Sinus und Cosinus im rechtwinkligen Dreieck ( )

Größe: px
Ab Seite anzeigen:

Download "Sinus und Cosinus im rechtwinkligen Dreieck ( )"

Transkript

1 Sinus und Cosinus im rechwinkligen Dreieck (6.8.8) Ankahee. Hpoenuse Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Was ha das rechwinklige Dreieck mi Schwingungen zu un? Wenn man im Phsikunerrich mi dem Thema Schwingungen sare, wird meis als erses ein Versuch gemach, bei dem der Schaen einer Kreisbewegung und einer schwingenden Feder an die Wand projizier werden. Dann sieh man, dass die Schaenbewegungen idenisch sind. Jede Schwingung kann also beschrieben werden durch die Höhe eines kreisenden Körpers, der sich um einen Winkel φ gedreh ha. Winkel im Bogenmaß Wenn es um Schwingungen und Wellen geh, werden Winkel immer im Bogenmaß gemessen. Eine komplee Umdrehung ha dann nich 36. Hier is der Drehwinkel π. Eine halbe Drehung (8 ) ha dann den Drehwinkel π. Man kann für jeden Drehwinkel in Grad den Drehwinkel im Bogenmaß ausrechnen: Wichige Winkel im Bogenmaß Drehung um Bogenmaß Grad ¼ ½ π 9 ½ π 8 ¾ 3/ π 7 π 36 Winkel in Grad 36 = Winkel im Bogenmaß π Der Taschenrechner kann Winkel im Bogenmaß angeben, er muss allerdings dafür eingesell werden. Das geschieh beim TInspire uner Menü/Einsellungen/Grafik Winkel. Wenn du esen wills, ob dein Taschenrechner die Winkel im Bogenmaß oder im Gradmaß rechnes, gib es einen einfachen Trick: Im Gradmaß is sin(9 ) = Im Bogenmaß is sin( ) = Du kanns also beides in den Taschenrechner einippen und schauen, wo herauskomm.

2 Schwingungen Allgemein: Jede Schwingung kann mihilfe der Funkion = sin(ω + φ) beschrieben werden. is die Ampliude. ω = π heiß Winkelgeschwindigkei. T T is die Schwingungsdauer. is die Sarzei. Aus der Phasenverschiebung φ kann man die Sarzei ausrechnen: = φ. T π Einfluss der Phasenverschiebung φ: = sin( + φ) () Der Graph zu = sin( + φ) enseh aus dem Graphen zu =sin(x) durch Verschieben um φ engegen der x-achse.anschaulich heiß das, die Funkion sare um eine Zei = φt π früher. Wenn φ>, wird nach links verschoben.,5,5 φ sin(x),5 Wenn φ<, wird nach rechs verschoben. φ sin( + φ) sin( + φ),5,5,5 - -,5 Sarzei Schwingungsdauer T Ampliude 4,5 9,5 4,5 4,5 9,5 4,5 - -,5 - -,5 sin(x) () Die Periode is π, weil ω=.das ensprich anschaulich der Schwingungsdauer T=π. (3) Die Funkion ha den Werebereich [-;], weil die Ampliude = is. (4) Die Funkion ha Nullsellen bei k π φ für alle ganzzahligen k. Einfluss der Winkelgeschwindigkei ω: = sin(ω) () Der Graph zu = sin(ω) enseh aus dem Graphen zu = sin() durch Srecken mi dem Fakor in Richung der Zeiachse. Anschaulich änder sich dabei die Schwingungsdauer ω,5 Für ω> sin(),5 Für <ω< sin(ω) sin(),5,5 4,5 9,5 4,5 4,5 9,5 4,5 - -,5 sin(ω) () Die Schwingungsdauer is T= π ω. (3) Die Funkion ha den Werebereich [-;]. (4) Die Funkion ha die Nullsellen: k π für ganzzahlige k. ω - -,5

3 Wellen Wellen sind sehr komplexe Gebilde, weil sie sich mi der Zei verändern und dazu noch im Raum forbewegen. Man kann aber mi einer Kamera ein Foo von einer Welle machen und dann die Form der Welle auf dem Foo berachen. Dabei muss man drei Größen im Auge behalen: Wellenlänge λ Gangunerschied δ Ampliude Die Funkionsgleichung der Welle laue dann (x) = sin( π λ x + πδ λ ) Der Gangunerschied δ gib die Verschiebung der Welle in x-richung an. Wenn man den Phasenwinkel φ kenn, kann man ihn ausrechnen: φ π = δ λ,5,5 Ampliude Gangunerschied ,5 Wellenlänge x

