Serie 5 Musterlösung
|
|
|
- Rolf Gerstle
- vor 7 Jahren
- Abrufe
Transkript
1 Serie 5 Musterlösung Lineare Algebra Klasse: 1Ea, 1Eb, 1Sb Datum: HS Winkelfrequenz, Periodendauer 5IYBKE Berechnen Sie die fehlenden Grössen. (a) T = 4π (b) ω = (c) T = π/ (d) ω = π (e) T = 10 (f) ω = π 4 (g) T = 1 (h) ω = 10 Wir benutzen ω = T und berechnen damit (a) ω = 1 (b) T = π (c) ω = 6 (d) T = (e) ω = π 5 (f) T = 8 (g) ω = (h) T = π 5. Oberschwingungen 15H4TP Bestimmen Sie das kleinste gemeinsame Vielfache der Periodenlängen. Geben Sie dann die entsprechende Grundfrequenz ω 0 an sowie die Indices der angegebenen Oberschwingungen. (a) T 1 = 4, T = 1 (b) T 1 = 1, T = (c) T 1 = 9, T = 6 (d) T 1 =, T = 4 (e) T 1 = 5π, T = 5π (f) T 1 = 7π, T = 5π (a) Das kgv ist T 0 = 4. Die Grundfrequenz ist ω 0 = angegebenen Schwingungen sind Also sind die Indices 1 und 4. ω 1 = 4 = 1ω 0, ω = 1 = 4 π 1 4 = π 1 = 4ω 0. Die Frequenzen der
2 (b) Das kgv ist T 0 = 1. Die Grundfrequenz ist ω 0 = angegebenen Schwingungen sind Also sind die Indices 1 und 4. ω 1 = 1 = 1ω 0, ω = = 4 π 6 (c) Das kgv ist T 0 = 18. Die Grundfrequenz ist ω 0 = angegebenen Schwingungen sind Also sind die Indices und. 1 = π 6 = 4ω 0 18 = π 9 ω 1 = 9 = ω 0, ω = 6 = / π 9 (d) Das kgv ist T 0 = 1. Die Grundfrequenz ist ω 0 = angegebenen Schwingungen sind 1 = π 6. Die Frequenzen der. Die Frequenzen der = ω 0. Die Frequenzen der Also sind die Indices 4 und. ω 1 = = 4ω 0, ω = 4 = ω 0 (e) Das kgv ist T 0 = 5 π. Die Grundfrequenz ist ω 0 = der angegebenen Schwingungen sind Also sind die Indices 1 und 5. ω 1 = 5π = 1ω 0, ω = 5π = 5ω 0 (f) Das kgv ist T 0 = 5 π. Die Grundfrequenz ist ω 0 = der angegebenen Schwingungen sind Also sind die Indices 5 und 7. ω 1 = 7π = 5ω 0, ω = 5π = 7ω 0 = 5π 5 = 5π 5. Die Frequenzen. Die Frequenzen. Trigonometrische Funktionen zeichnen 4HG9L9 Zeichnen Sie ohne elektronische Hilfsmittel den Graphen der folgenden Funktionen. Zeichnen Sie für jeden Graph den Phasenwinkel ϕ, Amplitude A und Periode T ein. (a) f() = sin() (c) f() = sin ( ) (b) f() = cos() (d) f() = cos ( π 4 ) Seite / 8
3 (e) f() = cos( ) (f) f() = sin( π/) (g) f() = sin ( ) (h) f() = cos ( ) 4 (i) f() = sin ( ) π 4 (j) f() = 5 cos ( π ) (k) f() = cos ( + ) 5 (l) f() = sin ( π 1) 4 Achtung bei Funktionen, die eine Verschiebung wie auch eine Winkelfrequenz enthalten: (d) f() = cos ( ) ( π 4 = cos ( π )). Die Funktion wird zu = π verschoben 8 8 und dann gestaucht mit ω =. (i) f() = sin ( ) ( π 4 = sin 1 ( π)). Die Funktion wird zu = π verschoben und dann gestreckt mit ω = 1. (j) f() = 5 cos ( π ) = 5 cos ( π ( )). Die Funktion wird zu = 4 π π verschoben und dann gestaucht mit ω = π. (+ 5 (k) f() = cos ( +) = cos ( )). Die Funktion wird zu = verschoben und dann gestaucht mit ω =. 5 (l) f() = sin ( π 1) = sin ( π ( ) 4 4 π. Die Funktion wird zu = π verschoben und dann gestaucht mit ω = π. a) φ=0 b) 0.4 T= c) 1 0. () () 0-1 A = -0. T= -0.4 A =1/ φ=0 - φ'=π/8 d) 1.0 e) T= f) -1.5 () 1.0 T=4π - A =1 φ=0 1.0 φ=π/ () - A =1 T=π () A = 1 φ=0 A =1 T= -.0 () 1.0 h) 1.0 g) φ=0 i) T=4 () j) () A =1 T= A =5 φ'=4/π T = 4 () A =1 - φ=0 k) -1.5 () -.0 φ'=15/() -.5 A =1 T=5 -.0 () l) () A =1 A =/4 T=4π φ'=π/ φ'=/π T=6 Seite / 8
