Kommunikationstechnik I
|
|
|
- Arwed Färber
- vor 9 Jahren
- Abrufe
Transkript
1 Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am anschaulichsen anhand zweier sich parallel gegenübersehender Wände veranschaulichen, zwischen denen eine ebene Schallwelle parallel zu den Wänden hin und her läuf. Durch die Reflexion an einer schallharen Wandfläche überlagern sich hin- und rücklaufende Wellen. Sinusförmige Schallwellen, deren halbe Wellenlänge (oder ganzzahlige Vielfache der halben Wellenlänge) mi dem Absand der Wände übereinsimmen, überlagern sich dabei derar, dass sich die Maxima und Minima des resulierenden Schalldrucks an fesen Oren ausbilden. Die ensprechenden Frequenzen, bei denen sich sehende Wellen zwischen zwei parallelen Wänden ausbilden, lassen sich wie folg berechnen: λ f c d = n = n f = n c d Raummoden sind nichs anderes als sehende Wellen und bilden sich in jedem Raum aus (auch in solchen, die keine sich parallel gegenübersehenden Wände besizen). An den ensprechenden Frequenzen reen in der Überragungsfunkion des Raumes Maxima auf. 1. Erläuern sie, was uner axialen, angenialen und obliquen Moden eines quaderförmigen Raumes zu versehen is. Axiale Moden sind solche Moden, die durch die Reflexion von Schallwellen an nur einem gegenüberliegenden Wandpaar ensehen, also enweder zwischen Vorderund Rückwand, zwischen den beiden Seienwänden, oder zwischen Decke und Boden. Tangeniale Moden hingegen ensehen durch Reflexion an zwei Wandpaaren und oblique Moden schließlich durch Reflexion an allen drei Wandpaaren. Die Berechnung der Moden erfolg nach der Formel: c l m n f lmn = ( ) + ( ) + ( ) x y z Darin sind x, y und z die Abmessungen des Raumes, also änge, Breie und Höhe. l, m und n bezeichnen die Ordnungszahlen der Moden und sagen gleichzeiig, wie viele Druckknoen sich zwischen den Wänden in den jeweiligen Richungen ausbilden. So bezeichne l=1, m= und n= die erse Mode in x-richung, die auch als 1---Mode bezeichne wird und genau einen Druckknoen zwischen den Wänden aufweis. Die -1- Mode enhäl zwei Druckknoen in x-richung, einen Knoen in y- Richung und keinen in z-richung.
2 1.3 Veranschaulichen Sie die Mode der Ordnung 3-- für einen 6m langen und 4m breien Raum mi recheckförmigem Grundriss mihilfe von Malab. Ploen Sie dazu zunächs den Verlauf des Schalldrucks im Raum zu einem fesen Zeipunk mihilfe der Funkion image(). Berachen Sie schließlich den Verlauf des Schalldrucks über der Zei. Teilen Sie dazu eine Schwingungsperiode in 5 diskree Zeipunke auf und ploen Sie für jeden dieser Zeipunke den Verlauf des Schalldrucks im Raum. Geben sie die Animaion mihilfe der Funkion movie() wieder. Der Schalldruckverlauf ergib sich durch die Gleichung lπx mπy nπz jω plmn ( x, y, z) = C cos cos cos x y z Für den Plo zu einem fesen Zeipunk sezen wir =, die Ampliude des Schalldrucks sezen wir hier zu C=1. Durch die Tasache, dass die Ordnung in z- Richung = is, ergib sich der Schalldruckverlauf in diesem konkreen Fall durch die Gleichung: 3πx πy p lmn ( x, y) = cos cos 6m 4m Mihilfe der Gleichung aus Aufgabeneil läss sich die Frequenz der 3---Mode berechnen. Sie ergib sich zu c 3 f = + 95Hz 6m 4m Demensprechend läss sich ω durch ω = πf berechnen und läuf genau eine Periode von = bis = 1/f. Malab-Code siehe Malab-File Aufgabe1_3.m 1.4 Berachen Sie zwei Räume mi dem in ewa gleichen Volumen von 7m 3. Raum 1 habe die Abmessungen,93m x 3,58m x,57m, Raum die Abmessungen 3m x 3m x 3m. Ploen sie für diese beiden Räume mihilfe von Malab die Moden im Bereich von bis 15 Hz. Welche Unerschiede in den Modenspekren können sie fessellen und wirken sich diese auf den Klangeindruck des Raumes aus? Siehe Malab-File Aufgabe1_4.m Es lassen sich in den beiden Plos zwei Dinge fessellen: 1. Die Modendiche, also die Anzahl der Moden in einem besimmen Frequenzband, nimm mi seigender Frequenz zu. Dieses läss sich sowohl im Plo des würfelförmigen Raums erkennen, deulicher jedoch wird es jedoch im Plo des ersen Raums.. Die Modendiche is im Falle von Raum 1 deulich höher als in Raum zwei. Der würfelförmige Raum ha die Eigenschaf, dass sich die Moden bei exak den selben Frequenzen ausbilden. Die 1---Mode ha somi die gleiche Frequenz wie die -1--Mode und die --1 Mode. Gleiches gil beispielsweise für die Moden 1- -, -1- und --1. Jede Eigenfrequenz/Raumresonanz ha eine Versärkung des Frequenzgangs des Raums an der ensprechenden Frequenzselle zur Folge. Dies wirk sich insbesondere in Bereichen mi geringer Eigenfrequenzdiche sörend aus. Die Überhöhung is hier deulich zu hören, weil in den benachbaren Frequenzbereichen
3 keine Moden zu finden sind. Im Falle von hohen Eigenfrequenzdichen verschmelzen die Eigenfrequenzen in machen sich nich als einzelne Überhöhungen im Frequenzgang bemerkbar. 1.5 Berachen sie nun erneu den Raum 1 aus der vorherigen Teilaufgabe, sowie einen Raum mi den jeweils doppelen Abmessungen und ploen sie auch diese beiden. Welche Unerschiede können sie hier fessellen? Abgesehen von den Raumproporionen spiel auch die Raumgröße eine Rolle. In größeren Räumen is generell auch in ieferen Frequenzbereichen eine hohe Eigenfrequenzdiche feszusellen als bei kleineren Räumen mi gleichen Proporionen. Kleine quaderförmige Räume mi ganzzahligen Wandlängenverhälnissen sind daher besonders gefährde, eine ungünsige Modenvereilung aufzuweisen. Das Problem kleiner Räume sell sich häufig bei Regieräumen von Tonsudios.. Impulsanwor Gegeben sei eine Impulsanwor aus dem Audimax als wav-daei. Berechnen Sie in Malab aus der Impulsanwor
4 .1 ein Reflekogramm als quadriere Impulsanwor, Reflekogramme sollen besimme Eigenschafen des Ausklingverhalens deulicher zum Ausdruck bringen als die Impulsanwor. Reflekogramme werden direk aus der Impulsanwor abgeleie. Als Reflekogramme bezeichne man u.a. die Schallenergiediche und die kumuliere Schallenergie. Die Schallenergiediche is proporional zum Quadra der Impulsanwor: w ~ h ( ) ( ). die ohrrägheisbeweree Schallinensiä mi einer Zeikonsane von 5 ms und Für die ohrrägheisbeweree Schallinensiä gil die Gleichung: ' τ τ ( ) ~ h ( ' ) d'. I Dies ensprich einer Falung der quadrieren Impulsanwor mi einer Exponenialfunkion: h τ o ( ) e = h ( ' ) = h ( ' ) ' τ o ' τ o d' d' Dabei gil für die beiden Funkionen: h = für < und ( ) τ e = für <. Als Zeikonsane wird ypischerweise 5 ms bzw. 35 ms verwende..3 eine Abklingkurve als rückwärsinegriere Impulsanwor.