4 Wellen und Schwingungen zeichnen Meisens muss man nur einzelne Wellen und Schwingungen zeichnen. Dann kann man die Achsen so wählen, dass sie passen. Das funkionier sogar, wenn man für die Wellenlänge, Schwingungsdauer und die Ampliude keine konkreen Zahlen ha. Beispiel Schwingung: Für das Diagramm sind Schwingungsdauer, Anfangszei und Ampliude wichig. Da die Schwingung periodisch is, reich es ers mal, wenn man die Längsachse (-Achse) und die Ampliude aufzeichne. Die Hochachse (-Achse) kann späer kommen. Sie veränder die Schwingung nich, sondern leg nur die Sarzei fes. Schri : Eine Sinusschwingung ha jede halbe Schwingungsdauer einen Nulldurchgang. Außerdem is die Ampliude konsan. Zeichnen Sie zuers die -Achse und markieren Sie die Nullsellen. Zeichnen Sie zwei gesrichele Linien, die die Ampliude markieren. Schwingungsdauer T Ampliude Schri : Zeichnen Sie die Sinusschwingung so, dass sie durch die markieren Nullsellen geh und die gegebene Ampliude ha. Schri 3: Der Sarzeipunk gib an, um wieviel die Sinusschwingung verschoben is. Für = is die Sinusfunkion nich verschoben. Zeichnen Sie die -Achse so ein, dass der Sarzeipunk pass. Schri 3: Will man weiere Wellen in das Diagramm zeichnen, so muss man sich sofor über den Sarzeipunk Gedanken machen. Außerdem kann sich die Wellenlänge ändern. Fall : Der Sarzeipunk is anders. Berechnen Sie aus φ den Sarzeipunk. Für φ = π zum Beispiel is die Welle um eine halbe Periode verschoben. = T Zeichnen Sie die verschobene Welle ein. Fall : Die Schwingungsdauer is anders. Zeichnen Sie die Nullsellen für die geändere Schwingungsdauer ein. Ha sich die Schwingungsdauer zum Beispiel verdoppel, so sind die Nullsellen doppel so wei auseinander.

5 Aufgaben zu Schwingungen und Wellen Aufgabe : Berechnen Sie für die folgenden Dreiecke die fehlende Seie und den eingezeichneen Winkel φ ) 7cm 4,5cm ) cm 4,5cm 3),5cm 5cm 4) 4cm 7cm 5) 5cm cm 6) 3cm,5cm 7) 3cm cm Aufgabe : Winkel im Bogenmaß a) Füllen Sie die folgende Tabelle vollsändig aus. Rechnen Sie dazu die Winkel um. φ in Grad 3 5 φ im Bogenmaß, 5 3 b) Berechnen Sie für alle Winkel einmal den Sinus und den Cosinus im Bogenmaß und einmal in Grad. Wenn Sie es richig machen, muss dasselbe herauskommen. Aufgabe 3: Schwingungen mi dem GTR zeichnen. Definieren Sie am GTR die Variable φ:= und omega:= a) Zeichnen Sie die Funkion der Schwingung = sin(omega x + φ). Geben Sie Ampliude und Schwingungsdauer an. b) Verändern Sie omega so, dass T=s. Überprüfen Sie die neue Schwingungsdauer am GTR. c) Verschieben Sie die Schwingung, indem Sie φ:= ; φ:= ; φ:=4 ; φ:=6 sezen. Beobachen Sie das Resula am GTR. Dann sezen Sie φ:= ; und vergleichen Sie. d) Finden Sie das φ, für das die Welle um eine Vierel / eine halbe / eine dreivierel und eine ganze Schwingung verschoben is. Es gib für jede Frage eine exake Anwor! Nich schäzen.