4 4. Überlagerung gleichfrequenter cos / sin Schwingungen SXWHB9 Bestimmen Sie Winkelfrequenz, Phasenwinkel und Amplitude der Superposition. (a) f(t) = 5 cos(t) + 5 sin(t) (b) f(t) = cos(18t) sin(18t) (c) f(t) = cos(10t) + sin(10t) (d) f(t) =.6588 cos(7t) sin(7t) Wir schreiben die Überlagerung als f(t) = a cos(ω t) + b sin(ω t) und benutzen für die Frequenz f = ω, für die Amplitude A = a + b und für die Phase ϕ = arctan(a/b). Dann gilt f(t) = A sin(ω t + ϕ) (a) Wir lesen aus ω = 1 (f = 1 ) und erhalten A = 75+5 = 5 und ϕ = 4 arctan( 5 ) = π. Also 5 f(t) = 5 sin(1 t + π ) (b) Wir lesen aus ω = 18 (f = 9 π )und erhalten A = (1.766) + (.4705) = und ϕ = arctan( ) π 5. Also f(t) = sin(18 t + π 5 ) (c) Wir lesen aus ω = 10 (f = 5 )und erhalten A = 1 π + = und ϕ = arctan( 1 ) = π. Also 6 f(t) = sin(10 t + π 6 ) (d) Wir lesen aus ω = 7 (f = 7 )und erhalten A = (.6588) + (.1611) = 4 und ϕ = arctan(.6588 ) 1. Also.1611 f(t) = 4 sin(7 t + 1) 5. Überlagerung gleichfrequenter cos / sin Schwingungen Z4DX95 Zerlegen Sie die Schwingung in gleichfrequente cos / sin Schwingungen f(t) = a cos(ω t) + b sin(ω t). (a) f(t) = 41 sin(t ) (b) f(t) = 5 sin(4t ) (c) f(t) = 5 sin(5t + π ) (d) f(t) = 74 sin(t ) Wir benutzen a = A sin(ϕ) und b = A cos(ϕ). Seite 4 / 8
5 (a) Wir berechnen b = 41 cos( ) = 5 und a = sin( ) 5 = 4. Also f(t) = 4 cos(1 t) + 5 sin(1 t) (b) Wir berechnen b = 5 cos( ) = 1 und a = sin( ) 1 =. Also f(t) = cos(4 t) + 1 sin(4 t) (c) Wir berechnen b = 5 cos( π ) = 0 und a = 5 sin( π ) = 5 f(t) = 5 cos(5 t) + 0 (d) Wir berechnen b = 74 cos( ) = 5 und a = sin( ) 1 = 7. Also f(t) = 7 cos( t) + 5 sin( t) 6. Von Polarkoordinaten zu kartesischen Koordinaten EQTD97 Berechnen Sie die kartesischen Koordinaten der Vektoren im angegebenen Koordinaten- Sstem a) v = c) v = d) b) v =5 6 v =4 7 Wir benützen ( v v ) = r ( ) cos(ϕ) sin(ϕ) Dafür messen wir den Dreh-Winkel im Gegenuhrzeigersinn von der -Achse aus. (a) r =, ϕ = 15 ( ) v = v ( ).1.1 Seite 5 / 8
6 (b) r = 5, ϕ = 7 ( ) ( ) v 1.55 = v 4.76 (c) r = 9, ϕ = = 55 ( ) v = v ( ) (d) r = 4, ϕ = = 16 ( ) v = v ( ) Polarkoordinaten, kartesische Koordinaten HDJZ6 Berechnen Sie die fehlenden Grössen. a) c) v =? v =-1 v = 5 v =-8 v =17?? v =? d) b) v =-4?? v =? v = -40 v = 9 v =5 v =? (a) Wir berechnen den Winkel ϕ = arctan ( 5/( 1) ) = Da der Vektor im. Quadranten liegt, gilt ϕ = ϕ + π = Die Länge des Vektors ist v = = 