Explizites und implizites Euler-Verfahren

Größe: px
Ab Seite anzeigen:

Download "Explizites und implizites Euler-Verfahren"

Transkript

1 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Explizies und implizies Euler-Verfahren am Beispiel eines Räuber-Beue-Modells Vorlesung Numerische Mehoden für Differenialgleichungen Winersemeser 215/16

2 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Modellproblem: Räuber-Beue-Modell Inerakion von Raubfischen und Beuefischen in einem See u Menge der Räuber, v Menge der Beuefische

3 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Modellproblem: Räuber-Beue-Modell Inerakion von Raubfischen und Beuefischen in einem See u Menge der Räuber, v Menge der Beuefische v = c 1 v Inerpreaion der Terme: c 1 v Vermehrung der Beue

4 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Modellproblem: Räuber-Beue-Modell Inerakion von Raubfischen und Beuefischen in einem See u Menge der Räuber, v Menge der Beuefische v = c 1 v c 2 v 2 Inerpreaion der Terme: c 1 v c 2 v 2 Vermehrung der Beue Soziale Reibung uner den Beuefischen

5 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Modellproblem: Räuber-Beue-Modell Inerakion von Raubfischen und Beuefischen in einem See u Menge der Räuber, v Menge der Beuefische u = c 3 u 2 v = c 1 v c 2 v 2 Inerpreaion der Terme: c 1 v c 2 v 2 c 3 u 2 Vermehrung der Beue Soziale Reibung uner den Beuefischen Soziale Reibung uner den Räubern

6 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Modellproblem: Räuber-Beue-Modell Inerakion von Raubfischen und Beuefischen in einem See u Menge der Räuber, v Menge der Beuefische u = c 3 u 2 + c 4 uv v = c 1 v c 2 v 2 c 4 uv Inerpreaion der Terme: c 1 v Vermehrung der Beue c 2 v 2 Soziale Reibung uner den Beuefischen c 3 u 2 Soziale Reibung uner den Räubern ±c 4 uv Räuber friss Beue und vermehr sich ( ) u Seze y :=, erhale ẏ = f (y). v

7 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Zusammenhang mi der Dahlquis schen Tesgleichung Ausgangsgleichung: ẏ = f (y), f : R d R d Taylor: f (y) = f (y ) + f (y )(y y ) + O( y y 2 ),

8 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Zusammenhang mi der Dahlquis schen Tesgleichung Ausgangsgleichung: ẏ = f (y), f : R d R d Taylor: f (y) = f (y ) + f (y )(y y ) + O( y y 2 ), Seze w := y y und ignoriere Terme höherer Ordnung: ẇ = ẏ = f (y) = f (y ) + f (y )w

9 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Zusammenhang mi der Dahlquis schen Tesgleichung Ausgangsgleichung: ẏ = f (y), f : R d R d Taylor: f (y) = f (y ) + f (y )(y y ) + O( y y 2 ), Seze w := y y und ignoriere Terme höherer Ordnung: ẇ = ẏ = f (y) = f (y ) + f (y )w Nehme an, dass f (y ) R d d diagonalisierbar is. Darsellung von w in der Eigenbasis führ auf skalares Problem q = λq + c ( Dahlquis + c )

10 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Beispiel 1 Anfangswere: y = ( ) 8 2 c 1 = 4, c 2 =.2, c 3 =.2, c 4 =.5 N Zeischrie, N {2, 1, 8, 5}

11 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Beispiel 1 Räuber Explizier Euler (N = 2) Implizier Euler (N = 2) Beue Drie Zeile: Realeile der Eigenwere von f (y n ) -2

12 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Beispiel 1 Räuber Explizier Euler (N = 1) 8 4 Implizier Euler (N = 1) 8 4 Beue Explizier Euler explodier, implizier Euler nich -2

13 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Beispiel 1 Räuber Explizier Euler (N = 8) 8 4 Implizier Euler (N = 8) 8 4 Beue Explizier Euler explodier, implizier Euler nich -2

14 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Beispiel 1 Räuber Explizier Euler (N = 5) 8 4 Implizier Euler (N = 5) 8 4 Beue Explizier Euler explodier, implizier Euler nich -2

15 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Beispiel 2 Anfangswere: y = Gleiche Parameer ( ) 1 2

16 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Beispiel 2 4 Explizier Euler (N = 2) 4 Implizier Euler (N = 2) Räuber 2 2 Beue Drie Zeile: Realeile der Eigenwere von f (y n ) -1

17 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Beispiel 2 4 Explizier Euler (N = 1) 4 Implizier Euler (N = 1) Räuber 2 2 Beue Drie Zeile: Realeile der Eigenwere von f (y n ) -1

18 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Beispiel 2 4 Explizier Euler (N = 8) 4 Implizier Euler (N = 8) Räuber 2 2 Beue Explizier Euler explodier, implizier Euler nich -1

