springer-Verlag; 00

U. Backhaus, Universität Duisburg-Essen. Die Marsbahn. (mit Lösungen)

U. Backhaus, Universität Duisburg-Essen. Die Marsbahn. (mit Lösungen) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Die Marsbahn (mit Lösungen) 1 Einleitung Planeten fallen durch ihre große und veränderliche

Mehr

Astronomische Beobachtungen und Weltbilder

Astronomische Beobachtungen und Weltbilder Astronomische Beobachtungen und Weltbilder Beobachtet man den Himmel (der Nordhalbkugel) über einen längeren Zeitraum, so lassen sich folgende Veränderungen feststellen: 1. Die Fixsterne drehen sich einmal

Mehr

Die Entwicklung des Weltbilds. Manuel Erdin Gym Liestal, 2004

Die Entwicklung des Weltbilds. Manuel Erdin Gym Liestal, 2004 Die Entwicklung des Weltbilds Manuel Erdin Gym Liestal, 2004 Frühe Kulturen Der Mensch als Teil des Kosmos Frühe Kulturen Beobachtungen von Sonnen- und Mondpositionen Himmelscheibe von Nebra (Deutschland)

Mehr

Einführung in die Astronomie

Einführung in die Astronomie Einführung in die Astronomie Teil 2 Peter H. Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg part2.tex Einführung in die Astronomie Peter H. Hauschildt 30/10/2014

Mehr

Radialgeschwindigkeitsvariation bei Exoplaneten - dargestellt mit Geogebra 1

Radialgeschwindigkeitsvariation bei Exoplaneten - dargestellt mit Geogebra 1 Form der Radialgeschwindigkeitskurve 1 Radialgeschwindigkeitsvariation bei Exoplaneten - dargestellt mit Geogebra 1 Exoplanetensuche mit der Radialgeschwindigkeitsmethode Die Radialgeschwindigkeit v r

Mehr

Computational Astrophysics 1. Kapitel: Sonnensystem

Computational Astrophysics 1. Kapitel: Sonnensystem Computational Astrophysics 1. Kapitel: Sonnensystem Wilhelm Kley Institut für Astronomie & Astrophysik Kepler Center for Astro and Particle Physics Sommersemester 2011 W. Kley: Computational Astrophysics

Mehr

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt.

Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Distanzen und Grössen im Planetenweg Arbeitsblatt 1 Bei den Planetenwegen, die man durchwandern kann, sind die Dinge des Sonnensystems 1 Milliarde mal verkleinert dargestellt. Anders gesagt: Der Massstab

Mehr

Das geozentrischen Weltbild

Das geozentrischen Weltbild Das geozentrischen Weltbild Hier Firmenlogo hinzufügen von Alexander Erlich Physik LK 11/2 März 2005 Altes Gymnasium 1 Claudio Ptolemäus * ca. 100 n. Chr., ca. 160 n.chr. wahrscheinlich griechischer Herkunft

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

Das Sonnensystem. Teil 1. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg

Das Sonnensystem. Teil 1. Peter Hauschildt 6. Dezember Hamburger Sternwarte Gojenbergsweg Hamburg Das Sonnensystem Teil 1 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 6. Dezember 2016 1 / 42 Übersicht Allgemeiner Überblick Bahnen der Planeten historisch:

Mehr

Eigenbewegung und Parallaxe von Barnards Pfeilstern

Eigenbewegung und Parallaxe von Barnards Pfeilstern Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Eigenbewegung und Parallaxe von Barnards Pfeilstern 1 Einleitung Der Parallaxeneffekt ist jedem,

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

Schleifenbewegung von Planeten

Schleifenbewegung von Planeten Schleifenbewegung von Planeten Monika Maintz Beobachtet man die Position der äußeren Planeten Mars, Jupiter, Saturn, Uranus und Neptun am Nachthimmel, so stellt man fest, dass sich diese relativ zu den

Mehr

Eigenbewegung und Parallaxe von Barnards Pfeilstern (mit Lösungen)