1 (b) Wir berechnen den spitzen Winkel zwischen -Achse und v: ϕ = arccos(4/5) = Der blau eingezeichnete Winkel ist dann α = ( π ϕ) = Und es ergibt sich v = cos(α) 5 = (c) Wir berechnen den spitzen Winkel zwischen -Komponente des Vektors v und dem Vektor v: ϕ = arccos(8/17) = Das ist der Stufenwinkel zum blau eingezeichnete Winkel, also dann α = Die Länge der Komponente ist v = sin( ) 17 = 15. Aus der Skizze schliessen wir v = 15. Seite 6 / 8
7 (d) Wir berechnen den Winkel ϕ = arctan ( 9/( 40) ) = Da der Vektor im. Quadranten liegt, gilt ϕ = ϕ + π =.90. Die Länge des Vektors ist v = = Bogenmass 9788 Berechne die fehlenden Einträge im Bogenmass oder im Winkelmass α. α π 10 5π 7π 9. Bogenmass 51 Berechne die Bogenlänge s. 8π 5π 18 s 1 / 7π/18 s r=6cm r=1cm Hier sind [in cm]: und Die Bogenlänge berechnen wir aus dem Anteil am ganzen Kreis, d.h. s = r s 1 = 6 / s = 1 7π/18 = 4π = 7π Bogenmass Berechne die Fläche des Kreissektors A. A 1 A 5π/6 5π/9 r=4cm r=10cm Seite 7 / 8
8 Die Fläche des Kreissektors berechnen wir aus dem Anteil am ganzen Kreis, d.h. A = π r Hier sind [in cm ]: A 1 = π 4 5π/9 = 40π und A = π 10 5π/6 = 15π Seite 8 / 8
Serie 12 Musterlösung
Serie 2 Musterlösung ineare Algebra www.adams-science.org Klasse: Ea, Eb, Sb Datum: HS 7 In dieser Serie werden alle echnungen in der Basis und in SI-Einheiten durchgeführt. e ˆ cos(ω t) und e 2 ˆ sin(ω
KOMPETENZHEFT ZUR TRIGONOMETRIE, II
KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4
Konvergenz und Stetigkeit
Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn
1. Definition der trigonometrischen Funktionen für beliebige Winkel
1 Trigonometrie 2 1. Definition der trigonometrischen Funktionen für beliebige Winkel In einem Kreis mit Mittelpunkt M(0,0) und Radius r ist der zunächst spitze Winkel α gezeichnet. α legt auf dem Kreis
3. Erweiterung der trigonometrischen Funktionen
3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x
Trignonometrische Funktionen 6a
Schuljahr 2015/16 [email protected] Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )
HTBLA VÖCKLABRUCK STET
HTBLA VÖCKLABRUCK STET Trigonometrie INHALTSVERZEICHNIS 1. WINKELFUNKTIONEN IM RECHTWINKELIGEN DREIECK... 3. BOGENMASS... 3 3. TRIGONOMETRISCHE FUNKTIONEN BELIEBIGER WINKEL... 4 3.1. Einheitskreis (r =
Serie 1 Musterlösung
Serie 1 Musterlösung Lineare Algebra www.adams-science.org Klasse: 1Ea, 1Eb, 1Sb Datum: HS 17 1. Kollinear RIMDII Bestimme ob die Vektoren kollinear sind, indem du die erste Komponente eliminierst. u =
Klassenarbeit GYM Klasse 10 Seite 1 Datum: Trigonometrische Funktionen. Erreichte Punkte:
Klassenarbeit GYM Klasse 10 Seite 1 Datum: Thema: Trigonometrische Funktionen Name: Zeit: Erreichte Punkte: Note: Hilfsmittel: GTR Aufgabe 1: (2 Punkte) Rechne in das jeweilige andere Winkelmaß um: a.
