Universität Ulm Samstag,
|
|
|
- Renate Schuler
- vor 9 Jahren
- Abrufe
Transkript
1 Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender Anfangswerprobleme geben Sie das maximale Lösungsinervall an: Hinweis: Es is nich nöig, für die Eindeuigkei der Lösung die Maximaliä des Lösungsinervalls Argumene zu geben. (a) y () = cos(y()), y() =. () Lösung: Für die Lösungsformel is Also is die Lösung G(z) = F () = z cos(r) dr = sin(z) ds = log(). s y() = arcsin(log()) auf dem größen Inervall I (, ) mi I < log() <. Beache, dass genau in diesem Bereich der Ausdruck auf der rechen Seie der Differenialgleichung definier is, man für log() = ± hingegen eine Nullselle des Cosinus erreich. Das maximale Lösungsinervall is also I = (e, e). (b) y () = y() + 5 +, y() =. () Lösung: In der Lösungsformel is A() = ( s 5 + s ) ( y() = + ds = + 5 s 5 ds s = log(), also + ) = auf dem maximalen Lösungsinervall I = (, ); beache nämlich, dass die reche Seie in = nich definier is!. Lösen Sie folgende Anfangswerprobleme: (a) y () = ( )y() + ( )y (), y( ) =, y ( ) =. () Tipp: Die Funkion y () = lös die Gleichung. Lösung: Wie im Skrip (Redukion der Ordnung) suchen wir u mi = u () + ( ) u() = u () + u(), beispielsweise also u() = e. Eine Sammfunkion is v() = e, was nach Skrip zur Lösung y () = e führ. Die Funkionen y y bilden ein Famenalsysem der Gleichung. Man will nun a b so wählen, dass für y() := a + be die Anfangsbedingungen = y( ) = a be
2 = y ( ) = a + be + be erfüll sind, also = + be, was zu b = e a =, also y() = + e. Das maximale Lösungsinervall is nebenbei bemerk I = (, ), da die reche Seie in = nich definier is. (b) y () = ( )y() + ( )y () +, y( ) =, y ( ) =. () Lösung: Wir haben im vorigen Aufgabeneil das Famenalsysem y () = y () = e der zugehörigen homogenen Gleichung besimm. Die Wronski- Deerminane is also w() = y ()y () y ()y () = e. Lau Vorlesung is die Lösung der inhomogenen Gleichung von der Form mi y() = u ()y () + u ()y () u () = g()y () w() = u () = y () w() = e, wobei g() = die Inhomogeniä der Gleichung bezeichne. Also is y() = + ay () + by () für gewisse a, b R. Nach Anfangsbedingung muss dann gelen, also b = e a =, was zu + a be = + a + be = y() = + e führ. Das maximale Lösungsinervall is nebenbei bemerk I = (, ), da die reche Seie für = nich definier is. 3. Lösen Sie folgende Anfangswerprobleme: 5 (a) y () = y(), y() =. () 3 Lösung: Da die Marix in unerer Dreiecksform vorlieg, kann man die Eigenwere als λ = 5 λ = ablesen. Zugehörige Eigenvekoren berechne man beispielsweise miels Gauß-Eliminaion zu b = b =.