19 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Beispiel 2 4 Explizier Euler (N = 5) 4 Implizier Euler (N = 5) Räuber 2 2 Beue Explizier Euler explodier, implizier Euler nich -2

20 Numerische Mehoden für Differenialgleichungen Winersemeser 215/16 Explizies und implizies Euler-Verfahren am Beispiel eines Räuber-Beue-Modells Vorlesung Numerische Mehoden für Differenialgleichungen Winersemeser 215/16

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012

MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 13 Wintersemester 2011/2012 Prof Dr O Junge, A Biracher Zenrum Mahemaik - M3 Technische Universiä München MATHEMATIK 3 FÜR EI - ÜBUNGSBLATT 3 Winersemeser 2/22 Tuorübungsaufgaben (3-3222) Aufgabe T Berachen Sie das Anfangswerproblem

Mehr

Differentialgleichungen

Differentialgleichungen Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)

Mehr

3.2.2 Stabilitätsgebiete von RK-Verfahren

3.2.2 Stabilitätsgebiete von RK-Verfahren Übung 3.3 zeig, daß man das Verhalen von RK-Verfahren für diagonalisierbare Syseme der Form (3.4) durch Analyse des RK-Verfahrens angewende auf die skalaren Probleme (3.5) versehen kann. Dies moivier,

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universiä München WS 11/1 Insiu für Informaik Prof. Dr. Hans-Joachim Bungarz Michael Lieb, M. Sc. Dipl.-Inf. Chrisoph Riesinger Dipl.-Inf. Marin Schreiber Numerisches Programmieren 4. Programmieraufgabe:

Mehr

Hörsaalübung 3 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 3 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mahemaik der Universiä Hamburg WiSe 26/27 Dr. Hanna Peywand Kiani Hörsaalübung 3 Differenialgleichungen I für Sudierende der Ingenieurwissenschafen Lineare Differenialgleichungssyseme Die ins

Mehr

Anfangswertprobleme gewöhnlicher Differentialgleichungen

Anfangswertprobleme gewöhnlicher Differentialgleichungen 13. Großübung Anfangswerprobleme gewöhnlicher Differenialgleichungen gesuch: mi T und y () = f(, ), y( ) = y (1) y( j+1 ) = y( j ) + j+1 j f(s, y(s)) ds () Idee: Erseze Inegral durch Quadraurformel Näherungen

Mehr

Der kinetische Ansatz zur Beschreibung von Selbstorganisationsprozessen. mögliche Variationen und Erweiterungen: diskrete Gleichungen (endliches t):

Der kinetische Ansatz zur Beschreibung von Selbstorganisationsprozessen. mögliche Variationen und Erweiterungen: diskrete Gleichungen (endliches t): Ludwig Pohlmann Thermodynamik offener Syseme und Selbsorganisaionsphänomene SS 007 Der kineische Ansaz zur Beschreibung von Selbsorganisaionsprozessen. Die Beschreibung von Prozessen Prozesse (Veränderungen,

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Einführung in gewöhnliche Differentialgleichungen

Einführung in gewöhnliche Differentialgleichungen Einführung in gewöhnliche Differenialgleichungen Jonahan Zinsl 25. Mai 202 Definiionen Definiion.(Gewöhnliche Differenialgleichung. Ordnung) Uner einer gewöhnlichen Differenialgleichung. Ordnung verseh

Mehr

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Probeklausur 1. Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten! Universiä Regensburg, Winersemeser 3/4 Examenskurs Analysis (LGy) Dr. Farid Madani Probeklausur Thema Nr. (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeien! Aufgabe (5 Punke). Man

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Lösungen Test 2 Büro: Semester: 2

Lösungen Test 2 Büro: Semester: 2 Fachhochschule Nordwesschweiz (FHNW) Hochschule für Technik Insiu für Geises- und Naurwissenschaf Dozen: Roger Burkhard Klasse: Sudiengang ST Lösungen Tes Büro: 4.613 Semeser: Modul: MDS Daum: FS1 Bemerkungen:

Mehr

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen

Elementare Lösungsmethoden für gewöhnliche Differentialgleichungen 454 Erforderliche Kennnisse: Höhere Analysis Elemenare Lösungsmehoden für gewöhnliche Differenialgleichungen Was is eigenlich eine Differenialgleichung? Eine Differenialgleichung is eine Gleichung, in

Mehr

7. Vorlesung Wintersemester

7. Vorlesung Wintersemester 7. Vorlesung Winersemeser Der ungedämpfe Oszillaor mi komplexem Lösungsansaz Wie gezeig, wird die DGL des ungedämpfen Oszillaors mẍ() + kx() = 0 () im Komplexen von den Funkionen x () = e iω und x 2 ()

Mehr

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen

MATLAB: Kapitel 4 Gewöhnliche Differentialgleichungen 4. Einleiung Eine der herausragenden Särken von MATLAB is das numerische (näherungsweise) Auflösen von Differenialgleichungen. In diesem kurzen Kapiel werden wir uns mi einigen Funkionen zum Lösen von