2.3 Exponential- und Logarithmusfunktionen
27 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche
Vorkurs Mathematik Übungen zu Komplexen Zahlen
Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten
Mathematik II: Übungsblatt 01: Lösungen
N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t
1. Unterteilung von allgemeinen Dreiecken in rechtwinklige
Trigonometrie am allgemeinen Dreieck Wir können auch die Seiten und Winkel von allgemeinen Dreiecken mit Hilfe der Trigonometrie berechnen. Die einfachste Variante besteht darin, ein beliebiges Dreieck
Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung
34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis
Serie 3 - Komplexe Zahlen II
Analysis D-BAUG Dr. Meike Akveld HS 2015 Serie - Komplexe Zahlen II 1. Wir betrachten die komplexe Gleichung z 6 = 4 4i. a) Bestimmen Sie alle en z C dieser Gleichung. b) Zeichnen Sie die en in die komplexe
KREISFUNKTIONEN. Allgemeines
KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.
Test 2 Musterlösung. Name, Nummer: Datum: 17. Juni 2017
Test 2 Musterlösung Brückenkurs Physik [email protected] www.adams-science.org Name, Nummer: Datum: 17. Juni 2017 1. Citroën 2CV C5H817 Ein elektrifizierter Döschwo (Citroën 2CV) überholt mit 202.73
2.3 Exponential- und Logarithmusfunktionen
26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche
9.5 Graphen der trigonometrischen Funktionen
9.5 Graphen der trigonometrischen Funktionen 9.5 Graphen der trigonometrischen Funktionen. Unter dem Bogenmass eines Winkels versteht man die Länge des Winkelbogens von auf dem Kreis mit Radius (Einheitskreis).
Anwendungen komplexer Zahlen
nwendungen komplexer Zahlen rbeitsblatt Dieser bschnitt eignet sich für fächerübergreifenden Unterricht mit Physik. In der Physik, speziell der Elektrotechnik, ist das chnen mit komplexen Zahlen ein wichtiges
Inhalt. Lineare Algebra 1. Dr. Donat Adams. Fachhochschule Nordwest-Schweiz Technik, Brugg. 10. Oktober 2017
Inhalt Lineare Algebra 1 Dr. Donat Adams Fachhochschule Nordwest-Schweiz Technik, Brugg 10. Oktober 2017 1 / 20 Inhalt Teil 2 / 20 Inhalt Inhaltsverzeichnis I 3 / 20 Inhalt Bibliographie I F. Bachmann,
Harmonische Schwingungen und komplexe Zeiger
Harmonische Schwingungen und komplexe Zeiger Eine harmonische Schwingung wird durch eine allgemeine sinusartige Funktion beschrieben (Grafik siehe unten: y = y (t = sin (ω t + ϕ Dabei ist die mplitude,
Kurvenintegral, Tangenten
Vorzeigeaufgaben: HS10 Aufgabe 2 WS05/06 Aufgabe 1a+b HS11 Aufgabe 2: falls Zeit am Ende vom Kursblock 1, ansonsten als Hausaufgabe. Empfohlene Bearbeitungsreihenfolge: HS09 Aufgabe 1 HS08 Aufgabe 3 HS12
c) y = ln( 2x + 5) d) y = 2) Verwandeln Sie die gegebene implizite Funktion in die explizite Form y(x):
Übungen zur Einführung in die Physikalischen Rechenmethoden I (Mathematische Grundlagen für das Physikstudium I) WS /, 6 VO+UE Univ. Prof. Dr. Christoph Dellago ) Finden Sie die Umkehrung von folgenden
Lösung - Serie 10. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Berechnen Sie die Partialbruchzerlegung von