6 Aufgabe 4: Schwingungen von Hand zeichnen. Hier den GTR nich benuzen. Für alle Schwingungen sei die Ampliude =. a) Zeichnen Sie eine Schwingung mi Schwingungsdauer 5s und Sarzeipunk =. b) Zeichnen Sie ins selbe Diagramm eine Schwingung mi der gleichen Schwingungsdauer, die aber um eine halbe/eine vierel/drei vierel Schwingungsdauer nach rechs verschoben sind. c) Geben Sie für alle Schwingung aus b) den Sarzeipunk und den Phasenwinkel φ an. d) Zeichnen Sie eine Schwingung, die gegen die aus a) um φ= - π / π / π verschoben is. Geben Sie jeweils an. Aufgabe 5: Wellen von Hand zeichnen. Hier den GTR nich benuzen. Für alle Wellen sei die Ampliude =. a) Zeichnen Sie die Momenaufnahme einer Welle mi Wellenlänge cm, die im Nullpunk sare. b) Zeichnen Sie ins selbe Diagramm eine Welle mi Wellenlänge cm, die um eine Vierel/eine halbe/eine ganze Wellenlänge nach rechs verschoben is. Geben Sie jeweils δ und φ an. Lösungen zu den Aufgaben: Aufgabe : Dreieck Winkel/ 5 6,4 6 34,8 66,4 48, 56,3 Seie/cm 5,3 4 4,3 5,8 4,6, 3,6 Aufgabe : φ in Grad ,3 4,6 3 φ im,7 Bogenmaß sin φ,7,5 -,34,5,3,84,9,5 cos φ,98,87 -,93 -,87,95,54 -,4,87 Aufgabe 3: a) = ; T=π b) omega:=π c)φ = π / π / 3 π / π

7 Aufgabe 4: a) b) c) Verschiebung um eine Vierel Schwingungsdauer: φ= π =,5s Verschiebung um eine halbe Schwingungsdauer: φ= π =,5s Verschiebung um eine dreivierel Schwingungsdauer: φ= 3 π = 3,75s d) φ= - π =,5s = -,5s φ= π φ = π = -,5s Die Zeichnung is in b) zu finden, da eine Schwingung, mi Verschiebung um π und 3 π, idenisch is. Aufgabe 5: Verschiebung um eine vierel Wellenlänge: φ= π δ=,5cm Verschiebung um eine halbe Wellenlänge: φ= π δ=cm Verschiebung um eine ganze Wellenlänge: φ= π δ=cm Wellen, die um eine ganze Wellenlänge oder ein Vielfaches davon verschoben sind, liegen übereinander.

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse

sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse Sinus und Cosinus im rechwinkligen Dreieck Ankahee Hpoenuse. Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Aufgabe: Berechnen Sie die fehlende Seienlänge und den Winkel.

Mehr

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

Serie 5 Musterlösung

Serie 5 Musterlösung Serie 5 Musterlösung Lineare Algebra www.adams-science.org Klasse: 1Ea, 1Eb, 1Sb Datum: HS 17 1. Winkelfrequenz, Periodendauer 5IYBKE Berechnen Sie die fehlenden Grössen. (a) T = 4π (b) ω = (c) T = π/

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Trignonometrische Funktionen 6a

Trignonometrische Funktionen 6a Schuljahr 2015/16 andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Technik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die reelle Funktion f( x)

mathphys-online Abschlussprüfung Berufliche Oberschule 2009 Mathematik 12 Technik - A I - Lösung Teilaufgabe 1.0 Gegeben ist die reelle Funktion f( x) Abschlussprüfung Berufliche Oberschule 9 Mahemaik Technik - A I - Lösung Teilaufgabe. Gegeben is die reelle Funkion f( x) in der Definiionsmenge ID f = IR. Teilaufgabe. (4 BE) Unersuchen Sie das Verhalen

Mehr

gegeben durch x 4 in dasselbe Koordinatensystem (Längeneinheit auf beiden Achsen: 1 cm). Zur Kontrolle: ft

gegeben durch x 4 in dasselbe Koordinatensystem (Längeneinheit auf beiden Achsen: 1 cm). Zur Kontrolle: ft KA LK M2 13 18. 11. 05 I. ANALYSIS Leisungsfachanforderungen Für jedes > 0 is eine Funkion f gegeben durch f (x) = x + 1 e x ; x IR. Der Graph von f sei G. a) Unersuche G auf Asympoen, Nullsellen, Exrem-

Mehr

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K

Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K Abiurprüfung Mhemik (Bden-Würemberg) Berufliche Gymnsien Anlysis, Aufgbe. Für jedes * is die Funkion f gegeben durch f (x) = x x + x +, x Ds Schubild von f is K. ( )( ).. (4 Punke) Zeichnen Sie K und K

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

KOMPETENZHEFT ZUR TRIGONOMETRIE, II

KOMPETENZHEFT ZUR TRIGONOMETRIE, II KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.

Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten. T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems

Mehr

KREISFUNKTIONEN. Allgemeines

KREISFUNKTIONEN. Allgemeines KREISFUNKTIONEN Allgemeines Um die Graphen der Winkelfunktionen zeichnen und verstehen zu können, ist es wichtig, den Einheitskreis zu kennen. Zunächst stellt man sich einen Kreis mit dem Radius 1 vor.

Mehr

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung

4.5. Prüfungsaufgaben zu Symmetrie und Verschiebung 4.5. Prüfungsaufgaben zu Symmerie und Verschiebung Aufgabe : Symmerie (6) Unersuche die folgenden Funkionen auf Punk- oder Achsensymmerie: a) f() = 6 6 + 4 + 8 + 7 b) f() = 8 5 5 + 5 c) f() = (a 5 b +

Mehr

3.5 Überlagerung von harmonischen Schwingungen

3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen Zwei Schwingungen u 1 und u längs gleicher Richung können superponier werden. u 1 = u sin(ω 1 + ϕ 1 ) (3.9)

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeparmen E13 WS 211/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peer Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körsgens, David Magerl, Markus Schindler, Moriz v. Sivers Vorlesung 1.11.211,

Mehr

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr.

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr. Ganzraionale Funkionenscharen. Grades Umfangreiche Aufgaben Lösungen ohne CAS und GTR Alle Mehoden ganz ausführlich Daei Nr. 7 Sand 3. Sepember 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

Fouerierreihen - eine Einführung

Fouerierreihen - eine Einführung HBL Kapfenberg Fourierreiehen - eine Einführung Seie 1 von 19 Roland Pichler roland.pichler@hl-kapfenberg.ac.a Fouerierreihen - eine Einführung Mahemaische / Fachliche Inhale in Sichworen: Inegralrechnung,

Mehr

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann

Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgabe Im abgelaufenen Jahr haen einige große deusche Firmen hohe prozenuale Gewinnzuwächse. Gleichzeiig wurden eilweise massiv

Mehr

(x) 2tx t 2 1, x R, t R 0.

(x) 2tx t 2 1, x R, t R 0. Aufgaben zu Geradenscharen. Folgende Funkionen beschreiben Geradenscharen. Sellen Sie diese Scharen dar, inde sie die Geraden für k = -, k = 0, k = und k = 3 zeichnen. a) f k (x) (k )x, x R, k R b) f k

Mehr

F u n k t i o n e n Trigonometrische Funktionen

F u n k t i o n e n Trigonometrische Funktionen F u n k t i o n e n Trigonometrische Funktionen Jules Antoine Lissajous (*1822 in Versailles, 1880 in Plombières-les-Bains) wurde durch die nach ihm benannten Figuren bekannt, die bei der Überlagerung

Mehr

3.4 Systeme linearer Differentialgleichungen

3.4 Systeme linearer Differentialgleichungen 58 Kapiel 3 Invarianen linearer Transformaionen 34 Syseme linearer Differenialgleichungen Die Unersuchung der Normalformen von Marizen soll nun auf die Lösung von Differenialgleichungssysemen angewende

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoreische Physik I/II Prof. Dr. M. Bleicher Insiu für Theoreische Physik J.. Goehe-Universiä Frankfur Aufgabenzeel IV 9. Mai hp://h.physik.uni-frankfur.de/ baeuchle/u Lösungen Die Vorlesung wird durch

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

Aufgaben zu Geradenscharen

Aufgaben zu Geradenscharen Aufgaben zu Geradenscharen. Folgende Funkionen beschreiben Geradenscharen. Sellen Sie diese Scharen dar, inde sie die Geraden für k = -, k = 0, k = und k = 3 zeichnen. a) f k (x) = (k )x, x R, k R b) f

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Sinus und Cosinus. Ich kann zu vorgegebenen Daten eine Sinusfunktion entwickeln, die diese Daten näherungsweise beschreibt.