5 Die rückwärsinegriere Impulsanwor ergib sich zu: R ( ) = h ( ) d = h ( ) d h ( ) d
sin = cos = tan = Sinus und Cosinus im rechtwinkligen Dreieck Aufgabe: Berechnen Sie die fehlende Seitenlänge und den Winkel. Gegenkathete Hypotenuse
Sinus und Cosinus im rechwinkligen Dreieck Ankahee Hpoenuse. Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Aufgabe: Berechnen Sie die fehlende Seienlänge und den Winkel.
Sinus und Cosinus im rechtwinkligen Dreieck ( )
Sinus und Cosinus im rechwinkligen Dreieck (6.8.8) Ankahee. Hpoenuse Gegenkahee sin = cos = an = Gegenkahee Hpoenuse Ankahee Hpoenuse Gegenkahee Ankahee Was ha das rechwinklige Dreieck mi Schwingungen
Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner
Sysemheorie eil A - Zeikoninuierliche Signale und Syseme - Muserlösungen Manfred Srohrmann Urban Brunner Inhal 3 Muserlösungen - Zeikoninuierliche Syseme im Zeibereich 3 3. Nachweis der ineariä... 3 3.
Lösung Klausur. p(t) = (M + dm)v p(t + dt) = M(v + dv) + dm(v + dv u) Wir behalten nur die Terme der ersten Ordnung und erhalten.
T1 I. Theorieeil a) Zur Zei wird ein Pake der Masse dm mi der Geschwindigkei aus der Rakee ausgesoÿen. Newon's zweies Gesez läss sich schreiben als dp d = F p( + ) p() = F d = Av2 d Der Impuls des Sysems
Universität Ulm Samstag,
Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender
Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und
Fourier-Transformation Linearität, Symmetrie, Verschiebung, Skalierung, Faltung, Modulation
Übung 3 Fourier-Transformaion Lineariä, Symmerie, Verschiebung, Skalierung, Falung, Modulaion Lernziele - wissen und versehen, dass der Berag der Fourier-Transformieren einer reellen Funkion gerade is.
Zeit (in h) Ausflussrate (in l/h)
Aufgabe 6 (Enwicklung einer Populaion): (Anforderungen: Inerpreaion von Schaubildern; Inegralfunkion in der Praxis) Von einer Populaion wird - jeweils in Abhängigkei von der Zei - die Geburenrae (in Individuen
7.3. Partielle Ableitungen und Richtungsableitungen
7.3. Parielle Ableiungen und Richungsableiungen Generell vorgegeben sei eine Funkion f von einer Teilmenge A der Ebene R oder allgemeiner des n-dimensionalen Raumes R n nach R. Für x [x 1,..., x n ] aus
Abiturprüfung Mathematik 2010 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 ( )( ) und der Normalen von K
Abiurprüfung Mhemik (Bden-Würemberg) Berufliche Gymnsien Anlysis, Aufgbe. Für jedes * is die Funkion f gegeben durch f (x) = x x + x +, x Ds Schubild von f is K. ( )( ).. (4 Punke) Zeichnen Sie K und K
Kapitel : Exponentiell-beschränktes Wachstum
Wachsumsprozesse Kapiel : Exponeniell-beschränkes Wachsum Die Grundbegriffe aus wachsum.xmcd werden auch hier verwende! Wir verwenden nun eine Angabe aus der Biologie und in einem weieren Beispiel eines
Laplacetransformation in der Technik
Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen
Kommunikationstechnik I
Kommunikationstechnik I Prof. Dr. Stefan Weinzierl 3. Aufgabenblatt. Eigenfrequenzen Skizzieren Sie in Matlab mithilfe der Funktion stem für einen Rechteckraum (L=6 m, B=4 m, H=3 m) das Modenspektrum zwischen
3.5 Überlagerung von harmonischen Schwingungen