D-MAVT/D-MATL Analysis I HS 8 Dr. Andreas Steiger Lösung - Serie MC-Aufgaben (Online-Abgabe). Berechnen Sie die Partialbruchzerlegung von + +. (a) + + + ( ). (b) + + + + ( ). (c) + + + + ( ). (d) + + +
a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g(x) = f(x)
Vertikale Verschiebung a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g() = f() b) Zeichne den Graphen der Funktion h mit h() = f() ein. Oben oder unten? f() +
II.1 sin, cos, tan im rechtwinkligen Dreieck und im Einheitskreis
II.1 sin, cos, tan im rechtwinkligen Dreieck und im Einheitskreis 263/1 a) c = 5 cm; 53,13 ; 36,87 b) b = 12 cm; 22,62 ; 67,38 c) a 4,11 cm; b 5,66 cm; = 54 d) c 7,46 cm; b 6,58 cm; = 62 e) c 1631,73 cm;
4.8. Prüfungsaufgaben zu trigonometrischen Funktionen
.8. Prüfungsaufgaben zu trigonometrischen Funktionen Aufgabe : Schaubilder der trigonomtrischen Funktionen (8) a) Zeichne den Graphen der Sinusfunktion im Bereich π und gib fünf verschiedene Funktionswerte
Vorkurs Mathematik Übungen zu Kurven im R n
Vorkurs Mathematik Übungen zu urven im R n Als bekannt setzen wir die folgende Berechnung voraus: Sei f : [a, b] R eine urve im R. Die Länge L der urve berechnet sich durch L b a f t dt urven in R Aufgabe.
Crash-Kurs Komplexe Zahlen
1 Definitionen: j, C, z Im Körper R der reellen Zahlen besitzt die lineare Gleichung ax + b = 0 (a, bεr; a 0) stets eine Lösung. Die quadratische Gleichung ax 2 + bx + c = 0 führt zu der Lösungsformel
Musterlösungen. der Warm-Up Hausaufgaben. Komplexe Zahlen
WS 05/6 Musterlösungen der Hausaufgaben Komplexe Zahlen Hinweis: Allgemein ist wohl zu erwarten, dass in allen drei Zahldarstellungen gerechnet wird. Zur Erinnerung: z C z = Re(z) + i Im(z) = a + ib =
Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung
28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen
BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1=
BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education Höhere Mathematik II Übungen Komplexe Zahlen i e π + 0 8 R. Mohr FK Blatt Komplexe Zahlen I WS 004/ Aufgabe : Gegeben sind die komplexen
(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010
Übungen mit dem Applet Kurven in Polarkoordinaten
Kurven in Polarkoordinaten 1 Übungen mit dem Applet Kurven in Polarkoordinaten 1 Ziele des Applets...2 2 Wie entsteht eine Kurve in Polarkoordinaten?...3 3 Kurvenverlauf für ausgewählte r(ϕ)...4 3.1 r
Lösung - Serie 7. D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)
D-MAVT/D-MATL Analysis I HS 016 Dr. Andreas Steiger Lösung - Serie 7 1. MC-Aufgaben Online-Abgabe 1. Gegeben sind die Kurven K 1 links und K rechts, die beide für wachsenden Parameter t von aussen nach
3. Mathematikschulaufgabe
Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne
Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4
anu [email protected] www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne
Mathematik 2 (Master Sicherheitstechnik)
Priv.-Doz. Dr. J. uppenthal Wuppertal, 8.4.6 Aufgabe 5. Mathematik Master Sicherheitstechnik) Übungsblatt Gegeben seien die Schwingungen f t) 3 sin4πt + π) und f t) 4 sin4πt + π/). Berechnen Sie die Amplitude