Sinus und Cosinus. Ich kann zu vorgegebenen Daten eine Sinusfunktion entwickeln, die diese Daten näherungsweise beschreibt. Checkliste Sinus und Cosinus Ich kann Winkel in Grad und in Vielfachen von am Einheitskreis veranschaulichen. Ich kann in einem rechtwinkligen Dreieck die Sinus und Cosinuswerte eines Winkels durch die

Mehr

Fit für die Q-Phase? Mathematiktraining für die Schüler und Schülerinnen des Beruflichen Gymnasiums Gelnhausen

Fit für die Q-Phase? Mathematiktraining für die Schüler und Schülerinnen des Beruflichen Gymnasiums Gelnhausen Fi für die Q-Phase? Mahemaikraining für die Schüler und Schülerinnen des. Gleichungen (mi und ohne Parameer) Löse folgende Gleichungen:. 4 7.6 e ( e )..7 4 4 k k. 6.8 6 0.4 4 4 4 49.9 cos..0 4.6. e e.7

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Trigonometrie INHALTSVERZEICHNIS 1. WINKELFUNKTIONEN IM RECHTWINKELIGEN DREIECK... 3. BOGENMASS... 3 3. TRIGONOMETRISCHE FUNKTIONEN BELIEBIGER WINKEL... 4 3.1. Einheitskreis (r =

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Kinematik der Massenpunkte. O. von der Lühe und U. Landgraf Einfühung in die Phsik I Kinemaik de Massenpunke O. on de Lühe und U. Landgaf O und Geschwindigkei Wi beachen den O eines als punkfömig angenommenen Köpes im Raum als Funkion de Zei Eindimensionale Posiion

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

Bruchteile und Brüche

Bruchteile und Brüche Brucheile und Brüche Sprech über die Abbildungen. Welche Brucheile sind jeweils zu sehen? Ein Halbes, ein Driel, ein Vierel, ein Achel. Welcher Name gehör zu welchem Kreis? Erkläre, wie die Namen der Brucheile

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 05 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 05 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

Näherung einer Wechselspannung

Näherung einer Wechselspannung HL Seyr Wechselsromparabel Seie 1 von 1 Nieros Bernhard bernhard.nieros@hl-seyr.ac.a Näherung einer Wechselspannung Mahemaische / Fachliche Inhale in Sichworen: Polynomfunkion, allgemeine Sinusschwingung,

Mehr

Deutschsprachiger Wettbewerb 2009 / 2010 Mathematik Jahrgang 2 2. Runde

Deutschsprachiger Wettbewerb 2009 / 2010 Mathematik Jahrgang 2 2. Runde Deuschsprachiger Webewerb 009 / 00 Mahemaik Jahrgang. Rune Liebe Schülerin, lieber Schüler, iese Rune es Webewerbs ha 0 Fragen, Sie sollen von en vorgegebenen Lösungsmöglichkeien immer ie einzige richige

Mehr

7. Gewöhnliche Differentialgleichungen

7. Gewöhnliche Differentialgleichungen 1 7. Gewöhnliche Differenialgleichungen DGL: Gewöhnliche DGL: Parielle DGL: Anfangs- oder Randbedingungen: Besimmungsgleichung für eine Funkion, in der die gesuchen Funkion und ihre Ableiungen vorkomm

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN ARBEITSBLATT PARAMETERDARSTELLUNG EINER GERADEN Eine Gerade sell man im R ensprechend zum R auf, nur daß eine z-koordinae hinzukomm: Definiion: Parameerdarsellung einer Gerade durch die Punke A und B:

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

7.3. Partielle Ableitungen und Richtungsableitungen

7.3. Partielle Ableitungen und Richtungsableitungen 7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus

Mehr

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0.

2. Kinematik. v = a = dx v = dt. 2.1 Ortskurven. x(t) v > 0. Kurve: Beschreibung der Bewegung von Massenpunkten. v = 0. . Kinemaik Beschreibun er Beweun on Massenpunken Kure: () > Definiion : : Zei [s] (,y,) : Posiion [m] s : urückeleer We [m] ( ) : Geschwinikei [m/s] a : Beschleuniun [m/s ] is Seiun er Kure: Allemein :

Mehr

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016

Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016 Inhal.. 3. 4. 5. 6. 7. 8. Gekoppele Oszillaoren Gekoppele Oszillaoren, ifferenialgleichung Gekoppele Oszillaoren, Normalkoordinaen, Normalschwingungen Gekoppele Oszillaoren, Schwebungen Gekoppele Oszillaoren,

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Was mag das sein? Wir haben auch hier wieder eine Grundform, in die sich alle trigonometrischen Funktionen pressen lassen, mit denen wir zu tun haben werden: f(x) = a sin(bx

Mehr

Fourier-Transformation Linearität, Symmetrie, Verschiebung, Skalierung, Faltung, Modulation

Fourier-Transformation Linearität, Symmetrie, Verschiebung, Skalierung, Faltung, Modulation Übung 3 Fourier-Transformaion Lineariä, Symmerie, Verschiebung, Skalierung, Falung, Modulaion Lernziele - wissen und versehen, dass der Berag der Fourier-Transformieren einer reellen Funkion gerade is.