Eigenbewegung und Parallaxe von Barnards Pfeilstern (mit Lösungen) Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Eigenbewegung und Parallaxe von Barnards Pfeilstern (mit Lösungen) 1 Einleitung Der Parallaxeneffekt

Mehr

1 Unser Sonnensystem mit seinen von NASA-Sonden fotografierten Planeten: (v. r.u.) Merkur, Venus, Erde mit Mond, Mars, Jupiter, Saturn, Uranus,

1 Unser Sonnensystem mit seinen von NASA-Sonden fotografierten Planeten: (v. r.u.) Merkur, Venus, Erde mit Mond, Mars, Jupiter, Saturn, Uranus, 1 Unser Sonnensystem mit seinen von NASA-Sonden fotografierten Planeten: (v. r.u.) Merkur, Venus, Erde mit Mond, Mars, Jupiter, Saturn, Uranus, Neptun (Kleinplanet Pluto fehlt) Von den Arbeiten Hipparchs

Mehr

I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie

I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie Versuch: Kreisel mit äußerer Kraft L T zur Dieser Vorgang heißt Präzession, Bewegung in der horizontalen Ebene (Kreisel weicht senkrecht zur Kraft aus).

Mehr

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden

Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Eine einfache Methode zur Bestimmung des Bahnradius eines Planetoiden Von Eckhardt Schön Erfurt Mit 1 Abbildung Die Bewegung der Planeten und Kleinkörper des Sonnensystems verläuft scheinbar zweidimensional

Mehr

Einführung in die Astronomie & Astrophysik 1. Kapitel: Historie

Einführung in die Astronomie & Astrophysik 1. Kapitel: Historie Einführung in die Astronomie & Astrophysik 1. Kapitel: Historie Wilhelm Kley & Andrea Santangelo Institut für Astronomie & Astrophysik Kepler Center for Astro and Particle Physics Sommersemester 2013 Astronomie

Mehr

RAUMFLUGMECHANIK... eine Reise zum Mars. FH Astros VO Serie SS April 2014 Wolfgang Steiner

RAUMFLUGMECHANIK... eine Reise zum Mars. FH Astros VO Serie SS April 2014 Wolfgang Steiner RAUMFLUGMECHANIK... eine Reise zum Mars FH Astros VO Serie SS2014 7. April 2014 Wolfgang Steiner Die Planeten des Sonnensystems Uranus Neptun Saturn Merkur Jupiter Pluto Mars Erde Venus Größenvergleich

Mehr

Organisatorisches. Diese Vorlesung ist geeignet. Bei Fragen an Prof. Hauschildt:

Organisatorisches. Diese Vorlesung ist geeignet. Bei Fragen an Prof. Hauschildt: Das Sonnensystem Organisatorisches Bei Fragen an Prof. Hauschildt: Email: yeti@hs.uni-hamburg.de Telefon: 040 428 38-8512 Nach der Vorlesung An der Sternwarte (Termin vereinbaren!) Bei Unklarheiten bitte

Mehr

Doppler-Effekt und Bahngeschwindigkeit der Erde

Doppler-Effekt und Bahngeschwindigkeit der Erde Astronomisches Praktikum Aufgaben für eine Schlechtwetter-Astronomie U. Backhaus, Universität Duisburg-Essen Doppler-Effekt und Bahngeschwindigkeit der Erde 1 Einleitung Nimmt man im Laufe eines Jahres

Mehr

Schlaufen in der Marsbahn

Schlaufen in der Marsbahn Das Sonnensystem Schlaufen in der Marsbahn Anleitung zu eigenen Versuchen Schlaufen in der Marsbahn Wie kann man die Entstehung von Planetenschlaufen einsichtig machen? Im Prinzip ganz einfach: Man visiert

Mehr

Koordinatensysteme der Erde

Koordinatensysteme der Erde Koordinatensysteme der Erde Es gibt verschiedene Arten, die Position eines Punktes auf der Oberfläche einer Kugel (manchmal auch Sphäre genannt) darzustellen, jede hat ihre Vor-und Nachteile und ist für

Mehr

Serie 8 - Parametrisierte Kurven

Serie 8 - Parametrisierte Kurven Analysis D-BAUG Dr Meike Akveld HS 05 Serie 8 - Parametrisierte Kurven Geben Sie für die folgenden Bewegungen eines Punktes jeweils eine parametrisierte Darstellung I [0, ] R xt, t yt an Lösung a Geradlinige

Mehr

Aristarch von Samos v. Chr.