3 Lau Vorlesung is dann die allgemeine Lösung der Gleichung durch y() = c e 5( ) b + c e ( ) b gegeben; man beache, dass die Verschiebung der Zeivariablen nur die muliplikaive Konsane änder. Um die Anfangsbedingung zu erfüllen, wähl man c = c =, erhäl also die Lösung ( y() = e 5( ) e 5( ) + e ( ) auf dem maximalen Lösungsinervall I = R. 3 (b) y () = y(), y() =. () Lösung: Das charakerisische Polynom der Marix is ha somi die Nullsellen p A (λ) = (3 λ)( λ) + = λ 4λ + 5 λ / = 4 ± 6 ) = ± i. Die Marix is also komplex diagonalisierbar. Einen Eigenvekor zu λ = + i kann man nun direk ablesen (man besimme eine beliebigen Vekor b, für den (A λ I)b in der ersen Komponene verschwinde). Es ergib sich beispielsweise b =. + i Dann muss b := b ein Eigenvekor zu λ = λ sein. Die allgemeine reelle Lösung laue nun ) ( ) y() = c e (cos() sin() + c e sin() + cos() mi reellen Konsanen c c. Um die Anfangsbedingung zu erfüllen, muss c + c = gelen, also c = c =. Dies ergib die Lösung ) y() = e (cos() + sin() = e cos() + sin() sin() mi maximalem Lösungsinervall I = R. 5 (c) y () = y(), y() =. () 5 Lösung: Die Marix lieg bereis in Jordannormalform vor. Lau Vorlesung is dann ( e A e 5 e = 5 ) e 5, die Spalen dieser Marix bilden ein Famenalsysem der Gleichung. Als passende Linearkombinaion für den Anfangswer ergib sich dann offenbar e 5 e 5 y() = + e 5. Das maximale Lösungsinervall is I = R. 3
4 4. Wir berachen einen Tank, in dem Lier reines (d.h. salzfreies) Wasser enhalen sind. Ab dem Sarzeipunk = werden pro Minue Lier Salzlösung der Konzenraion Gramm pro Lier eingepump. Zudem fließen pro Minue Lier aus dem Tank ab. Wie üblich möge der Tankinhal zu jedem Zeipunk ideal durchmisch sein. Besimmen Sie die Salzmenge S() in Gramm, die zum Zeipunk (in Minuen) im Tanks vorlieg, enscheiden Sie, ob die Salzmenge für gegen ein Gleichgewich konvergier! Tipp: Sellen Sie eine inhomogene, lineare Differenialgleichung auf, die von S erfüll wird, lösen Sie diese. () Lösung: Die Änderung der Salzmenge im Tank wird durch S () = S() beschrieben, zudem is S() =. Nach Lösungsformal is also S() = e e s ds = ( e ). Offenbar konvergier S() für gegen. Es sind also auf lange Sich annähernd Kilogramm Salz im Tank. Dies war naürlich zu erwaren, da die Konzenraion sich der Konzenraion der zugepumpen Flüssigkei annähern solle. 5. Enscheiden Sie (ohne Begründung), ob folgende Aussagen (immer) richig oder (im Allgemeinen) falsch sind. Kreuzen Sie die ensprechende Anwor auf der dafür vorgesehenen Seie des Prüfungsbogen an! () () Sei f : R R R seig differenzierbar. Die Funkion z() := e erfülle z () = f(, z()) für alle R. Zudem sei y : R R eine globale Lösung des Anfangswerproblems y () = f(, y()), y() =. Dann gil y() für. Lösung: Richig: Nach dem Eindeuigkeissaz kann es kein R mi y( ) = z( ) geben, da dann ja y = z wäre, was y() z() widersprich. Uner Verwendung des Zwischenwersazes folg dann, dass y z keinen Vorzeichenwechsel haben kann, was y() z() für alle R zeig. Insbesondere gil somi die Behaupung. () Sei y eine globale Lösung des Anfangswerproblem y () = y(), y() =, y () =. Dann is y() > für alle R. Lösung: Falsch: Aus der Vorlesung is als Famenalsysem y () = sin() y () = cos() bekann. Die Lösung des Anfangswerproblems is also y() = cos() + sin(). Diese Funkion ha beispielsweise bei = π negaiv. (3) Sei y() := sin. Es gib eine seig differenzierbare Funkion f : R R R, für die y () = f(, y()) für alle > erfüll is. Lösung: Falsch: Nehmen wir an, es gäbe so ein f. Das Lösungsinervall I = (, ) wäre maximal, da die Funkion y keine seige Forsezung nach = besiz. Lau Vorlesung müsse die maximale Lösung der Differenialgleichung die kompake Menge [, ] [, ] verlassen, was hier aber nich der Fall is. (4) Is g : R R seig differenzierbar g(z) > für alle z R, so ha jede globale Lösung y : R R von y () = g(y()) das Grenzwerverhalen y() für. Lösung: Richig: Offenbar is y () > für alle R, also y sreng monoon wachsend. Daher konvergier y() für gegen einen Grenzwer a R { }. Wäre a, so müsse nach Aufgabe sogar g(a) = gelen, was g(a) > widerspräche. (5) Sei A R die komplexe Einhei i ein Eigenwer von A. Dann is jede Lösung y von y () = Ay() beschränk. 4