Mehr

3.4 Systeme linearer Differentialgleichungen

3.4 Systeme linearer Differentialgleichungen 58 Kapiel 3 Invarianen linearer Transformaionen 34 Syseme linearer Differenialgleichungen Die Unersuchung der Normalformen von Marizen soll nun auf die Lösung von Differenialgleichungssysemen angewende

Mehr

Physik der sozio-ökonomischen Systeme mit dem Computer. 4. Vorlesung

Physik der sozio-ökonomischen Systeme mit dem Computer. 4. Vorlesung Physik der sozio-ökonomischen Syseme mi dem Compuer PC-POOL RAUM 0.0 JOHANN WOLFGANG GOETHE UNIVERSITÄT 0..07 4. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG GOETHE

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen

Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkeit Seminararbeit aus Numerik von Differentialgleichungen Thema: Singuläres, skalares Problem 2. Ordnung - Lösbarkei Seminararbei aus Numerik von Differenialgleichungen Michael Hubner, Sefan Wurm 8. Juli 22 Inhalsverzeichnis. Problemdefiniion 2 2. Einführende

Mehr

Finanzwirtschaft. Foliensatz Vertiefungskurs aus ABWL: im Wintersemester 2003/ Teil / 3 und 4 Univ. Ass. Dr. Matthias G.

Finanzwirtschaft. Foliensatz Vertiefungskurs aus ABWL: im Wintersemester 2003/ Teil / 3 und 4 Univ. Ass. Dr. Matthias G. Universiä Wien Insiu für Beriebswirschafslehre ABWL IV: Finanzwirschaf 401 441/3+4 Univ. Ass. Dr. M.G. Schuser Foliensaz Veriefungskurs aus ABWL: Finanzwirschaf im Winersemeser 2003/2004 5. Teil 401 441

Mehr

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011

Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011 Karlsruher Insiu für Technologie KIT) Insiu für Analysis Dr. A. Müller-Rekowski Dipl.-Mah. M. Uhl Sommersemeser Höhere Mahemaik II für die Fachrichungen Elekroingenieurwesen und Physik inklusive Komplee

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN ARBEITSBLATT PARAMETERDARSTELLUNG EINER GERADEN Eine Gerade sell man im R ensprechend zum R auf, nur daß eine z-koordinae hinzukomm: Definiion: Parameerdarsellung einer Gerade durch die Punke A und B:

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt

Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse

Mehr

7. Gewöhnliche Differentialgleichungen

7. Gewöhnliche Differentialgleichungen 1 7. Gewöhnliche Differenialgleichungen DGL: Gewöhnliche DGL: Parielle DGL: Anfangs- oder Randbedingungen: Besimmungsgleichung für eine Funkion, in der die gesuchen Funkion und ihre Ableiungen vorkomm

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 6. Übungsblatt

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 6. Übungsblatt Karlruher Iniu für Technologie KIT Iniu für Analyi Dr Ioanni Anapoliano Dr Semjon Wugaler WS 25/26 Höhere Mahemaik III für die Fachrichung Elekroechnik und Informaionechnik Löungvorchläge zum 6 Übungbla

Mehr

Versicherungstechnik

Versicherungstechnik Operaions Research und Wirschafsinformaik Prof Dr P Rech // Marius Radermacher, MSc DOOR Aufgabe 30 Versicherungsechnik Übungsbla 9 Abgabe bis zum Diensag, dem 13122016 um 10 Uhr im Kasen 19 Berachen Sie

Mehr

Übungsblatt 8 Musterlösung

Übungsblatt 8 Musterlösung Numerik gewöhnlicher Differenialgleichungen MA - SS6 Übungsbla 8 Muserlösung Aufgabe 7 Schriweienseuerung) Im Folgenden soll die Differenzialgleichung y ) = f,y)) = sign)y, y ) = e, im Zeiinervall [, ]

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 LAGEBEZIEHUNG DREIER EBENEN Mahemaik Mag. Schmid Wolfgang Arbeisbla. Semeser ARBEITSBLATT LAGEBEZIEHUNG DREIER EBENEN Nachdem wir die Lage weier Ebenen unersuch haben, wollen wir uns nun mi der Lage von drei Ebenen beschäfigen. Anders

Mehr

The Matlab ODE Suite. Simone Bast Martin Vogt

The Matlab ODE Suite. Simone Bast Martin Vogt The Malab ODE Suie Simone Bas Marin Vog Gliederung Wiederholung BDF-Verfahren Verbesserung: NDF-Verfahren ode5s und ode3s User Inerface Vergleich der Löser Zusammenfassung ) Implizie Formeln für seife

Mehr

Gewöhnliche Differentialgleichungen (DGL)

Gewöhnliche Differentialgleichungen (DGL) Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes

Mehr

Lösungen zu Übungsblatt 4

Lösungen zu Übungsblatt 4 Fakulä für Mahemaik, Technische Universiä Dormund Vorlesung Geomerie für Lehram Gymnasium, Winersemeser 24/5 Dipl-Mah Aranç Kayaçelebi Lösungen zu Übungsbla 4 Aufgabe 2 Punke a Geben Sie eine Funkion f

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN

DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.