Mehr

Ganzrationale Funktionen (Polynomfunktionen) - Berechnung von Nullstellen, Gleichungen höheren Grades -

Ganzrationale Funktionen (Polynomfunktionen) - Berechnung von Nullstellen, Gleichungen höheren Grades - GS - 3.0.05 - gara_0_berechnenns.mcd Ganzraionale Funkionen (Polynomfunkionen) - Berechnung von, Gleichungen höheren Grades -. Gleichungen höheren Grades Gegeben is der Funkionserm f( ) a n n + a n n +...

Mehr

1.1. Grundbegriffe zur Mechanik

1.1. Grundbegriffe zur Mechanik ... Die geradlinig gleichförmige Bewegung.. Grundbegriffe zur Mechanik Ein Körper beweg sich geradlinig und gleichförmig enlang der -Achse, wenn seine Geschwindigkei (eloci) 0 konsan bleib. Srecke Zeiabschni

Mehr

a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g(x) = f(x)

a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g(x) = f(x) Vertikale Verschiebung a) Der Graph von g entsteht durch Verschiebung des Graphen von f um nach. Es gilt also: g() = f() b) Zeichne den Graphen der Funktion h mit h() = f() ein. Oben oder unten? f() +

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Verschiedene Winkel DEFINITION v 1 Mag. DI Rainer Sickinger Trigonometrie 2 / 1 Verschiedene Winkel Vermessungsaufgaben

Mehr

Die numerische Erzeugung eines durchstimmbaren Sinussignals

Die numerische Erzeugung eines durchstimmbaren Sinussignals Die numerische Erzeugung eines durchsimmbaren Sinussignals Jakob Fröhling Die Hersellung eines sinusförmigen Signals is eine Aufgabensellung aus der Messechnik. Für die Messung bei einer Frequenz soll

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G

Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G wwwmhe-ufgbencom Abiurprüfung Mhemik 0 (Bden-Würemberg) Berufliche ymnsien Anlysis, Aufgbe Für jedes mi > is die Funkion g gegeben durch x g (x) = e, x Ds Schubild von g is ( Punke) Nennen Sie drei gemeinsme

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

Basiswissen Physik 11. Jahrgangsstufe

Basiswissen Physik 11. Jahrgangsstufe Basiswissen Physik 11. Jahrgangssufe 1. Einfache lineare Bewegungen a) Darsellung von Bewegungen im Koordinaensysem Unerscheide sorgfälig die in der Zei zurückgelege Srecke s() von der zur Zei eingenommenen

Mehr

Lösungsblatt 8 zur Experimentalphysik I

Lösungsblatt 8 zur Experimentalphysik I ösungsbla 8 zur xperimenalphysik I Sommersemeser 04 - Übungsbla 8 Aufgabe 8. eopolds ifaßsäule (Präsenzaufgabe) Der Künsler eopold Müßig möche für sein neuses Projek zwei drehbare ifaßsäulen aus Beon (ρ

Mehr

1. Unterteilung von allgemeinen Dreiecken in rechtwinklige

1. Unterteilung von allgemeinen Dreiecken in rechtwinklige Trigonometrie am allgemeinen Dreieck Wir können auch die Seiten und Winkel von allgemeinen Dreiecken mit Hilfe der Trigonometrie berechnen. Die einfachste Variante besteht darin, ein beliebiges Dreieck

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Seiger Lösung - Serie 8 MC-Aufgaben Online-Abgabe 1. Was für eine Kurve sell die Paramerisierung sin1 r = cos1, R dar? a Ein Kreis. Es gil x + y = sin 1 + cos