5 Lösung: Richig: Is i ein Eigenwer einer reellen Marix, so auch i, dami haben wir also alle Eigenwere von A besimm. Folglich is A komplex diagonalisierbar mi rein imaginären Eigenweren, die Lösungsformel für diesen Fall zeig, dass alle Lösungen beschränk sind. (6) Sei A R d d, y R d Ay = y. Sei y die globale Lösung von y () = Ay(), y() = y. Dann gil lim y() =. Lösung: Richig: Nach Voraussezung is y ein Eigenvekor zum Eigenwer. Nach einem Lemma der Vorlesung gil dann y() = e y. Dies zeig die Behaupung. (7) Es gib seige Funkionen p q von R nach R, mi denen jede der Funkionen y () = e, y () = sin() y 3 () = cos() eine Lösung der Differenialgleichung y () + p()y () + q()y() = is. Lösung: Falsch: Die Funkionen y, y y 3 sind linear unabhängig. Sei nämlich c y () + c y () + c 3 y 3 () = für alle R mi reellen Zahlen c, c, c 3. Were man an = aus, ergib sich c + c 3 =. Leie man zweimal ab were dann an = aus, erhäl man zudem c c 3 =. Dies is nur für c = c 3 = möglich. Dann is aber c sin() = für alle R, was c = zeig. Wir haben nach Definiion die lineare Unabhängigkei der Funkionen gezeig. Lau Vorlesung is der Lösungsraum der Gleichung für feses p q allerdings zweidimensional. Es kann somi keine drei linear unabhängigen Lösungen geben. 5
Einführung in gewöhnliche Differentialgleichungen
Einführung in gewöhnliche Differenialgleichungen Jonahan Zinsl 25. Mai 202 Definiionen Definiion.(Gewöhnliche Differenialgleichung. Ordnung) Uner einer gewöhnlichen Differenialgleichung. Ordnung verseh
Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl
Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =
Lineare Algebra I - Lösungshinweise zur Klausur
Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen
Eigenwerte und Eigenvektoren
Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,
Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt
Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse
7.3. Partielle Ableitungen und Richtungsableitungen
7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus
Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen
Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils
Lösungen zu Übungsblatt 4
Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f
Gewöhnliche Differentialgleichungen (DGL)
Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes
Abiturprüfung Mathematik 2012 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1
Abiurprüfung Mahemaik 0 (Baden-Würemberg) Berufliche Gymnasien Analysis, Aufgabe. (8 Punke) Die Abbildung zeig das Schaubild einer Funkion h mi der Definiionsmenge [-7 ; 4]. Die Funkion H is eine Sammfunkion
Exponential- und Logarithmusfunktionen
. ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und
Mathematik III DGL der Technik
Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und
Zwischenwerteigenschaft
Zwischenwereigenschaf Markus Berberich Ausarbeiung zum Vorrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemeser 2009, Leiung PD Dr. Gudrun Thäer) Zusammenfassung: In dieser
Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff
Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion
Technische Universität München. Lösung Montag SS 2012
Technische Universiä München Andreas Wörfel Ferienkurs Analysis für Physiker Lösung Monag SS 0 Aufgabe Gradien und Tangene ( ) Besimmen Sie zur Funkion f(x, y) = x y + xy + y die pariellen Ableiungen,
Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und
Laplacetransformation in der Technik
Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen
2.2 Rechnen mit Fourierreihen
2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,
14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge
Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und
Lösungen Test 2 Büro: Semester: 2
Fachhochschule Nordwesschweiz (FHNW) Hochschule für Technik Insiu für Geises- und Naurwissenschaf Dozen: Roger Burkhard Klasse: Sudiengang ST Lösungen Tes Büro: 4.613 Semeser: Modul: MDS Daum: FS1 Bemerkungen:
Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals
1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.
7 Erzwungene Schwingung bei Impulslasten
Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN
Mahemaik Mag. Schmid Wolfgang Arbeisbla. Semeser ARBEITSBLATT LAGEBEZIEHUNG DREIER EBENEN Nachdem wir die Lage weier Ebenen unersuch haben, wollen wir uns nun mi der Lage von drei Ebenen beschäfigen. Anders
Name: Punkte: Note: Ø:
Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C
Demo-Text für Funktionen und Kurven. Differentialgeometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Friedrich Buckel.