Mehr

Differentialgleichungen: Einführung

Differentialgleichungen: Einführung Kapiel 12 Differenialgleichungen: Einführung In diesem Kapiel enwickeln wir keine größere Theorie, sondern geben nur einige Rezepe für die Lösung spezieller Differenialgleichungen an. Die Rezepe dienen

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie Zeireihenökonomerie Kapiel 4 Schäzung univariaer Zeireihenmodelle Y = c+ α Y + + α Y + ε + βε + + β ε p p q q Problem: Direke Schäzung der Parameer α,, αp und β,, βq über OLS nich möglich, da die Residuen

Mehr

Transport. Explizite und implizite Verfahren

Transport. Explizite und implizite Verfahren p. 1/9 Tranpor Explizie und implizie Verfahren home/lehre/vl-mhs-1/inhalt/folien/vorlesung/10_transport_verf/decbla.ex Seie 1 von 9 p. /9 Inhalverzeichni 1. Explizie Verfahren Inabile Verfahren Lax Verfahren

Mehr

4.1 OLS a) OLS-Schätzung der Koeffizienten der Strukturform

4.1 OLS a) OLS-Schätzung der Koeffizienten der Strukturform 4. Schäzmehoden 4. 4. OLS a) OLS-Schäzung der Koeffizienen der Srukurform OLS liefer verzerre und nich konsisene Schäzungen der Koeffizienen der Srukurform inerdependener Modelle, weil i.a. Sörvariable

Mehr

Editierabstand und der 4-Russen-Trick

Editierabstand und der 4-Russen-Trick andou für das Seminar über lgorihmen bereu von Prof. r. elmu l, U-erlin Ediierabsand und der 4-Russen-Trick Marco Träger 3.06.011 1 Ediierabsand in O(n m) 1.1 efiniionen Σ endliches lphabe S, T Σ endliche

Mehr

PHYSIK III. Serie 12, Musterlösung

PHYSIK III. Serie 12, Musterlösung Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:

Mehr

PMA 16: Schemen zur Belegung von Kursen

PMA 16: Schemen zur Belegung von Kursen PMA 16: Schemen zur Belegung von Kursen Quelle: Programmleiung, Sudiensekreär Daum: Juli 2016 PMA 16: Sudienarchiekur und aufbau Der Sudienplan des PMA basier auf den beiden Phasen Kurs- und Disseraionsphase.

Mehr

PMA 16 & PMA 17: Schemen zur Belegung von Kursen

PMA 16 & PMA 17: Schemen zur Belegung von Kursen PMA 16 & PMA 17: Schemen zur Belegung von Kursen Quelle: Programmleiung, Sudiensekreär Daum: Juni 2017 PMA 16 & PMA 17: Sudienarchiekur / -aufbau Der Sudienplan des PMA basier auf den beiden Phasen Kurs-

Mehr

Kapitel 3. x, wobei x, y R + und t R.

Kapitel 3. x, wobei x, y R + und t R. Lineare Geomerie Kapiel Homogene und inhomogene lineare Gleichungssyseme Täglich werden wir mi Gleichungssysemen konfronier Manche scheinen sehr komplizier zu sein und manchmal können sie nur numerisch

Mehr

Theoretische Physik I/II

Theoretische Physik I/II Theoreische Physik I/II Prof. Dr. M. Bleicher Insiu für Theoreische Physik J.. Goehe-Universiä Frankfur Aufgabenzeel IV 9. Mai hp://h.physik.uni-frankfur.de/ baeuchle/u Lösungen Die Vorlesung wird durch

Mehr

Freie Schwingung - Lösungsfälle

Freie Schwingung - Lösungsfälle Freie Schwingungen Seie von 6 Peer Schüller peer.schueller@bbw.gv.a Freie Schwingung - Lösungsfälle Maheaische / Fachliche Inhale in Sichworen: Differenialgleichung.Ornung i onsanen Koeffizienen, Schwingung

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 14.04.2011 für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname:

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr

Das Quadrupol-Massenfilter

Das Quadrupol-Massenfilter Das Quadrupol-assenfiler Idee: Ionen Ladung zu asse: Q/ werden durch zeiabhängige Elekrische Felder E so abgelenk, daß nur besimme Q/ auf der Sollbahn durch das assenspekromeer bleiben. Wolfgang Paul,

Mehr

Analysis II Musterlösung 12. für t [ 0, 2π). y

Analysis II Musterlösung 12. für t [ 0, 2π). y .. Saz von Green Die Randkurve des, in unensehender Figur dargesellen, umerangs kann paramerisier werden durch 4 cos ( + cos( sin( für, π..75.5.5 -.5 3 4 5 6 -.5 -.75 - Zur erechnung des Flächeninhales