Aristarch von Samos v. Chr. Aristarch von Samos 30 50 v. Chr. Aus Archimedes Schriften wissen wir, dass Aristarch der Begründer des heliozentrischen Weltbildes ist. Nach Aristarch umlaufen alle Planeten die Sonne auf Kreisbahnen.

Mehr

Grundbegriffe zur Beschreibung von Kreisbewegungen

Grundbegriffe zur Beschreibung von Kreisbewegungen Arbeitsanleitung I Kreisbewegung Grundbegriffe zur Beschreibung von Kreisbewegungen Beschreibung der Kreisbewegung 1 1.1 Das Bogenmass 1.2 Begriffe zur Kreisbewegung 1.3 Die Bewegung auf dem Kreis Lösungen

Mehr

Lokale Extrema von scheinbaren Helligkeiten von Planeten von Positionen anderer Planeten aus gesehen im Sonnensystem im Jahr 2015 und weitere Extrema

Lokale Extrema von scheinbaren Helligkeiten von Planeten von Positionen anderer Planeten aus gesehen im Sonnensystem im Jahr 2015 und weitere Extrema Lokale Extrema von n en von Planeten von Positionen anderer Planeten aus gesehen im Sonnensystem im Jahr und weitere Extrema Harald Schröer Ein Beobachter befindet sich im einem Raumschiff, das einen Planeten

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

4.05 Vom Planetarium zur Ansicht am Himmel

4.05 Vom Planetarium zur Ansicht am Himmel 4.03 Leere Kärtchen und Tabellen als Grundlage 4.04 Planetarien selber zeichnen 4.05 Vom Planetarium zur Ansicht am Himmel Inhalt 2 Der ungewohnte Weg was ist das Ziel? 4 Planetarium A 7 Planetarium B

Mehr

Versuchsanleitung zum Astrophysikalischen Praktikum Standardkerzen: Entfernungsbestimmung von M100

Versuchsanleitung zum Astrophysikalischen Praktikum Standardkerzen: Entfernungsbestimmung von M100 Versuchsanleitung zum Astrophysikalischen Praktikum Standardkerzen: Entfernungsbestimmung von M100 In dieser Aufgabe bestimmen Sie anhand gegebener Lichtkurven von Cepheiden in der Spiralgalaxie M100 im

Mehr

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.

Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler. Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Theoretische Physik I bei Prof. A. Rosch

Theoretische Physik I bei Prof. A. Rosch Vorlesungsmitschrift Theoretische Physik I bei Prof. A. Rosch von M. & O. Filla 8. November 206 Zur Erinnerung: Das Zweikörperproblem wurde auf zwei Differenzialgleichungen heruntergebrochen. Diese können

Mehr

2 Die Bahnen der Planeten. 2.1 Einleitung

2 Die Bahnen der Planeten. 2.1 Einleitung 2 Die Bahnen der Planeten 2.1 Einleitung Neben den schon im Altertum bekannten Planeten Merkur ( ), Venus ( ), Mars ( ), Jupiter ( ) und Saturn ( ) wurden in der Neuzeit Uranus ( ), Neptun ( ), Pluto (

Mehr

8. DIE ABLEITUNG EINER VEKTORFUNKTION

8. DIE ABLEITUNG EINER VEKTORFUNKTION 75 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block Stundenprotokoll Fach: Fachlehrer: Zeit: Protokollant: Thema der Stunde: Leistungskurs Physik A40/Q1 Herr Winkowski Dienstag, den 13.09.11, 3. Block Christian Täge Vertiefung der Kreisbewegung Gliederung