Tutorium zur Vorlesung Lineare Algebra und analytische Geometrie II Bearbeitungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 08 Blatt 9.06.08 Tutorium zur Vorlesung Lineare Algebra und analytische Geometrie II Bearbeitungsvorschlag 33. a Es ist cos ϕ sin ϕ cos
Harmonische Schwingung
Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α: Länge des Kreisbogens Fläche des Kreissektors b = α α 2rπ A = 360 360 πr2 Das Bogenmaß
Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:
Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der
Die komplexen Zahlen. 1. Einführung. A) Erweiterung des Zahlenkörpers. Def. 1 (imaginäre Einheit)
Die komplexen Zahlen 1. Einführung A) Erweiterung des Zahlenkörpers Def. 1 (imaginäre Einheit) Die Gl. x 2 + 1 = 0 hat zwei Lösungen, nämlich i und - i. Es soll also gelten: i 2 = -1 und ( - i ) 2 = -1.
Vorlesung Mathematik 3 KI Bachelor 1
Vorlesung Mathematik 3 KI Bachelor 1 B.Grabowski 19. Oktober 2012 1 (C) Prof.Dr.B.Grabowski, HTW des Saarlandes, 3/2012, Skript zur Vorlesung Mathematik 3 KI Bachelor Zusammenfassung Das vorliegende Papier
Vorbereitung zur Klausur Mathematik 2 MT HTW des Saarlandes
Vorbereitung zur Klausur Mathematik MT HTW des Saarlandes Dimitri Ovrutskiy 9. Juli 008 1 1 Komplee Zahlen Sei j = 1 die komplee Einheit. Die Zahl wird oft auch als i bezeichnet. 1.1 Rechnen in C Aufgabe
Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.
Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition
Trigonometrie. In der Abbildung: der Winkel 120 (Gradenmaß) ist 2π = 2π (Bogenmaß).
Trigonometrie. Winkel: Gradmaß oder Bogenmaß In der Schule lernt man, dass Winkel im Gradmass, also als Zahlen zwischen 0 und 60 Grad angegeben werden. In der Mathematik arbeitet man lieber mit dem Bogenmaß,
Musterlösungen zu Serie 7
D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Musterlösungen zu Serie 7 1. Für jede der vier trigonometrischen Funktionen gilt: Genau in den Nullstellen x k ist y x k = 0 und y x k 0, was bedeutet,
1 Einleitung. 2 Sinus. Trigonometrie
1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische
Aufgabe 1: Geben Sie die Nullstellen der Funktion f(x) = sin (3x 2
Etra-Mathematik-Übung: 005--9 Aufgabe : Geben Sie die Nullstellen der Funktion f() sin ( * Pi) an! Skizze: Wertetabelle: X - ½ Pi ½ Pi sin ( ½ Pi) -,0-6,0 -,57-7,57-0,96 -,5 -,5 -,57-6,07 + 0, -,0 -,0
Octave/Matlab-Übungen
Aufgabe 1a Werten Sie die folgenden Ausdrücke mit Octave/Matlab aus: (i) 2 + 3(5 11) (ii) sin π 3 (iii) 2 2 + 3 2 (iv) cos 2e (v) ln π log 10 3,5 Aufgabe 1b Betrachten Sie (i) a = 0.59 + 10.06 + 4.06,
Bogenmaß und trigonometrische Funktionen
Bogenmaß und trigonometrische Funktionen Was ist ein "Winkel"? Wir suchen eine tragfähige Definition. N Der "Winkel (zwischen von einem Punkt ausgehenden Halbgeraden)" beschreibt deren relative Lage zueinander
sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse
Sinus und Cosinus im rechwinkligen Dreieck Ankahee Hpoenuse. Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Aufgabe: Berechnen Sie die fehlende Seienlänge und den Winkel.