Mehr

Durch Modellierung beschreibt man Vorgänge aus der Natur sowie industrielle Prozesse

Durch Modellierung beschreibt man Vorgänge aus der Natur sowie industrielle Prozesse Kapiel Modellierung Durch Modellierung beschreib man Vorgänge aus der Naur sowie indusrielle Prozesse mi mahemaischen Werkzeugen, zum Beispiel Gleichungen oder Ungleichungen. Modellierung geschieh durch

Mehr

lektion12 1 Lektion 12 January 29, Daten exportieren und importieren

lektion12 1 Lektion 12 January 29, Daten exportieren und importieren lekion January 9, 8 Table of Conens Daen exporieren und imporieren Bilder exporieren / speichern Differenialgleichungen. erses Beispiel. inhomogene lineare DGL. Variaion der Konsanen Formel. Loesung mi

Mehr

Kapitel : Exponentiell-beschränktes Wachstum

Kapitel : Exponentiell-beschränktes Wachstum Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines

Mehr

5.10 Der Hamilton-Jacobi-Formalismus

5.10 Der Hamilton-Jacobi-Formalismus 5.10 Der Hamilon-Jacobi-Formalismus 183 5.10 Der Hamilon-Jacobi-Formalismus 5.10.1 Welle-Teilchen Dualismus Wir berachen die Ausbreiung von Lich in einem Medium mi veränderlicher Lichgeschwindigkei. Es

Mehr

Kapitel 4. Versuch 415 T-Flipflop

Kapitel 4. Versuch 415 T-Flipflop Kapiel 4 Versuch 415 T-Flipflop Flipflops, die mi jeder seigenden oder mi jeder fallenden Takflanke in den engegengesezen Zusand kippen, heissen T Flipflops ( Toggle Flipflops ). T-Flipflops können aus

Mehr

Vorlesung 3 ERNEUERBARE RESSOURCEN. 1. Bioökonomische Grundbegriffe. 2. Ökonomische Modelle der optimalen Erntepolitiken. 2.1 Der Fall freien Zugangs

Vorlesung 3 ERNEUERBARE RESSOURCEN. 1. Bioökonomische Grundbegriffe. 2. Ökonomische Modelle der optimalen Erntepolitiken. 2.1 Der Fall freien Zugangs Vorlesung 3 ERNEUERBARE RESSOURCEN 1. Bioökonomische Grundbegriffe 2. Ökonomische Modelle der opimalen Ernepoliiken 2.1 Der Fall freien Zugangs 2.2 Ineremporale Allokaion erneuerbarer Ressourcen 1 ERNEUERBARE

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 7.9. für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname: Mar.-Nr.

Mehr

5. Übungsblatt zur Differentialgeometrie

5. Übungsblatt zur Differentialgeometrie Insiu für Mahemaik Prof. Dr. Helge Glöckner Dipl. Mah. Rafael Dahmen 5. Übungsbla zur Differenialgeomerie (Aufgaben und Lösungen) SoSe 3.05.0 Gruppenübung Aufgabe G9 (Submersionen und Unermannigfaligkei)

Mehr

e sx y(x)dx 2. Direkt gemäss der Definition unter Verwendung der in der Vorlesung angeführten Eigenschaften

e sx y(x)dx 2. Direkt gemäss der Definition unter Verwendung der in der Vorlesung angeführten Eigenschaften Kapiel LAPLACE Tranformaion Die Laplace Tranformaion erwei ich al nüzlich zur Löung von linearen Dgln und Dgl- Syemen mi konanen Koeffizienen Dabei werden die Anfangbedingungen gleich miberückichig Definiion

Mehr

Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung.

Definition Ein Homomorphismus von Lie-Algebren. Für uns ist vor allem die im folgenden Satz eingeführte Darstellung von Bedeutung. 1 Lie-Gruppen 1. Lie-Algebren Im lezen Vorrag haben wir bereis das Konzep der Lie-Algebren kennengelern. Zunächs werde ich noch einige weiere grundlegende Definiionen dazu angeben. In diesem Kapiel sei

Mehr

Zeitreihenökonometrie

Zeitreihenökonometrie ifo Insiu für Wirschafsforschung an der Universiä München Zeireihenökonomerie Kapiel 6 Nichsaionäre univariae Zeireihenmodelle ifo Insiu für Wirschafsforschung an der Universiä München Nichsaionäre Prozesse

Mehr

3 Verfahren für steife Differentialgleichungen 3.1 Implizite Runge-Kutta-Verfahren

3 Verfahren für steife Differentialgleichungen 3.1 Implizite Runge-Kutta-Verfahren 3 Verfahren für seife Differenialgleichungen 3. Implizie Runge-Kua-Verfahren Im Tableau von explizien Runge-Kua-Verfahren aus Definiion.3 sind nur die Einräge uner der Diagonalen von Null verschieden.