Mehr

6 Gravitation (gravitación, la)

6 Gravitation (gravitación, la) 6 Gravitation Hofer 1 6 Gravitation (gravitación, la) A1: Informiere dich über unser Sonnensystem und trage dein Wissen in Form eines Kurzreferates vor. 6.1 Weltbilder 6.1.2 Das geozentrische Weltbild(concepto

Mehr

Die Wende vom geozentrischen zum heliozentrischen Planetensystem

Die Wende vom geozentrischen zum heliozentrischen Planetensystem Die Wende vom geozentrischen zum heliozentrischen Planetensystem 1. Planetensysteme der Antike 2. Bewegungen in verschiedenen Bezugssystemen 3. Welches ist das "richtige" Bezugssystem? 4. Nikolaus Kopernikus

Mehr

Fachspezifische Komplexarbeit Fach/Vertiefungskurs: Astronomie. Thema: Planetenweg auf dem Schulhof

Fachspezifische Komplexarbeit Fach/Vertiefungskurs: Astronomie. Thema: Planetenweg auf dem Schulhof Fachspezifische Komplexarbeit Fach/Vertiefungskurs: Astronomie Thema: Planetenweg auf dem Schulhof Schule: Oberschule Weixdorf Klasse: 9A Name: Beuchel, Vincent Betreuer: Herr Durda Abgabe: 14.07.2016

Mehr

A1: Kennt Ihr alle Planeten unseres Sonnensystems? Zählt sie auf.

A1: Kennt Ihr alle Planeten unseres Sonnensystems? Zählt sie auf. Ihr braucht: Tablet oder Smartphone Arbeitsmappe A1: Kennt Ihr alle Planeten unseres Sonnensystems? Zählt sie auf. Tipp: Mein Vater Erklärt Mir Jeden Samstagabend Unseren Nachthimmel. A2: Öffnet das Programm

Mehr

Perigäum und Apogäum

Perigäum und Apogäum Perigäum und Apogäum Perigäum: Erdnächster Punkt einer elliptischen Planetenoder Kometenbahn. Apogäum Erdfernster Punkt einer elliptischen Planetenoder Kometenbahn. Perihel und Aphel Perihel ist der Punkt

Mehr

D i e T i e r k r e i s t a f e l n

D i e T i e r k r e i s t a f e l n D i e T i e r k r e i s t a f e l n Charakteristisch für diese Sonnenuhr sind die 6 auf der XII-Stundenlinie angebrachten Tafeln mit je zwei Tierkreiszeichen (s. Abb.). Was hat es damit auf sich? Welche

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 6. Nov. Gravitation + Planetenbewegung Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Kraft = Impulsstrom F = d p dt = dm dt v = dn

Mehr

4.03 Leere Kärtchen und Tabellen als Grundlage

4.03 Leere Kärtchen und Tabellen als Grundlage 4.03 Leere Kärtchen und Tabellen als Grundlage 4.04 Planetarien selber zeichnen 4.05 Vom Planetarium zur Ansicht am Himmel Inhalt 2 Informationen 3 Planetarium A (Merkur bis Mars) 4 Planetarium B (Erde

Mehr

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze Seite 1 von 6 Astronomische Weltbilder und Keplersche Gesetze Heliozentrisches Weltbild Die Sonne steht im Mittelpunkt unseres Sonnensystems, die Planeten umkreisen sie. Viele Planeten werden von Monden

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Applets: Um diese anzusehen, downloaden sie das Programm Ruler and Compass CaR aus dem Internet (kostenlosen Download)

Applets: Um diese anzusehen, downloaden sie das Programm Ruler and Compass CaR aus dem Internet (kostenlosen Download) Unterrichtsmaterial (Links: auf der ersten Seite der Internet-Version) Folien: Trigonometrische Funktion (power-point) Applets: Um diese anzusehen, downloaden sie das Programm Ruler and Compass CaR aus