3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen Zwei Schwingungen u 1 und u längs gleicher Richung können superponier werden. u 1 = u sin(ω 1 + ϕ 1 ) (3.9)
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 6 5. Semester ARBEITSBLATT 6 PARAMETERDARSTELLUNG EINER GERADEN
ARBEITSBLATT PARAMETERDARSTELLUNG EINER GERADEN Eine Gerade sell man im R ensprechend zum R auf, nur daß eine z-koordinae hinzukomm: Definiion: Parameerdarsellung einer Gerade durch die Punke A und B:
Masse, Kraft und Beschleunigung Masse:
Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei
Differentialgleichungen
Ein einfaches Modell (Domar) Im Domar Wachsumsmodell reffen wir die folgenden Annahmen: Kapiel Differenialgleichungen () Erhöhung der Invesiionsrae I() erhöh das Einkommen Y(): dy d = s di (s = konsan)
Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl
Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =
PHYSIK III. Serie 12, Musterlösung
Prof Dr Danilo Pescia Tel 044 633 50 pescia@solidphysehzch Winersemeser 06/07 wwwmicrosrucureehzch Serie, Muserlösung Niculin Saraz Tel 044 633 3 8 saraz@physehzch Reflexion Die Fresnel schen Formeln lauen:
Technische Universität München. Lösung Montag SS 2012
Technische Universiä München Andreas Wörfel Ferienkurs Analysis für Physiker Lösung Monag SS 0 Aufgabe Gradien und Tangene ( ) Besimmen Sie zur Funkion f(x, y) = x y + xy + y die pariellen Ableiungen,
Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann
Aufgaben zur Differenzialrechnung WS 06/07 Prof.Zacherl / Prof. Hollmann Aufgabe Im abgelaufenen Jahr haen einige große deusche Firmen hohe prozenuale Gewinnzuwächse. Gleichzeiig wurden eilweise massiv
Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...
FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa
10. Wechselspannung Einleitung
10.1 Einleiung In Sromnezen benuz man sa Gleichspannung eine sinusförmige Wechselspannung, uner anderem weil diese wesenlich leicher zu erzeugen is. Wie der Name es sag wechsel bei einer Wechselspannung
MATHEMATIK. Fachabituiprüfung 2013 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik
Fachabiuiprüfung 2013 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichung Technik Diensag, 4. Juni 2013, 9.00-12.00 Uhr Die Schülerinnen und Schüler
Name: Punkte: Note: Ø:
Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C
Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff
Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion
4. Quadratische Funktionen.
4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen
Grundlagenfach Mathematik. Prüfende Lehrpersonen Alitiloh Essodinam
Schrifliche Mauriäsprüfung 017 Fach Grundlagenfach Mahemaik Prüfende Lehrpersonen Aliiloh Essodinam [email protected] Mikova Teodora [email protected] Zuidema Roel [email protected] Klassen
Übungen zu Physik 1 für Maschinenwesen
Physikdeparmen E13 WS 211/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peer Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körsgens, David Magerl, Markus Schindler, Moriz v. Sivers Vorlesung 1.11.211,
Regelungstechnik. Steuerung. Regelung. Beim Steuern bewirkt eine Eingangsgröße eine gewünschte Ausgangsgröße (Die nicht auf den Eingang zurückwirkt.