Mehr

1 Kreissektoren und Kugeln Kreissektor mit dem Mittelpunktswinkel α und dem Radius r:

1 Kreissektoren und Kugeln Kreissektor mit dem Mittelpunktswinkel α und dem Radius r: Mathematikgrundwissen der 0. Jahrgangsstufe Kreissektoren und Kugeln Kreissektor mit dem Mittelpunktswinkel und dem Radius r: r A r b Bogenlänge: b = 60 r Flächeninhalt: b = 60 r Berechne jeweils den Umfang

Mehr

Aufgaben zum Basiswissen 10. Klasse

Aufgaben zum Basiswissen 10. Klasse Aufgaben zum Basiswissen 10. Klasse 1. Berechnungen an Kreisen und Dreiecken 1. Aufgabe: In einem Kreis mit Radius r sei α ein Mittelpunktswinkel mit zugehörigem Kreisbogen der Länge b und Kreissektor

Mehr

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil

Aufgabensammlung Teil 2: Funktionen mit Parametern Funktionenscharen. Aufgaben im Abiturstil ANALYSIS Gebrochen raionale Funkionen Aufgabensammlung Teil : Funkionen mi Parameern Funkionenscharen Aufgaben im Abiursil Die Lösungen aller verwendeen Abiuraufgaben sammen von mir Neu eingerichee Sammlung

Mehr

Messungen von Frequenz, Zeit und Phase.

Messungen von Frequenz, Zeit und Phase. Messungen von Frequenz, Zei und Phase. In den meisen Verahren zur Messung von Frequenz, Zei und Phase werden Recheckimpulse eingesez. Daher: Originalsignale (z.b. Sinus) müssen umgewandel werden. Umwandlung

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Würemberg: Abiur 04 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 04 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Grundlagenfach Mathematik. Prüfende Lehrpersonen Alitiloh Essodinam

Grundlagenfach Mathematik. Prüfende Lehrpersonen Alitiloh Essodinam Schrifliche Mauriäsprüfung 017 Fach Grundlagenfach Mahemaik Prüfende Lehrpersonen Aliiloh Essodinam essodinam.aliiloh@edulu.ch Mikova Teodora eodora.mikova@edulu.ch Zuidema Roel roel.zuidema@edulu.ch Klassen

Mehr

u(t) sin(kωt)dt, k > 0

u(t) sin(kωt)dt, k > 0 Übung 7 /Grundgebiee der Elekroechnik 3 WS7/8 Fourieranalyse Dr. Alexander Schaum, Lehrsuhl für verneze elekronische Syseme Chrisian-Albrechs-Universiä zu Kiel mi Im folgenden wird die Fourierreihe = a

Mehr

Trigonometrische Funktionen

Trigonometrische Funktionen Trigonometrische Funktionen Wir beginnen mit der Sinusfunktion: f(x) = sin(x) Wir schränken den Definitionsbereich auf eine Periode ein, d.h. xœ 0,2 bzw. 0 x 2p. Hier ist der Graph: Folgendes sollte beachtet

Mehr

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen

Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen 1/5 Erinnerung: Kongruenzsätze SSS, SWS, WSW, SsW Wiederhole eigenständig: elementare Konstruktionen nach diesen Sätzen Grundwissen: Elementare Sätze über Dreiecke: o Winkelsumme 180 0 o Dreiecksungleichung

Mehr

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.

Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R. Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen 4. Einleiung Eine der herausragenden Särken von MATLAB is das numerische (näherungsweise) Auflösen von Differenialgleichungen. In diesem kurzen Kapiel werden wir uns mi einigen Funkionen zum Lösen von

Mehr

3. Erweiterung der trigonometrischen Funktionen

3. Erweiterung der trigonometrischen Funktionen 3. Erweiterung der trigonometrischen Funktionen 3.1. Polarkoordinaten 1) Rechtwinklige und Polarkoordinaten Üblicherweise gibt man die Koordinaten eines Punktes in der Ebene durch ein Zahlenpaar vor: P(x

Mehr

1 Einleitung. 2 Sinus. Trigonometrie

1 Einleitung. 2 Sinus. Trigonometrie 1 Einleitung Die Trigonometrie (trigonon - griechisch für Dreieck) und die trigonometrischen Funktionen sind wichtige mathematische Werkzeuge zur Beschreibung der Natur. In der Physik werden trigonometrische

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Casrigiano Dr. M. Prähofer Zenralübung TECHNISCHE UNIVERSITÄT MÜNCHEN Zenrum Mahemaik Mahemaik 3 für Physik (Analysis ) hp://www-hm.ma.um.de/ss/ph/ 49. Eine reguläre Kurve ha keinen Knick