Funkionen und Kurven Differenialgeomerie Tex Nummer: 5 Sand: 9. März 6 Demo-Tex für www.mahe-cd.de INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mahe-cd.de 5 Differenialgeomerie Vorwor Das Thema Kurven is
1 Lokale Änderungsrate und Gesamtänderung
Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h
4. Quadratische Funktionen.
4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen
Die Lösungen der Übungsaufgaben werden durch folgendes Lemma etwas vereinfacht:
Prof. Dr. D. Kuske, M.Sc. M. Huschenbe Fachgebie Theoreische Informaik, TU Ilmenau Muserlösung zum 2. Übungsbla Auomaenheorie Die Lösungen der Übungsaufgaben werden durch folgendes Lemma ewas vereinfach:
Analysis: Exponentialfunktionen Analysis
www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander
Abituraufgaben Grundkurs 2009 Bayern Analysis I. dt mit D F = R.
Abiuraufgaben Grundkurs 9 Bayern Analysis I I.). Die Abbildung zeig den Graphen G f einer ganzraionalen Funkion f drien Grades mi dem Definiionsbereich D f R. Die in der Abbildung angegebenen Punke P(
MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik
Fachabiuiprüfung 2013 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichung Technik Diensag, 4. Juni 2013, 9.00-12.00 Uhr Die Schülerinnen und Schüler
INPUT-EVALUATION DER ZHW: PHYSIK SEITE 1. Serie 1
INPUT-EVALUATIN DER ZHW: PHYSIK SEITE 1 Serie 1 1. Zwei Personen ziehen mi je 500 N an den Enden eines Seils. Das Seil ha eine Reissfesigkei von 600 N. Welche der vier folgenden Aussagen is physikalisch
Musterlösungen zur Klausur. Grundlagen der Regelungstechnik. vom
Muserlösungen zur Klausur Grundlagen der Regelungsecni vom 4.9. Aufgabe : Linearisierung Pune A. Linearisierung des niclinearen Terms der Modellgleicungen, wobei und die üllsände im Gleicgewic sind. B.
III.2 Radioaktive Zerfallsreihen
N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen
Masse, Kraft und Beschleunigung Masse:
Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei
Zeit (in h) Ausflussrate (in l/h)
Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen
Grundlagen der Elektrotechnik 3
Grundlagen der Elekroechnik 3 Kapiel 3. Schalvorgänge - Die aplace Transformaion Prof. Dr.-Ing. I. Willms Grundlagen der Elekroechnik 3 S. Fachgebie Nachrichenechnische Syseme 3.. Einführung Nuzung einer
Zentrale schriftliche Abiturprüfungen im Fach Mathematik
Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi
Bericht zur Prüfung im Oktober 2007 über Finanzmathematik und Investmentmanagement
Berich zur Prüfung im Okober 7 über Finanzmahemaik und Invesmenmanagemen (Grundwissen) Peer Albrech (Mannheim) Am 5 Okober 7 wurde zum zweien Mal eine Prüfung im Fach Finanzmahemaik und Invesmenmanagemen
Kapitel : Exponentielles Wachstum
Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine
Stochastische Differentialgleichungen
INSTITUT FÜR STOCHASTIK SS 2007/08 UNIVRSITÄT KARLSRUH Bla 9 Priv.-Doz. Dr. D. Kadelka Übungen zur Vorleung Sochaiche Differenialgleichungen Muerlöungen Aufgabe 21: Definieren Sie analog zur d-dimenionalen
Differenzieren von Funktionen zwischen Banachräumen
Differenzieren von Funkionen zwischen Banachräumen Ingmar Gezner In dieser Seminararbei wollen wir das Differenzieren auf Funkionen zwischen Banachräume verallgemeinern. In unendlichdimensionalen Räumen
9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION
Eponenialfunkion, Logarihmusfunkion 9. EXPONENTIALFUNKTION, LOGARITHMUSFUNKTION 9.. Eponenialfunkion (a) Definiion Im Abschni Zinseszinsrechnung konne die Berechnung eines Kapials K n nach n Perioden der
Übungen zur Einführung in die Physik II (Nebenfach)
Übungen zur Einführung in ie Physik Nebenfach --- Muserlösung --- Aufgabe: Konensaorenlaung Ein mi Glimmer ε r = 8 gefüller Plaenkonensaor mi er Fläche A=6 cm un einem Plaenabsan = 5 μm enlä sich wegen
Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.