Übung 4 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 15. Oktober 2018 in den Übungsstunden
Mathematik I für Naturwissenschaften Dr. Christine Zehrt 11.10.18 Übung 4 (für Pharma/Geo/Bio Uni Basel Besprechung der Lösungen: 15. Oktober 018 in den Übungsstunden Aufgabe 1 (a Sei f(x = cosx. Der Graph
Informationen für Lehrpersonen und Lernende GLF-Prüfung Mathematik TALS Juli 2017 (inkl. Nachtermin)
Informationen für Lehrpersonen und Lernende GLF-Prüfung Mathematik TALS Juli 017 (inkl. Nachtermin) Für die Note 6 müssen nicht alle Aufgaben gelöst werden. Der Notenschlüssel wird nach der Prüfung festgelegt.
Klausur zur Vorlesung Lineare Algebra B im SS 2002 an der Universität Hannover
Dozent: Prof. Dr. Wolfgang Ebeling Übungsleiter: Dr. Detlef Wille Klausur zur Vorlesung Lineare Algebra B im SS an der Universität Hannover Joachim Selke 9. Februar Lineare Algebra B SS Klausur zur Vorlesung
Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn
Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist
Vektoren, Skalarprodukt, Ortslinien
.0 Gegeben sind die Punkte A(0/-4), C(0/4), sowie die Pfeile mit α [ 90 ; 90 ]. 4cosα AB = 4sinα+ 4. Zeichne die drei Punkte B, B und B 3 mit α { 30;0;30 } in ein KOS.. Zeige: 4cosα CB =. 4sinα 4.3 Zeige,
Trigonometrische Funktionen
Trigonometrische Funktionen Wir beginnen mit der Sinusfunktion: f(x) = sin(x) Wir schränken den Definitionsbereich auf eine Periode ein, d.h. xœ 0,2 bzw. 0 x 2p. Hier ist der Graph: Folgendes sollte beachtet
Kurven in der Ebene Darstellungsformen, Bogenlänge, Tangente
Kurven in der Ebene Darstellungsformen, Bogenlänge, Tangente Wir betrachten Kurven in der -Ebene. Als erstes wollen wir uns damit beschäftigen, wie sich solche Kurven mathematisch beschreiben lassen. Dafür
2.4 Grenzwerte bei Funktionen
28 Beispiel Im Beispiel am Ende von Abschnitt 2.1 (Seiten 22 und 24) haben wir gesehen, dass für die Anzahl a n von Bakterien nach n Tagen gilt a n = 2500 (1,04 n +1). Nach wieviel Tagen sind es eine Million
Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen
Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.
Trigonometrie. Winkelfunktionen und Einheitskreis
Trigonometrie Die Trigonometrie ist die Lehre der Winkel- oder Kreisfunktionen. Die auffälligste Eigenschaften der Funktionen der Trigonometrie ist die Periodizität: Trigonometrische Funktionen zeigen
Berechnungen am rechtwinkligen Dreieck Der Einheitskreis. VI Trigonometrie. Propädeutikum Holger Wuschke. 21. September 2018
Propädeutikum 018 1. September 018 Denition Trigonometrie Die Trigonometrie beschäftigt sich mit dem Messen (µɛτ ρoν) von dreiseitigen (τ ρίγωνo) Objekten. Zunächst gilt in Dreiecken: A = 1 g h Abbildung:
Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend?
D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie.. Welche der folgenden Funktionen (, R sind strikt monoton wachsend? (a (b (c + 3 (d e (e (f arccos Keine. Auf (, 0] ist strikt monoton
Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht: Einige Terme können nicht weiter vereinfacht werden!