Mehr

Technische Universität München. Lösung Montag SS 2012

Technische Universität München. Lösung Montag SS 2012 Technische Universiä München Andreas Wörfel Ferienkurs Analysis für Physiker Lösung Monag SS 0 Aufgabe Gradien und Tangene ( ) Besimmen Sie zur Funkion f(x, y) = x y + xy + y die pariellen Ableiungen,

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit

Kapitel 6: Ort, Geschwindigkeit und Beschleunigung als Funktion der Zeit Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei 2 Kapiel 6: Or, Geschwindigkei und Beschleunigung als Funkion der Zei Einführung Lerninhal Einführung 3 Das Programm yzet erlaub es,

Mehr

Anwendungen komplexer Zahlen

Anwendungen komplexer Zahlen nwendungen komplexer Zahlen rbeitsblatt Dieser bschnitt eignet sich für fächerübergreifenden Unterricht mit Physik. In der Physik, speziell der Elektrotechnik, ist das chnen mit komplexen Zahlen ein wichtiges

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppiz, Dr. I. Rbak 8. Gruppenübung zur Vorlesung Höhere Mahemaik Sommersemeser 9 Prof. Dr. M. Sroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H. Konvergenzverhalen

Mehr

Analysis II Musterlösung 12. für t [ 0, 2π). y

Analysis II Musterlösung 12. für t [ 0, 2π). y .. Saz von Green Die Randkurve des, in unensehender Figur dargesellen, umerangs kann paramerisier werden durch 4 cos ( + cos( sin( für, π..75.5.5 -.5 3 4 5 6 -.5 -.75 - Zur erechnung des Flächeninhales

Mehr

Regelkurven. 1 Am Beispiel einer Sinuswelle. Version: NX 8.5 Ersteller: Sebastian Höglauer. Seite 1/11

Regelkurven. 1 Am Beispiel einer Sinuswelle. Version: NX 8.5 Ersteller: Sebastian Höglauer. Seite 1/11 Regelkurven Version: NX 8.5 Erseller: Sebasian Höglauer Ales Menü Neues Menü Einfügen > Kurve > Regelkurve Inser > Curve > Law Curve 1 Am Beispiel einer Sinuswelle Eingabe in Werkzeuge > Ausdruck (Tools

Mehr

Mittels gleichseitigem Dreieck und gleichschenklig. rechtwinkligem Dreieck kann man die folgenden Werte berechnen. 1 =

Mittels gleichseitigem Dreieck und gleichschenklig. rechtwinkligem Dreieck kann man die folgenden Werte berechnen. 1 = Trriigonomettrriische Funkttiionen Bezeichnungen Das Wort Trigonometrie stammt aus dem Griechischen: τρι (tri) bedeutet drei und γονυ (gony) Winkel, insgesamt also Dreiwinkligkeit oder Dreiecksberechnung.

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

Name: Klasse: Datum: Signale - Einführung Werner-von-Siemens-Schule Arbeitsblatt

Name: Klasse: Datum: Signale - Einführung Werner-von-Siemens-Schule Arbeitsblatt Signale - allgemein nser ägliches Leben wird häufig durch Signale beeinfluss. So solle man beispielsweise nich bei ROT über die Sraße gehen/fahren oder umgekehr bei einem Klingeln die Türe öffnen. Das

Mehr

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012 Prof Dr O Junge, A Biracher Zenrum Mahemaik - M3 Technische Universiä München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 3 Winersemeser 2/22 Tuorübungsaufgaben (3-3222) Aufgabe T Berachen Sie das Anfangswerproblem

Mehr

16 Trigonometrie: Sinus und Freunde, Arcusfunktionen

16 Trigonometrie: Sinus und Freunde, Arcusfunktionen 6 Trigonometrie: Sinus und Freunde, Arcusfunktionen Jörn Loviscach Versionsstand: 2. Dezember 20, 6:28 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.j3l7h.de/videos.html

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 27 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

Kurven in der Ebene und im Raum

Kurven in der Ebene und im Raum Kapiel 9 Kurven in der Ebene und im Raum 9. Parameerdarsellung von Kurven Aufgabe 9. : Skizzieren Sie die folgenden Mengen und beureilen Sie jeweils, ob es sich um eine abgeschlossene oder offene Menge

Mehr