T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems
Kondensator und Spule im Gleichstromkreis
E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei
Lösung Abiturprüfung 1994 Leistungskurs (Baden-Württemberg)
Lösung Abiurprüfung 1994 Leisungskurs (Baden-Würemberg) Analysis I.1. a) D f = IR / { 1 } f x= = K besiz keine Nullsellen 1x f ' x= 8 1x = 8 K besiz keine Exremsellen senkreche Asymoe : x= 1 waagereche
Zeitreihenökonometrie
Zeireihenökonomerie Kapiel 4 Schäzung univariaer Zeireihenmodelle Y = c+ α Y + + α Y + ε + βε + + β ε p p q q Problem: Direke Schäzung der Parameer α,, αp und β,, βq über OLS nich möglich, da die Residuen
Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur:
Thema 6: Kapialwer bei nich-flacher Zinssrukur: Markzinsmehode Bislang unersell: i i kons. (, K, T) (flache Zinskurve) Verallgemeinerung der KW-Formel auf den Fall beliebiger Zinskurven jedoch ohne weieres
Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band 1, 3.Aufl. (Version 2010), Kapitel 6
Lösungsvorschläge zu ausgewählen Übungsaufgaben aus Sorch/Wiebe: Lehrbuch der Mahemaik Band, 3.Aufl. Version, Kapiel 6 6 Sammfunkionen und Inegrale Abschni 6.A, Variane zu Aufg. 5, p. 44.4. : Man gebe
Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)
Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 14.04.2011 für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname:
Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte
www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com
Kommunikationstechnik I
Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am
Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung
Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 1 D 8333 München Email: [email protected] Inerne: hp://www.eal.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.:
Flugzeugaerodynamik I Lösungsblatt 2
Flugzeugaerodynamik I Lösungsbla 2 Lösung Aufgabe Bei der vorliegenden Aufgabe handel es sich um die Nachrechenaufgabe der Skele Theorie. a) Der Koeffizien A 1 is durch die Wölbung des gegebenen Skeles
Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs
Seie von 9 Unerlagen für die Lehrkraf Abiurprüfung 9 Mahemaik, Leisungskurs. Aufgabenar Lineare Algebra/Geomerie ohne Alernaive. Aufgabensellung siehe Prüfungsaufgabe. Maerialgrundlage 4. Bezüge zu den
Übungsaufgaben zur Vektorrechnung, 6. Klasse (10. Schulstufe) 3 t 2 = 4. durch P an, welche die Gerade g schneidet.
Übungsaufgaben zur Vekorrechnung,. Klasse (0. Schulsufe) Übungsaufgaben zur Vekorrechnung. Klasse ) Zwei Geraden im R Gegeben sind die Gerade sind enweder schneidend, parallel oder. X : g der Punk P(-
Mathematik für das Ingenieurstudium. 4. Juli 2011
Mahemaik ür das Ingenieursudium Jürgen Koch Marin Sämple 4. Juli 0 .6 Beweise 43 Beispiel.3 (Ungleichungen) a) Die Ungleichung + 4 < 6 is ür alle -Were deinier. Zur Besimmung der Lösungsmenge berechnen
Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)
Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 7.9. für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname: Mar.-Nr.