Regelungsechnik Seuerung Beim Seuern bewirk eine Eingangsgröße eine gewünsche Ausgangsgröße (Die nich auf den Eingang zurückwirk. Seuern is eine Wirkungskee Seuerkee (Eingahnsraße) Bsp. Boiler Regelung
Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen
1. Mai 216 Elekronik 1 Marin Weisenhorn Übungsserie: Single-Supply, Gleichricher Dioden Anwendungen Aufgabe 1. Gleichricher In dieser Gleichricherschalung für die USA sei f = 6 Hz. Der Effekivwer der Ausgangspannung
Karlsruher Institut für Technologie (KIT) Institut für Analysis Dr. A. Müller-Rettkowski Dipl.-Math. M. Uhl. Sommersemester 2011
Karlsruher Insiu für Technologie KIT) Insiu für Analysis Dr. A. Müller-Rekowski Dipl.-Mah. M. Uhl Sommersemeser Höhere Mahemaik II für die Fachrichungen Elekroingenieurwesen und Physik inklusive Komplee
Reglerdimensionierung nach Ziegler-Nichols
HTL, Innsbruck Seie von 8 Rober Salvador [email protected] Mahemaische / Fachliche Inhale in Sichworen: Regelungsechnik, Laplaceransformaion, Umgang mi komplexen Zahlen, Kurvendiskussion, Differenzialgleichungen
Mathematische Methoden in den Ingenieurwissenschaften 4. Übungsblatt
Prof Dr M Gerds Dr A Dreves J Michael Winerrimeser 6 Mahemaische Mehoden in den Ingenieurwissenschafen 4 Übungsbla Aufgabe 9 : Mehrmassenschwinger Berache wird ein schwingendes Sysem aus Körpern der Masse
Lösung Abiturprüfung 1994 Leistungskurs (Baden-Württemberg)
Lösung Abiurprüfung 1994 Leisungskurs (Baden-Würemberg) Analysis I.1. a) D f = IR / { 1 } f x= = K besiz keine Nullsellen 1x f ' x= 8 1x = 8 K besiz keine Exremsellen senkreche Asymoe : x= 1 waagereche
Numerisches Programmieren
Technische Universiä München WS 11/1 Insiu für Informaik Prof. Dr. Hans-Joachim Bungarz Michael Lieb, M. Sc. Dipl.-Inf. Chrisoph Riesinger Dipl.-Inf. Marin Schreiber Numerisches Programmieren 4. Programmieraufgabe:
Inhalt Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, SS 2016
Inhal.. 3. 4. 5. 6. 7. 8. Gekoppele Oszillaoren Gekoppele Oszillaoren, ifferenialgleichung Gekoppele Oszillaoren, Normalkoordinaen, Normalschwingungen Gekoppele Oszillaoren, Schwebungen Gekoppele Oszillaoren,
Versicherungstechnik
Operaions Research und Wirschafsinformaik Prof. Dr. P. Rech // Marius Radermacher, M.Sc. DOOR Aufgabe 42 Versicherungsechnik Übungsbla 13 Abgabe bis zum Diensag, dem 24.01.2017 um 10 Uhr im Kasen 19 Überschüsse
Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen
Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,
1 Abtastung, Quantisierung und Codierung analoger Signale
Abasung, Quanisierung und Codierung analoger Signale Analoge Signale werden in den meisen nachrichenechnischen Geräen heuzuage digial verarbeie. Um diese digiale Verarbeiung zu ermöglichen, wird das analoge
V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten
V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie
Charakterisierung des Systems R C. Faltungsintegral. Faltungsintegral (anschaulich) Faltungsintegral (anschaulich) 1. Übertragungsfunktion zb
Charakerisierung des Sysems. Überragungsfunkion zb Falungsinegral 2. Impulsanwor (Anwor auf δ()) δ() R C h() Gleiche Ergebnis wie Spannungseiler! Impulsanwor: Inverse Fourierransformaion Falung_4_2_5.pp
Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)
Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 7.9. für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname: Mar.-Nr.
Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen
Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils
2.2 Rechnen mit Fourierreihen
2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,
Lösung - Serie 8. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) 1. Was für eine Kurve stellt die Parametrisierung
D-MAVT/D-MATL Analysis I HS 018 Dr. Andreas Seiger Lösung - Serie 8 MC-Aufgaben Online-Abgabe 1. Was für eine Kurve sell die Paramerisierung sin1 r = cos1, R dar? a Ein Kreis. Es gil x + y = sin 1 + cos
Beispiele Aufladung von Kondensatoren, Berechnung von Strömen, Spannungen, Zeiten und Kapazitäten.