Mehr

Übungen mit dem Applet Kurven in Polarkoordinaten

Übungen mit dem Applet Kurven in Polarkoordinaten Kurven in Polarkoordinaten 1 Übungen mit dem Applet Kurven in Polarkoordinaten 1 Ziele des Applets...2 2 Wie entsteht eine Kurve in Polarkoordinaten?...3 3 Kurvenverlauf für ausgewählte r(ϕ)...4 3.1 r

Mehr

Astronomie. Vorlesung HS 2015 (16. Sept. 16. Dez. 2015) ETH Zürich, Mi 10-12, ETH HG E5,

Astronomie. Vorlesung HS 2015 (16. Sept. 16. Dez. 2015) ETH Zürich, Mi 10-12, ETH HG E5, Astronomie Prof. Dr. H.M. Schmid, Institut für Astronomie, ETH Zürich Prof. Dr. W. Schmutz, Physikalisch-Meteorolgisches Observatorium, World Radiation Center, Davos Vorlesung HS 2015 (16. Sept. 16. Dez.

Mehr

Prof. Dr. Werner Becker Max-Planck Institut für extraterrestrische Physik

Prof. Dr. Werner Becker Max-Planck Institut für extraterrestrische Physik Prof. Dr. Werner Becker Max-Planck Institut für extraterrestrische Physik Email: web@mpe.mpg.de Worüber wir heute sprechen wollen: Warum interessieren sich die Menschen für Astronomie? Welche Bedeutung

Mehr

Wo stehen die Planeten am Himmel?

Wo stehen die Planeten am Himmel? Das Sonnensystem Wo stehen die Planeten am Himmel? Anleitungen zum Auffinden von Planeten mit verschiedenen Hilfsmitteln Wo stehen die Planeten am Himmel? Inhaltsverzeichnis Seiten Einführung, allgemeine

Mehr

Sonne, Mond und Sterne Bekanntes selbst entdeckt!

Sonne, Mond und Sterne Bekanntes selbst entdeckt! Sonne, Mond und Sterne Bekanntes selbst entdeckt! Teil IV: Mondbeobachtung Markus Schlager Das Himmelzelt offenbart uns nicht nur das unendliche Weltall, sondern macht im Besonderen unser Raumschiff Erde

Mehr

Oktober Astro- Wissenswertes im Oktober 2016

Oktober Astro- Wissenswertes im Oktober 2016 Oktober Astro- Wissenswertes im Oktober 2016 Venus, Mars und Saturn sind theoretisch am Abendhimmel noch sichtbar. Knapp über dem Südwesthorizont, in Linthal aber von den Bergen verdeckt. Genauso ist Merkur

Mehr

Satellit. Projekt Mathematische Modellierung. Lukas Schweighofer, Mustafa Krupic, Elisabeth Schmidhofer Sommersemester 2013

Satellit. Projekt Mathematische Modellierung. Lukas Schweighofer, Mustafa Krupic, Elisabeth Schmidhofer Sommersemester 2013 Projekt Mathematische Modellierung Lukas Schweighofer, Mustafa Krupic, Elisabeth Schmidhofer Sommersemester 2013 1. Einführung und Beschreibung der Vorgangs In unserem Projekt schicken wir einen en von

Mehr

Kurven in der Ebene Darstellungsformen, Bogenlänge, Tangente

Kurven in der Ebene Darstellungsformen, Bogenlänge, Tangente Kurven in der Ebene Darstellungsformen, Bogenlänge, Tangente Wir betrachten Kurven in der -Ebene. Als erstes wollen wir uns damit beschäftigen, wie sich solche Kurven mathematisch beschreiben lassen. Dafür

Mehr

Serie 3 - Komplexe Zahlen II

Serie 3 - Komplexe Zahlen II Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe

Mehr

Nachweis des Flächensatzes am Beispiels des Doppelsterns γ Virginis

Nachweis des Flächensatzes am Beispiels des Doppelsterns γ Virginis Nachweis des Flächensatzes am Beispiels des Doppelsterns γ Virginis Stefan Völker 1 1 AG Fachdidaktik Physik und Astronomie der Friedrich-Schiller-Universität Jena 1 Inhaltsverzeichnis 1 Grundlagen 3 1.1

Mehr

Astronomische Einheit. σ SB = W m 2 K 4 G= m 3 kg 1 s 2 M = kg M = kg c= km s 1. a=d/(1 e)=3.