4. Kippschaltungen mit Komparatoren
4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für
Grenzwertsätze für Zeitreihen
KAPIEL 6 Grenzwersäze für Zeireihen In diesem Kapiel sellen wir wichige Grenzwersäze für saionäre Zeireihen {X n } in diskreer Zei zusammen. Sei µ = E(X ) und ρ(k) = E(X 1 µ)(x 1+k µ) = Cov (X 1, X 1+k
Motivation: Sampling. (14) Sampling. Motivation: Sampling. Beispiele. Beispiel Kreisscheibe. Beispiel: Kreisscheibe
Moivaion: Sampling (4) Sampling Vorlesung Phoorealisische Compuergraphik S. Müller Ein naiver (und sehr eurer) Ansaz, die Rendering Equaion mi Hilfe eines Rayracing-Ansazes zu lösen, wäre wird eine diffuse
Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K
Abiurprüfung Mhemik (Bden-Würemberg) Berufliche Gymnsien Anlysis, Aufgbe. Für jedes * is die Funkion f gegeben durch f (x) = x x + x +, x Ds Schubild von f is K. ( )( ).. (4 Punke) Zeichnen Sie K und K
Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...
FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa
Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat
Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in
Finanzmathematik. Wolfgang Müller. Institut für Statistik Technische Universität Graz
Finanzmahemaik Wolfgang Müller 213 Insiu für Saisik Technische Universiä Graz Inhalsverzeichnis 1. Markmodelle in diskreer Zei 1 1.1. Das Binomialmodell................................ 1 1.2. Das allgemeine
Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen
Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,
Stochastische Analysis und Finanzmathematik
Sochasische Analysis und Finanzmahemaik Vorlesung im Winersemeser 211/212 von Dr. Markus Schulz Inhalsverzeichnis 1 Sochasische Prozesse 1 1.1 Grundlagen................................ 1 1.2 Die Brownsche
Kapitel 11 Produktion, Sparen und der Aufbau von Kapital
apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:
Numerisches Programmieren
Technische Universiä München WS 11/1 Insiu für Informaik Prof. Dr. Hans-Joachim Bungarz Michael Lieb, M. Sc. Dipl.-Inf. Chrisoph Riesinger Dipl.-Inf. Marin Schreiber Numerisches Programmieren 4. Programmieraufgabe:
Prüfung zur Vorlesung Mathematik I/II
Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit
4.7. Exponential- und Logarithmusfunktionen
... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen
Binomische Formeln Für beliebige Zahlen a und b gelten die binomischen Formeln: (a + b) 2 = a a b + b 2
Erraa.03.06 3 Grundlagen Saz.5 (Binomischer Saz) Für jede naürliche Hochzahl n und beliebige Zahlen a und b gil die Formel (a + b) n = a n + ( n ) an b + ( n ) an b +... + ( n n ) a bn + b n n = ( n k
Schriftliche Abiturprüfung Mathematik 2013
Schrifliche Abiurprüfung Mahemaik 03 Aufgabe (NT 008, Nr) Pflicheil Bilden Sie die Ableiung der Funkion f mi f(x) = 3x e x+ und vereinfachen Sie so wei wie möglich ( VP) Aufgabe (HT 008, Nr ) G is eine
P. v. d. Lippe Häufige Fehler bei Klausuren in "Einführung in die ökonometrische Datenanalyse" Duisburg
P. v. d. Lippe Häufige Fehler bei Klausuren in "Einführung in die ökonomerische Daenanalyse" Duisburg a) Klausur SS 0 Klausuren SS 0 bis SS 03 akualisier 9. Augus 03. Sehr viele Teilnehmer rechnen einfach
Explizites und implizites Euler-Verfahren
Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Explizies und implizies Euler-Verfahren am Beispiel eines Räuber-Beue-Modells Vorlesung Numerische Mehoden für Differenialgleichungen Winersemeser
1. Mathematische Grundlagen und Grundkenntnisse
8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als
Abiturprüfung Mathematik 2011 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1. gegeben durch. auf der y-achse und schneidet G
wwwmhe-ufgbencom Abiurprüfung Mhemik 0 (Bden-Würemberg) Berufliche ymnsien Anlysis, Aufgbe Für jedes mi > is die Funkion g gegeben durch x g (x) = e, x Ds Schubild von g is ( Punke) Nennen Sie drei gemeinsme
I-Strecken (Strecken ohne Ausgleich)
FELJC 7_I-Srecken.o 1 I-Srecken (Srecken ohne Ausgleich) Woher der Name? Srecken ohne Ausgleich: Bei einem Sprung der Eingangsgrösse (Sellgrösse) nimm die Ausgangsgrösse seig zu, ohne einem fesen Endwer