Mehr

Numerische Behandlung von gewöhnlichen Differentialgleichungen Eine Einführung. Universität Hamburg SoSe07. K. Taubert

Numerische Behandlung von gewöhnlichen Differentialgleichungen Eine Einführung. Universität Hamburg SoSe07. K. Taubert Numerische Behandlung von gewöhnlichen Differenialgleichungen Eine Einführung Universiä Hamburg SoSe7 K. Tauber Besondere Aufgaben 6 UNSTETIGE-, SYMPLEKTISCHE- und ALGEBRO-DIFFERENTIALGLEICHUNGEN 6.1 Einführung

Mehr

Mathematische Modelle nichtlinearer Dosiswirkungsbeziehungen für die strahleninduzierte Karzinogenese

Mathematische Modelle nichtlinearer Dosiswirkungsbeziehungen für die strahleninduzierte Karzinogenese Mahemaische Modelle nichlinearer Dosiswirkungsbeziehungen für die srahleninduziere Karzinogenese PD Dr. Helmu Schöllnberger Abeilung für Physik and Biophysik 2 Inhal Überblick über die beiden bekannesen

Mehr

3. Partielle Differentialgleichungen

3. Partielle Differentialgleichungen 3.. Grundlagen und Klassifikaion Welche Ordnung haben diese Gleichungen?? 3.4.1 Lineare parielle Differenialgleichungen. Ordnung Analogie: Klassifikaion Kegelschnie 1 3.4.3 Korrek geselle Probleme Anfangs-

Mehr

Prof. Dr. W. Zucchini 06 Wiederholung Kap. 1-4 Zeitreihenanalyse Sommer 2003

Prof. Dr. W. Zucchini 06 Wiederholung Kap. 1-4 Zeitreihenanalyse Sommer 2003 Prof. Dr. W. Zucchini 06 Wiederholung Kap. 1-4 Zeireihenanalyse Sommer 2003 I.) Klassische Zeireihenanalyse Komponenen einer Zeireihe: Trend- (u. Zyklus), Saison- und Residualkomponene Addiive und muliplikaive

Mehr

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung

Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Seiger Lösung - Serie 8 MC-Aufgaben Online-Abgabe 1. Was für eine Kurve sell die Paramerisierung sin1 r = cos1, R dar? a Ein Kreis. Es gil x + y = sin 1 + cos

Mehr

u(t) sin(kωt)dt, k > 0

u(t) sin(kωt)dt, k > 0 Übung 7 /Grundgebiee der Elekroechnik 3 WS7/8 Fourieranalyse Dr. Alexander Schaum, Lehrsuhl für verneze elekronische Syseme Chrisian-Albrechs-Universiä zu Kiel mi Im folgenden wird die Fourierreihe = a

Mehr

Lebensdaueruntersuchungen an Energiesparlampen

Lebensdaueruntersuchungen an Energiesparlampen Wilfrie Rohm Leensauerunersuchungen Seie von 6 Wilfrie Rohm wrohm@aon.a Leensauerunersuchungen an Energiesparlampen Link zur Beispielsüersich Mahemaische / Fachliche Inhale in Sichworen: Weiullvereilung,

Mehr

Zusammenfassung Das klassische dynamische Gleichgewichtsmodell Geldtheorie und Geldpolitik Wintersemester, 2011/12

Zusammenfassung Das klassische dynamische Gleichgewichtsmodell Geldtheorie und Geldpolitik Wintersemester, 2011/12 Zusammenfassung Das klassische dynamische Gleichgewichsmodell Geldheorie und Geldpoliik Winersemeser, 20/2 Haushale Wir nehmen an Haushale maximieren ihren ineremporalen Nuzen und leben unendlich lang

Mehr

Kapitel 7 Erwartungsbildung, Konsum und Investition. Dr. Joscha Beckmann Makroökonomik II Wintersemester 2013/14 Folie 1

Kapitel 7 Erwartungsbildung, Konsum und Investition. Dr. Joscha Beckmann Makroökonomik II Wintersemester 2013/14 Folie 1 Kapiel 7 Erwarungsbildung, Konsum und Invesiion Dr. Joscha Beckmann Makroökonomik II Winersemeser 2013/14 Folie 1 Erwarungsbildung, Konsum und Invesiion 7.1 Erwarungen und Konsumnachfrage 7.2 Invesiionen

Mehr

Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve

Vorlesung im Rahmen des Deutsch-Französischen Dozenten-Austauschprogramms Minerve Vorlesung im Rahmen des Deusch-Französischen Dozenen-Ausauschprogramms Minerve Dr. Mahias Hanauske Insiu für Wirschafsinformaik Goehe-Universiä Frankfur am Main Grüneburgplaz, 60 Frankfur am Main Lyon,

Mehr

Fokker-Planck-Gleichung

Fokker-Planck-Gleichung Fokker-Planck-Gleichung Beschreibung sochasischer Prozesse David Kleinhans kleinhan@uni-muenser.de WWU Münser David Kleinhans, WWU Münser Fokker-Planck-Gleichung Beschreibung elemenarer sochasischer Prozesse