Astronomische Einheit. σ SB = W m 2 K 4 G= m 3 kg 1 s 2 M = kg M = kg c= km s 1. a=d/(1 e)=3. Einführung in die Astronomie I Wintersemester 2007/2008 Beispielklausur Musterlösung Allgemeine Regeln Die Bearbeitungszeit der Klausur beträgt eine Stunde (60 Minuten). Außer eines Taschenrechners sind

Mehr

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005

Praktikumssemesterarbeit für Numerik Aufgabe 1 HU-Berlin, Sommersemester 2005 Praktikumssemesterarbeit für Numerik Aufgabe HU-Berlin, Sommersemester 2005 Mario Krell Volker Grabsch 24. Juli 2005 Inhaltsverzeichnis Herleitung aus der Physik. Voraussetzungen und Annahmen Allgemein

Mehr

Wie heiß ist es auf dem Merkur?

Wie heiß ist es auf dem Merkur? Steckbrief: Wie heiß ist es auf dem Merkur? Auf dem Merkur gibt es die größten Temperaturunterschiede: sie reichen von -173 bis 427 C Entfernung zur Sonne: ca. 1/3 der Entfernung der Erde Durchmesser:

Mehr

Dynamische Geometrie

Dynamische Geometrie Dynamische Geometrie 1) Die Mittelsenkrechten, die Seitenhalbierenden, die Höhen und die Winkelhalbierenden eines beliebigen Dreiecks schneiden sich jeweils in einem Punkt. a) Untersuchen Sie die Lage

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2

Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2 19 9. Harmonische Schwingungen (Sinusschwingungen) Der Punkt P rotiert gleichförmig in der Grundebene um den Ursprung O mit der Winkelgeschwindigkeit in positivem Drehsinn. Zur Zeit t = 0 schliesst uuur

Mehr

2 Gravitation. Himmelsmechanik. Eine Präsentation von Tobias Denkinger LK Physik /2007

2 Gravitation. Himmelsmechanik. Eine Präsentation von Tobias Denkinger LK Physik /2007 2 Gravitation Himmelsmechanik Eine Präsentation von Tobias Denkinger LK Physik 11 2006/2007 Gliederung 2.1 Das Gravitationsgesetz 2.2 Das Gravitationsfeld 2.3 Bewegung im Gravitationsfeld Ende Quellen

Mehr

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung

Physik GK ph1, 2. KA Kreisbew., Schwingungen und Wellen Lösung Aufgabe 1: Kreisbewegung Einige Spielplätze haben sogenannte Drehscheiben: Kreisförmige Plattformen, die in Rotation versetzt werden können. Wir betrachten eine Drehplattform mit einem Radius von r 0 =m,

Mehr

IV.1. Erklärung des Ptolemäus (ca. 140 n. Chr.): Heliozentrische vs. Geozentrische Weltbilder

IV.1. Erklärung des Ptolemäus (ca. 140 n. Chr.): Heliozentrische vs. Geozentrische Weltbilder Heliozentrische vs. Geozentrische Weltbilder Mars: 26. August 1988 bis 30. Oktober 1988, rückläufige Bahn Folie 1 Erklärung des Ptolemäus (ca. 140 n. Chr.): Almagest, 7 Himmelskörper (mit Sonne und Mond)

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Geozentrisches Weltbild 10_01

Geozentrisches Weltbild 10_01 Geozentrisches Weltbild 10_01 Im 7. Jahrhundert. Chr. konstruierten die Griechen (.A. Aristoteles) ein erstes geometrisches Weltbild on Himmel und Erde, um die Bewegung der Gestirne und der Erde zu erklären.