Beispiele Aufladung von Kondensaoren, Berechnung von Srömen, Spannungen, Zeien und Kapaziäen. 1. (876) Beispiel 1.1 Angaben: R 1 = 2M, R 2 = 5M, C = 2µF, U = 60V 1.2 Aufgabe: Nach wie vielen Sekunden nach
Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2
Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis
Diskrete Integratoren und Ihre Eigenschaften
Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus
Schriftliche Abiturprüfung Mathematik 2013
Schrifliche Abiurprüfung Mahemaik 03 Aufgabe (NT 008, Nr) Pflicheil Bilden Sie die Ableiung der Funkion f mi f(x) = 3x e x+ und vereinfachen Sie so wei wie möglich ( VP) Aufgabe (HT 008, Nr ) G is eine
Stammgruppe trifft sich zum Museumsrundgang Experte erklärt jeweils sein Plakat
Fachag Mahemaik: Kurvenscharen Ablauf: 1. Sunde Gemeinsame Einsiegsaufgabe. Sunde Sammgruppenaufgaben Sammgruppen (a bis 6 Schüler) Jedes Gruppenmiglied erhäl eine unerschiedliche Aufgabe A, B, C, D in
DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN
Skrium zum Fach Mechanik 5Jahrgang HTL-Eisensad DIE LINEARE DIFFERENTIALGLEICHUNG ZWEITER ORDNUNG MIT KONSTANTEN KOEF- FIZIENTEN DilIngDrGüner Hackmüller 5 DilIngDrGüner Hackmüller Alle Reche vorbehalen
Zwischenwerteigenschaft
Zwischenwereigenschaf Markus Berberich Ausarbeiung zum Vorrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemeser 2009, Leiung PD Dr. Gudrun Thäer) Zusammenfassung: In dieser
u(t) sin(kωt)dt, k > 0
Übung 7 /Grundgebiee der Elekroechnik 3 WS7/8 Fourieranalyse Dr. Alexander Schaum, Lehrsuhl für verneze elekronische Syseme Chrisian-Albrechs-Universiä zu Kiel mi Im folgenden wird die Fourierreihe = a
Kapitel 2: Fourieranalyse. Analoge, nichtperiodische Signale
ZHW, NTM, 2005/10, Rur 1 Kapiel 2: Fourieranalyse Analoge, nichperiodische Signale Inhalsverzeichnis 1. FOURIERTRANSFORMATION...1 2. EIGENSCHAFTEN DER FOURIERTRANSFORMATION...2 2.1. LINEARITÄT...2 2.2.
Prüfungsaufgaben Wiederholungsklausur
NIVESITÄT LEIPZIG Insiu für Informaik Prüfungsaufgaben Wiederholungsklausur Ab. Technische Informaik Prof. Dr. do Kebschull Dr. Hans-Joachim Lieske 5. März / 9 - / H7 Winersemeser 999/ Aufgaben zur Wiederholungsklausur
Aufgaben zu den verschiedenen Wachstumsmodellen
Aufgaben zu den verschiedenen Wachsumsmodellen 1. Beispiel: Spezialdünger Durch den Einsaz von Spezialdünger kann der Errag von Feldfrüchen verbesser werden. Erräge können aber nich grenzenlos geseiger
Leibnizschule Hannover
Leibnizschule Hannover - Seminararbei - Medikameneneinnahme -Modellierung- M D Schuljahr: 20 Fach: Mahemaik Inhalsverzeichnis 1 Einleiung 2 2 Einfache Verabreichung 3 21 Die inravenöse Variane 3 22 Die
1. Mathematische Grundlagen und Grundkenntnisse
8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als
1 Lokale Änderungsrate und Gesamtänderung
Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h
Bernhard Geiger, 2004 MODULATION. Unterrichtsskript aus dem TKHF-Unterricht 2003
Bernhard Geiger, 4 MODULATION Unerrichsskrip aus dem TKHF-Unerrich 3 Was is Modulaion? Was is Modulaion? Modulaion is die Veränderung eines Signalparameers (Ampliude, Frequenz, hasenwinkel) eines Trägersignals
Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg
Bden-Würemberg: Abiur 05 Anlysis www.mhe-ufgben.com Hupprüfung Abiurprüfung 05 (ohne CAS) Bden-Würemberg Anlysis Hilfsmiel: GTR, Formelsmmlung berufliche Gymnsien (AG, BTG, EG, SG, TG, WG) Alexnder Schwrz
7 Erzwungene Schwingung bei Impulslasten
Einmassenschwinger eil I.7 Impulslasen 53 7 Erzwungene Schwingung bei Impulslasen Impulslasen im echnischen Allag sind zum Beispiel Soß- oder Aufprallvorgänge oder Schläge. Die Las seig dabei in kurzer
Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2
Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung
Gewöhnliche Differentialgleichungen (DGL)
Gewöhnliche Differenialgleichungen (DGL) Einführende Beispiele und Definiion einer DGL Beispiel 1: 1. Die lineare Pendelbewegung eines Federschwingers führ uner Zuhilfenahme des Newonschen Krafgesezes
Grundlagen zeitveränderlicher Signale, Analyse von Systemen der Audio- und Videotechnik
3. Nichperiodische Signale 3.1 ω ω ω dω Nichperiodische Signale endlicher Länge Die Fourierransformaion zerleg nichperiodische Signale endlicher Länge in ein koninuierliches endliches Frequenzspekrum.
7 Das lokale Ito-Integral
7 Das lokale Io-Inegral 7.3 Ein lokales L p -Maringal is uner einer gleichgradigen Inegrierbarkeisbedingung ein L p -Maringal 7.4 Rechsseiig seiges (seiges), lokales L p -Maringal 7.5 Seige, lokale Maringale
Zentrale schriftliche Abiturprüfungen im Fach Mathematik
Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi
14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge
Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und
Schlanke Baumzerlegungen von Graphen
Parick Bellenbaum Schlanke Baumzerlegungen von Graphen 12. Dezember 2000 Diplomarbei am Mahemaischen Seminar der Universiä Hamburg Zusammenfassung Berache man zwei Teile einer Baumzerlegung eines endlichen
Berechnungen am Wankelmotor
HTL Saalfelen Wankelmoor Seie von 7 Schmihuber Heinrich [email protected] Berechnungen am Wankelmoor Link zur Beispielsübersich Mahemaische / Fachliche Inhale in Sichworen: Linieninegral,
Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement
Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III
Lineare Algebra I - Lösungshinweise zur Klausur
Insiu für Mahemaik Winersemeser 0/3 Universiä Würzburg 0 Februar 03 Prof Dr Jörn Seuding Dr Anna von Heusinger Frederike Rüppel Lineare Algebra I - Lösungshinweise zur Klausur Aufgabe : (0 Punke) Zeigen
3.2 Festlegung der relevanten Brandszenarien
B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen
Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung
Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich
Aufgabensammlung. Signale und Systeme 1. Einführung in die Signal- und Systemtheorie. Kontaktinformation: Dr. Mike Wolf, Tel. 2619
Aufgabensammlung Signale und Syseme 1 für die BA-Sudiengänge EIT, II, BT, MTR, OTR, MT, IN (3. FS) Einführung in die Signal- und Sysemheorie für den BA-Sudiengang WIW-ET (5. FS) Konakinformaion: Dr. Mike
Signal- und Systemtheorie for Dummies
FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies
Formelsammlung (Fundamentum, ohne zusätzliche Blätter) Grafikfähiger Taschenrechner CAS im Prüfungsmodus (zurückgesetzt)
BM Mahemaik T Schwerpunk_6 / 0 - Serie Seie: /7 Abschlussprüfung BM Mahemaik Schwerpunk TAL Teil Prüfungsdauer 90 Minuen, ohne Hilfsmiel Formelsammlung (Fundamenum, ohne zusäzliche Bläer Grafikfähiger