Mehr

Bildmaterial zur Vorlesung Regelungstechnik Teil I Die Regelstrecke. Wintersemester 2014 Prof. Dr.-Ing. habil. Klaus-Peter Döge

Bildmaterial zur Vorlesung Regelungstechnik Teil I Die Regelstrecke. Wintersemester 2014 Prof. Dr.-Ing. habil. Klaus-Peter Döge Bildmaerial zur Vorlesung Regelungsechnik Teil I Die Regelsrecke Winersemeser 214 Prof. Dr.-Ing. habil. Klaus-Peer Döge 2 Regelung des Füllsandes eines Flüssigkeisbehälers mi Abfluss Sollwervorgabe Regler:

Mehr

2. Grundlagen Schwingungslehre

2. Grundlagen Schwingungslehre Zusammenfassung Harmonische Anregung (5) Zusammenfassung Harmonische Anregung (6) .4 Akive Schwingungsisolaion (1) a) Schuz der Umgebung von Maschinen, die Schwingungen erzeugen (akiv) b) Schuz eines Geräes,

Mehr

Einfache lineare Regression: Übung 2

Einfache lineare Regression: Übung 2 3. Einfache lineare Regression Ökonomerie I - Peer Salder 1 Einfache lineare Regression: Übung Simulaionsexperimen mi künslich generieren Sichproben Wahres Modell (daengenerierender Prozess): y x u mi

Mehr

, d.h. die Zeitdauer, nach der sich jeweils der Wert des PKWs ha lbiert. Überprüfe das Ergebnis ebenfalls anhand des Graphen aus g).

, d.h. die Zeitdauer, nach der sich jeweils der Wert des PKWs ha lbiert. Überprüfe das Ergebnis ebenfalls anhand des Graphen aus g). Name: Daum: Exponenialfunkionen - Anwendungsaufgabe Gebrauchwagen Erfahrungswere zeigen, dass PKWs beginnend mi dem Kaufdaum jedes Jahr ungefähr ein Vierel ihres Weres verlieren. Bei dieser Aufgabe gehen

Mehr

2 Regelkreisverhalten

2 Regelkreisverhalten Regelkreisverhalen Hinweise zur Lösung Das dnamische Verhalen eines regelungsechnischen Gliedes mi der Ausgangsgröße nach einem Eingangssprung ŷ wird mi Differenialgleichungen oder mi Überragungsfunkionen

Mehr

Lineare Algebra I - Lösungshinweise zur Klausur

Lineare Algebra I - Lösungshinweise zur Klausur Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen

Mehr

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr.

Ganzrationale Funktionenscharen. 4. Grades. Umfangreiche Aufgaben. Lösungen ohne CAS und GTR. Alle Methoden ganz ausführlich. Datei Nr. Ganzraionale Funkionenscharen. Grades Umfangreiche Aufgaben Lösungen ohne CAS und GTR Alle Mehoden ganz ausführlich Daei Nr. 7 Sand 3. Sepember 06 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Hauptachsentransformation

Hauptachsentransformation Haupachsenransformaion Erinnerung: A M n is genau ann nich inverierbar, wenn es ein x R n, x gib, mi A x. Definiion. Sei A M n eine Marix. Ein Vekor v R n, v heiß Eigenvekor von A zum Eigenwer λ R, wenn

Mehr

Konjunkturtheorie (Stand: )

Konjunkturtheorie (Stand: ) Konjunkurheorie (Sand: 18.11.2009) Prof. Dr. Kai Carsensen, LMU und ifo Insiu Seffen Elsner, ifo Insiu Schwerpunk Dynamische Modelle in diskreer Zei mi konsanen Inpus Lösung linearer Differenzengleichungssyseme

Mehr

Geradendarstellung in Paramterform

Geradendarstellung in Paramterform Vekorrechnung Theorie Manfred Gurner Seie Geradendarellung in Paramerform X X X - X - r r Die Punke auf einer Geraden laen ich folgendermaßen finden: Gegeben ei der Punk und der Richungvekor r. Dann ergib

Mehr

Übung zu Quantitative Methoden der Marktanalyse. Tests zu den Annahmen der OLS-Schätzung. 1. Annahmen zur OLS-Schätzung. 1. Annahmen zur OLS-Schätzung

Übung zu Quantitative Methoden der Marktanalyse. Tests zu den Annahmen der OLS-Schätzung. 1. Annahmen zur OLS-Schätzung. 1. Annahmen zur OLS-Schätzung Termin Übungsinhal Übung zu Quaniaive Mehoden der Markanalyse Annahmen derols-schäzung 9.06.009 9.06.009 Tess zu den Annahmen der OLS- Schäzung 06.07.009 Klausurvorbereiung.07.009 Klausurvorbereiung 0.07.009