Mehr

Kepler und die Doppelsterne ein fächerübergreifendes Thema

Kepler und die Doppelsterne ein fächerübergreifendes Thema Keler und die Doelsterne ein fächerübergreifendes Thema In Bezug auf die Nachricht Zwei Planeten in einem exotischen Doelsternsystem in SuW /0, S. 4 Thomas Jahre Als die Wissenschaftler des South African

Mehr

Astronomie Unser Sonnensystem in Zahlen

Astronomie Unser Sonnensystem in Zahlen Ausgabe 2007-10 Astronomie Unser Sonnensystem in Zahlen Seite 1. Erde, Mond, Sonne in Zahlen 2 1.1 Die Erde als Himmelskörper 2 1.2 Der Erdmond 3 1.3 Die Sonne 4 2. Unser Planetensystem 5 1. Erde, Mond,

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Einführung in die Astronomie und Astrophysik I

Einführung in die Astronomie und Astrophysik I Einführung in die Astronomie und Astrophysik I Teil 5 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Themen Einstieg: Was ist Astrophysik? Koordinatensysteme Astronomische Zeitrechnung Sonnensystem

Mehr

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B

Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben

Mehr

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung

Betrachtet man einen starren Körper so stellt man insgesamt sechs Freiheitsgrade der Bewegung Die Mechanik besteht aus drei Teilgebieten: Kinetik: Bewegungsvorgänge (Translation, Rotation) Statik: Zusammensetzung und Gleichgewicht von Kräften Dynamik: Kräfte als Ursache von Bewegungen Die Mechanik

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Introduction into modern Cosmology

Introduction into modern Cosmology Introduction into modern Cosmology 1. J. Silk: The Big Bang (Freeman 2001, populär p für untere Semester) 2. M. Rowan Robinson: Cosmology (Oxford Press 1996; konzentriert auf beobachtbare Daten) 3. St.

Mehr

Kinematik des Viergelenk-Koppelgetriebes

Kinematik des Viergelenk-Koppelgetriebes HTL-LiTec Viergelenk - Koppelgetriebe Seite 1 von 7 Dipl.-Ing. Paul MOHR email: p.mohr@eduhi.at Kinematik des Viergelenk-Koppelgetriebes Mathematische / Fachliche Inhalte in Stichworten: Kinematik; Getriebelehre;

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016

Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016 Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle

Mehr

1.4 Krummlinige Koordinaten I

1.4 Krummlinige Koordinaten I 15 1.4 Krummlinige Koordinaten I (A) Motivation zur Definition verschiedener Koordinatensysteme Oft ist es sinnvoll und zweckmäßig Koordinatensysteme zu verwenden, die sich an der Geometrie und/oder Symmetrie

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 223 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 25. Janua6 Übungsblatt Lösungsvorschlag 3 Aufgaben,

Mehr

Die Entstehung der Jahreszeiten - dargestellt mit Geogebra 1

Die Entstehung der Jahreszeiten - dargestellt mit Geogebra 1 Jahreszeiten 1 Die Entstehung der Jahreszeiten - dargestellt mit Geogebra 1 Bevor die Entstehung der Jahreszeiten und die Umsetzung in der GeoGebra-Simulation beschrieben werden, sind hier zunächst noch

Mehr

Mathematik verstehen 7 Lösungsblatt Aufgabe 6.67

Mathematik verstehen 7 Lösungsblatt Aufgabe 6.67 Aufgabenstellung: Berechne die Schnittpunkte der e k1 und k mit den Mittelpunkten M1 bzw. M und den Radien r1 bzw. r a. k1: M1 3, 4, P 5, 3 k 1, k geht durch A 0 und B 4 0 r 5 M liegt im 1. Quadranten

Mehr

Die einleitend angesprochenen Zusammenhänge sind in der folgenden Tabelle zusammengestellt:

Die einleitend angesprochenen Zusammenhänge sind in der folgenden Tabelle zusammengestellt: Ein konstantes Abstandsrodukt Eckart Schmidt Zu zwei fest vorgegebenen Punkten sind die Ortslinien für Punkte mit konstanten Abstandssummen, Abstandsdifferenzen oder Abstandsverhältnissen Kegelschnitte;