Bachelor Bauingenieurwesen Reto Spöhel Repetitionsblatt BMS-Stoff Mathematik Alle Aufgaben sind ohne Taschenrechner zu lösen! Aufgabe 1 Vereinfachen Sie die folgenden Ausdrücke soweit wie möglich. Vorsicht:
Übung 2 vom
Übung vom.0.04 Aufgabe 5 Gegeben ist die Gleichung sin(α) + sin(α + β) + sin(α + β) = 0 Für welches Argument β ist diese Gleichung für jedes α erfüllt? Wo findet diese Gleichung Anwendung in der Technik?
Trigonometrische Funktionen
Trigonometrische Funktionen. Gegeben ist die Funktion f() = (sin( π )) Ihr Graph sei K. a) Skizzieren Sie K im Intervall [0,]. Geben Sie die Periode von f an. Geben Sie alle Hoch- und Tiefpunkte von K
Kartografie I. Hans Walser Koordinatensysteme und Transformationen Lernumgebung
Kartografie I Hans Walser Koordinatensysteme und Transformationen Lernumgebung Hans Walser: Koordinatensysteme und Transformationen ii Inhalt 1 Rechts- oder Linkssystem?... 1 Rechtssystem... 3 Polarwinkel...
Sinus und Cosinus im rechtwinkligen Dreieck ( )
Sinus und Cosinus im rechwinkligen Dreieck (6.8.8) Ankahee. Hpoenuse Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Was ha das rechwinklige Dreieck mi Schwingungen
Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2
19 9. Harmonische Schwingungen (Sinusschwingungen) Der Punkt P rotiert gleichförmig in der Grundebene um den Ursprung O mit der Winkelgeschwindigkeit in positivem Drehsinn. Zur Zeit t = 0 schliesst uuur
Komplexe Zahlen (Seite 1)
(Seite 1) (i) Motivation: + 5 = 3 hat in N keine Lösung Erweiterung zu Z = 2 3 = 2 hat in Z keine Lösung Erweiterung zu Q = 2 / 3 ² = 2 hat in Q keine Lösung Erweiterung zu R = ± 2 ² + 1 = 0 hat in R keine
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und
Lösung zu Serie 2. D-ERDW, D-HEST, D-USYS Dr. Ana Cannas. Mathematik II FS März 2016
Mathematik II FS 6. März 6 Lösung zu Serie Bemerkung: Die Aufgaben der Serie sind der Fokus der Übungsstunden vom./3. März.. a y = x und es wird die ganze Parabel einmal durchlaufen, denn x nimmt alle
Trigonometrische Funktionen
Trigonometrische Funktionen Wir wollen einer Zeichnung und nicht dem Taschenrechner mehrere Sinuswerte entnehmen und graphisch darstellen. Falls c = ist, gilt a = sinα. Die Strecken der Länge liegen auf
Übungsaufgabe z. Th. Coulombfeld
Übungsaufgabe z. Th. Coulombfeld Aufgabe In einem zweidimensionalen Koordinatensystem sind die beiden gleich großen positiven Punktladungen und mit gegeben. 2 0 9 C Die Ladung befindet sich auf der negativen
Experimentalphysik E1
Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung
4 Funktionen und Transformationen
4 Funktionen und Transformationen In diesem Arbeitsblatt geht es um Begriffe wie lineare und quadratische Funktionen, Wurzelfunktionen, trigonometrische Funktionen sowie Transformationen von Funktionen.
Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 4. Aufgabe 4.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand.
Dr V Gradinaru D Devaud A Hiltebrand Herbstsemester 4 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 4 Aufgabe 4 Multiple Choice: Online abzugeben 4a) Wir betrachten
3.2. Polarkoordinaten
3.2. Polarkoordinaten Die geometrische Bedeutung der komplexen Multiplikation versteht man besser durch die Einführung von Polarkoordinaten. Der Betrag einer komplexen Zahl z x + i y ist r: z x 2 + y 2.
Demo: Mathe-CD KOMPLEXE ZAHLEN
KMPLEXE ZAHLEN Diese Datei gibt einige Seiten Einblick in die Serie Komplexe Zahlen, und, die gegen Zusatbestellung auf der CD u haben ist. Abonnenten erhalten sie automatisch. Datei Nr. 50000 Januar 00