Mehr

Gewöhnliche Differentialgleichungen, erste Ordnung

Gewöhnliche Differentialgleichungen, erste Ordnung Gewöhnlche Derenalglechungen erse Ordnung wr haben beres gesehen daß sch ele Probleme n der Phsk durch gewöhnlche Derenalglechungen beschreben lassen besmme Varable als Funkon der Ze d d M den Anangsbedngung

Mehr

i(t) t 0 t 1 2t 1 3t 1

i(t) t 0 t 1 2t 1 3t 1 Aufgabe 1: i 0 0 1 2 1 3 1 1. Eine Kapaziä werde mi einem recheckförmigen Srom gespeis (s.o.). Berechnen Sie den Verlauf der Spannung für den Anfangswer u( 0 )=0V mi 0 = 0s. 2. Skizzieren Sie den eisungsverlauf

Mehr

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung

existiert. In der Regel wird zusätzlich zum oben gegebenen System von Differentialgleichungen noch eine Anfangsbedingung 0 Eine Anwendung der Jordan-Normalform in der Analysis In vielen physikalischen Anwendungen is es nowendig, Syseme von Differenialgleichungen der Form: y ( = b y ( + b 2 y 2 ( + + b n y n ( + f ( y 2(

Mehr

Schriftliche Prüfung aus Control Systems 1 (Information and Computer Engineering) am

Schriftliche Prüfung aus Control Systems 1 (Information and Computer Engineering) am TU Graz, Insiu für Regelungs- und Auomaisierungsechnik Schrifliche Prüfung aus Conrol Sysems (Informaion and Compuer Engineering) am 04.07.06 Name / Vorname(n): Marikel-Nummer: Aufgabe A A A3 A4 A5 A6

Mehr

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen Mahemaik I Übungsaufgaben 8 Lösungsorschläge on T. Meyer Era-Mahemaik-Übung: 005--06 Aufgabe Berechnen Sie die Ableiung der Funkion f an einer beliebigen Selle 0 ohne Verwendung irgendwelcher Vorkennnisse

Mehr

8.2 Die Theorie stetiger Halbgruppen im Banachraum

8.2 Die Theorie stetiger Halbgruppen im Banachraum 8.2 Die Theorie seiger Halbgruppen im Banachraum 3 8.2 Die Theorie seiger Halbgruppen im Banachraum Im weieren sellen wir einige allgemeine Aussagen der Theorie seiger Halbgruppen in Banachräumen zusammen.

Mehr

Unternehmensbewertung

Unternehmensbewertung Unernehmensbewerung Brush-up Kurs Winersemeser 2015 Unernehmensbewerung 1. Einführung 2. Free Cash Flow 3. Discouned-Cash-Flow-Bewerung (DCF) 4. Weighed average cos of capial (wacc) 5. Relaive Bewerung/

Mehr

Dynamische Systeme in Unterricht und Praxis

Dynamische Systeme in Unterricht und Praxis Dynamische Syseme in Unerrich und Praxis Günher Karigl und Gerhard Dorfer Im Rahmen der AG-Tagung AHS Mahemaik Bildungshaus S. Hippoly, S. Pölen, 5. November 00 Inhalsübersich. Differenialgleichungen.

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

3.3 Moving-Average-Prozesse (MA-Modelle)

3.3 Moving-Average-Prozesse (MA-Modelle) . Moving-Average-Prozesse MA-Modelle Definiion: in sochasischer Prozess heiß Moving-Average-Prozess der Ordnng [MA-Prozess], wenn er die Form θ θ i i... θ i oder B mi ha. is dabei ein reiner Zfallsprozess

Mehr

Demo-Text für Funktionen und Kurven. Differentialgeometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Friedrich Buckel.

Demo-Text für  Funktionen und Kurven. Differentialgeometrie INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Friedrich Buckel. Funkionen und Kurven Differenialgeomerie Tex Nummer: 5 Sand: 9. März 6 Demo-Tex für www.mahe-cd.de INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mahe-cd.de 5 Differenialgeomerie Vorwor Das Thema Kurven is

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Prof. Dr. Guido Sweers WS 08/09 Jan Gerdung, M.Sc. Gewöhnliche Differenialgleichungen Übungsbla Die Lösungen müssen in den Übungsbriefkasen Gewöhnliche Differenialgleichungen (Raum 0 im MI) geworfen werden.

Mehr

Aufgaben zur Zeitreihenanalyse (Kap. 3)

Aufgaben zur Zeitreihenanalyse (Kap. 3) Prof. Dr. Reinhold Kosfeld Fachbereich Wirschafswissenschafen Aufgaben zur Zeireihenanalyse (Kap. Aufgabe. Was verseh man uner einem sochasischen Prozess? Ein sochasischer Prozess is eine zeiliche Folge

Mehr

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf Das Verfahre vo Goduov Semar Numerk 5..00 Aja Beedorf Das Verfahre vo Goduov Übersch Goduov - Goduovs Verfahre für Leare Syseme Aweduge & Folgeruge aus Goduovs Verfahre - De Numersche Fluss-Fuko m Goduov

Mehr