Mehr

Zentrifugalkraft beim Karussell

Zentrifugalkraft beim Karussell Seil, Länge L m Also: Zentrifugalkraft beim Karussell tan( α) y = α r F Z r G ω r = x r r ' KS : mitrotierendes Koordinatensystem m G r α 2 m ω g r ' F r Z F r gesamt 2 ω sin( α) L = g Fragestellung: Um

Mehr

Serie 7: Kurvenintegrale

Serie 7: Kurvenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 7: Kurvenintegrale Bemerkungen: Die Aufgaben der Serie 7 bilden den Fokus der Übungsgruppen vom 4./6. April.. Ordnen Sie den Kurven -8 die

Mehr

Inhaltsverzeichnis. 1. Aufgabenstellung Durchführung Totlagenkonstruktion Zeichnerische Analyse von Kurbelschwinge...

Inhaltsverzeichnis. 1. Aufgabenstellung Durchführung Totlagenkonstruktion Zeichnerische Analyse von Kurbelschwinge... Inhaltsverzeichnis 1. Aufgabenstellung... 1 2. Durchführung... 1 3. Totlagenkonstruktion... 2 3.1 Zeichnerische Analyse von Kurbelschwinge... 3 3.2 Berechnung zur Ermittlung der theoretischen Werte...

Mehr

Betrachtungen über die Entdeckungen Johannes Keplers. Nährungsweise kann man sagen, die Planeten umkreisen die Sonne auf einer elliptischen Bahn.

Betrachtungen über die Entdeckungen Johannes Keplers. Nährungsweise kann man sagen, die Planeten umkreisen die Sonne auf einer elliptischen Bahn. Betrachtungen über die Entdeckungen Johannes Keplers Nährungsweise kann man sagen, die Planeten umkreisen die Sonne auf einer elliptischen Bahn. Nach Meinung der modernen Schullehre verwendet man den Begriff

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Keplersche Gesetze Gravitationsgesetz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 15. Nov. 2016 Der Drehimpuls m v v r v ω ω v r

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Bogenmaß und trigonometrische Funktionen

Bogenmaß und trigonometrische Funktionen Bogenmaß und trigonometrische Funktionen Was ist ein "Winkel"? Wir suchen eine tragfähige Definition. N Der "Winkel (zwischen von einem Punkt ausgehenden Halbgeraden)" beschreibt deren relative Lage zueinander

Mehr

Einleitung Aufbau des Sonnensystems Entstehung des Sonnensystems. Das Sonnensystem. Stefan Sattler

Einleitung Aufbau des Sonnensystems Entstehung des Sonnensystems. Das Sonnensystem. Stefan Sattler 1 2 Allgemeine Struktur Zone der Planeten 3 Urknall Urwolke Entstehung der Planeten Planetensystem Planeten und ihre natürliche Satelliten Zwergplaneten Kometen, Asteroiden und Meteoriten Planetensystem

Mehr

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung

Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Kontaktzeitmessungen beim Venustransit und die Ableitung der Sonnenentfernung Udo Backhaus 14. Dezember 2004 1 Prinzip Die Messung der Astronomischen Einheit durch Kontaktzeitmessungen beim Venustransit

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

J. Neunte Übungseinheit

J. Neunte Übungseinheit J. Neunte Übungseinheit Inhalt der neunten Übungseinheit: Aufgaben dieser Art kommen zum zweiten Kenntnisnachweis. Umformen von Differentialgleichungen 2. und höherer Ordnung auf Systeme 1. Ordnung J.1.

Mehr

Kapitel 5 (Ebene autonome Systeme) Abschnitt 5.1 (Reduktion auf skalare Di.gleichungen)

Kapitel 5 (Ebene autonome Systeme) Abschnitt 5.1 (Reduktion auf skalare Di.gleichungen) Abschnitt 5.1 Reduktion auf skalare Differenzialgleichungen 33 Kapitel 5 Ebene autonome Systeme Abschnitt 5.1 Reduktion auf skalare Di.gleichungen Aufgabe 1, Seite 190 Das gegebene System besitzt oensichtlich

Mehr